// "SPDX-License-Identifier: UNLICENSED" pragma solidity 0.6.12; contract DSMath { function _add(uint256 x, uint256 y) internal pure returns (uint256 z) { require((z = x + y) >= x, "ds-math-_add-overflow"); } function _sub(uint256 x, uint256 y) internal pure returns (uint256 z) { require((z = x - y) <= x, "ds-math-_sub-underflow"); } function _mul(uint256 x, uint256 y) internal pure returns (uint256 z) { require(y == 0 || (z = x * y) / y == x, "ds-math-_mul-overflow"); } function _min(uint256 x, uint256 y) internal pure returns (uint256 z) { return x <= y ? x : y; } function _max(uint256 x, uint256 y) internal pure returns (uint256 z) { return x >= y ? x : y; } function _imin(int256 x, int256 y) internal pure returns (int256 z) { return x <= y ? x : y; } function _imax(int256 x, int256 y) internal pure returns (int256 z) { return x >= y ? x : y; } uint256 internal constant _WAD = 10**18; uint256 internal constant _RAY = 10**27; //rounds to zero if x*y < _WAD / 2 function _wmul(uint256 x, uint256 y) internal pure returns (uint256 z) { z = _add(_mul(x, y), _WAD / 2) / _WAD; } //rounds to zero if x*y < _WAD / 2 function _rmul(uint256 x, uint256 y) internal pure returns (uint256 z) { z = _add(_mul(x, y), _RAY / 2) / _RAY; } //rounds to zero if x*y < _WAD / 2 function _wdiv(uint256 x, uint256 y) internal pure returns (uint256 z) { z = _add(_mul(x, _WAD), y / 2) / y; } //rounds to zero if x*y < _RAY / 2 function _rdiv(uint256 x, uint256 y) internal pure returns (uint256 z) { z = _add(_mul(x, _RAY), y / 2) / y; } // This famous algorithm is called "exponentiation by squaring" // and calculates x^n with x as fixed-point and n as regular unsigned. // // It's O(log n), instead of O(n) for naive repeated _multiplication. // // These facts are why it works: // // If n is even, then x^n = (x^2)^(n/2). // If n is odd, then x^n = x * x^(n-1), // and applying the equation for even x gives // x^n = x * (x^2)^((n-1) / 2). // // Also, EVM division is flooring and // floor[(n-1) / 2] = floor[n / 2]. // function _rpow(uint256 x, uint256 n) internal pure returns (uint256 z) { z = n % 2 != 0 ? x : _RAY; for (n /= 2; n != 0; n /= 2) { x = _rmul(x, x); if (n % 2 != 0) { z = _rmul(z, x); } } } }