mirror of
https://github.com/Instadapp/Gelato-automations.git
synced 2024-07-29 22:28:07 +00:00
83 lines
2.5 KiB
Solidity
83 lines
2.5 KiB
Solidity
// "SPDX-License-Identifier: UNLICENSED"
|
|
pragma solidity 0.6.12;
|
|
|
|
contract DSMath {
|
|
function _add(uint256 x, uint256 y) internal pure returns (uint256 z) {
|
|
require((z = x + y) >= x, "ds-math-_add-overflow");
|
|
}
|
|
|
|
function _sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
|
|
require((z = x - y) <= x, "ds-math-_sub-underflow");
|
|
}
|
|
|
|
function _mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
|
|
require(y == 0 || (z = x * y) / y == x, "ds-math-_mul-overflow");
|
|
}
|
|
|
|
function _min(uint256 x, uint256 y) internal pure returns (uint256 z) {
|
|
return x <= y ? x : y;
|
|
}
|
|
|
|
function _max(uint256 x, uint256 y) internal pure returns (uint256 z) {
|
|
return x >= y ? x : y;
|
|
}
|
|
|
|
function _imin(int256 x, int256 y) internal pure returns (int256 z) {
|
|
return x <= y ? x : y;
|
|
}
|
|
|
|
function _imax(int256 x, int256 y) internal pure returns (int256 z) {
|
|
return x >= y ? x : y;
|
|
}
|
|
|
|
uint256 internal constant _WAD = 10**18;
|
|
uint256 internal constant _RAY = 10**27;
|
|
|
|
//rounds to zero if x*y < _WAD / 2
|
|
function _wmul(uint256 x, uint256 y) internal pure returns (uint256 z) {
|
|
z = _add(_mul(x, y), _WAD / 2) / _WAD;
|
|
}
|
|
|
|
//rounds to zero if x*y < _WAD / 2
|
|
function _rmul(uint256 x, uint256 y) internal pure returns (uint256 z) {
|
|
z = _add(_mul(x, y), _RAY / 2) / _RAY;
|
|
}
|
|
|
|
//rounds to zero if x*y < _WAD / 2
|
|
function _wdiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
|
|
z = _add(_mul(x, _WAD), y / 2) / y;
|
|
}
|
|
|
|
//rounds to zero if x*y < _RAY / 2
|
|
function _rdiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
|
|
z = _add(_mul(x, _RAY), y / 2) / y;
|
|
}
|
|
|
|
// This famous algorithm is called "exponentiation by squaring"
|
|
// and calculates x^n with x as fixed-point and n as regular unsigned.
|
|
//
|
|
// It's O(log n), instead of O(n) for naive repeated _multiplication.
|
|
//
|
|
// These facts are why it works:
|
|
//
|
|
// If n is even, then x^n = (x^2)^(n/2).
|
|
// If n is odd, then x^n = x * x^(n-1),
|
|
// and applying the equation for even x gives
|
|
// x^n = x * (x^2)^((n-1) / 2).
|
|
//
|
|
// Also, EVM division is flooring and
|
|
// floor[(n-1) / 2] = floor[n / 2].
|
|
//
|
|
function _rpow(uint256 x, uint256 n) internal pure returns (uint256 z) {
|
|
z = n % 2 != 0 ? x : _RAY;
|
|
|
|
for (n /= 2; n != 0; n /= 2) {
|
|
x = _rmul(x, x);
|
|
|
|
if (n % 2 != 0) {
|
|
z = _rmul(z, x);
|
|
}
|
|
}
|
|
}
|
|
}
|