pragma solidity ^0.5.0; contract DSAuthority { function canCall(address src, address dst, bytes4 sig) public view returns (bool); } contract DSAuthEvents { event LogSetAuthority (address indexed authority); event LogSetOwner (address indexed owner); } contract DSAuth is DSAuthEvents { DSAuthority public authority; address public owner; constructor() public { owner = msg.sender; emit LogSetOwner(msg.sender); } function setOwner(address owner_) public auth { owner = owner_; emit LogSetOwner(owner); } function setAuthority(DSAuthority authority_) public auth { authority = authority_; emit LogSetAuthority(authority); } modifier auth { require(isAuthorized(msg.sender, msg.sig)); _; } function isAuthorized(address src, bytes4 sig) internal view returns (bool) { if (src == address(this)) { return true; } else if (src == owner) { return true; } else if (authority == DSAuthority(0)) { return false; } else { return authority.canCall(src, this, sig); } } } contract DSNote { event LogNote( bytes4 indexed sig, address indexed guy, bytes32 indexed foo, bytes32 indexed bar, uint wad, bytes fax ) anonymous; modifier note { bytes32 foo; bytes32 bar; assembly { foo := calldataload(4) bar := calldataload(36) } emit LogNote(msg.sig, msg.sender, foo, bar, msg.value, msg.data); _; } } // DSProxy // Allows code execution using a persistant identity This can be very // useful to execute a sequence of atomic actions. Since the owner of // the proxy can be changed, this allows for dynamic ownership models // i.e. a multisig contract DSProxy is DSAuth, DSNote { DSProxyCache public cache; // global cache for contracts constructor(address _cacheAddr) public { setCache(_cacheAddr); } function() external payable { } // use the proxy to execute calldata _data on contract _code function execute(bytes memory _code, bytes memory _data) public payable returns (address target, bytes memory response) { target = cache.read(_code); if (target == address(0)) { // deploy contract & store its address in cache target = cache.write(_code); } response = execute(target, _data); } function execute(address _target, bytes memory _data) public auth note payable returns (bytes memory response) { require(_target != address(0), "ds-proxy-target-address-required"); // call contract in current context assembly { let succeeded := delegatecall(sub(gas, 5000), _target, add(_data, 0x20), mload(_data), 0, 0) let size := returndatasize response := mload(0x40) mstore(0x40, add(response, and(add(add(size, 0x20), 0x1f), not(0x1f)))) mstore(response, size) returndatacopy(add(response, 0x20), 0, size) switch iszero(succeeded) case 1 { // throw if delegatecall failed revert(add(response, 0x20), size) } } } //set new cache function setCache(address _cacheAddr) public auth note returns (bool) { require(_cacheAddr != address(0), "ds-proxy-cache-address-required"); cache = DSProxyCache(_cacheAddr); // overwrite cache return true; } } // DSProxyCache // This global cache stores addresses of contracts previously deployed // by a proxy. This saves gas from repeat deployment of the same // contracts and eliminates blockchain bloat. // By default, all proxies deployed from the same factory store // contracts in the same cache. The cache a proxy instance uses can be // changed. The cache uses the sha3 hash of a contract's bytecode to // lookup the address contract DSProxyCache { mapping(bytes32 => address) cache; function read(bytes memory _code) public view returns (address) { bytes32 hash = keccak256(_code); return cache[hash]; } function write(bytes memory _code) public returns (address target) { assembly { target := create(0, add(_code, 0x20), mload(_code)) switch iszero(extcodesize(target)) case 1 { // throw if contract failed to deploy revert(0, 0) } } bytes32 hash = keccak256(_code); cache[hash] = target; } }