mirror of
https://github.com/Instadapp/fluid-contracts-public.git
synced 2024-07-29 21:57:37 +00:00
d7a58e88ff
ARB: deploy protocols
231 lines
459 KiB
JSON
231 lines
459 KiB
JSON
{
|
||
"language": "Solidity",
|
||
"sources": {
|
||
"@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../utils/ContextUpgradeable.sol\";\nimport \"../proxy/utils/Initializable.sol\";\n\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\nabstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {\n address private _owner;\n\n event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n /**\n * @dev Initializes the contract setting the deployer as the initial owner.\n */\n function __Ownable_init() internal onlyInitializing {\n __Ownable_init_unchained();\n }\n\n function __Ownable_init_unchained() internal onlyInitializing {\n _transferOwnership(_msgSender());\n }\n\n /**\n * @dev Throws if called by any account other than the owner.\n */\n modifier onlyOwner() {\n _checkOwner();\n _;\n }\n\n /**\n * @dev Returns the address of the current owner.\n */\n function owner() public view virtual returns (address) {\n return _owner;\n }\n\n /**\n * @dev Throws if the sender is not the owner.\n */\n function _checkOwner() internal view virtual {\n require(owner() == _msgSender(), \"Ownable: caller is not the owner\");\n }\n\n /**\n * @dev Leaves the contract without owner. It will not be possible to call\n * `onlyOwner` functions anymore. Can only be called by the current owner.\n *\n * NOTE: Renouncing ownership will leave the contract without an owner,\n * thereby removing any functionality that is only available to the owner.\n */\n function renounceOwnership() public virtual onlyOwner {\n _transferOwnership(address(0));\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Can only be called by the current owner.\n */\n function transferOwnership(address newOwner) public virtual onlyOwner {\n require(newOwner != address(0), \"Ownable: new owner is the zero address\");\n _transferOwnership(newOwner);\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Internal function without access restriction.\n */\n function _transferOwnership(address newOwner) internal virtual {\n address oldOwner = _owner;\n _owner = newOwner;\n emit OwnershipTransferred(oldOwner, newOwner);\n }\n\n /**\n * @dev This empty reserved space is put in place to allow future versions to add new\n * variables without shifting down storage in the inheritance chain.\n * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps\n */\n uint256[49] private __gap;\n}\n"
|
||
},
|
||
"@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol)\n\npragma solidity ^0.8.2;\n\nimport \"../../utils/AddressUpgradeable.sol\";\n\n/**\n * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed\n * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an\n * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer\n * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.\n *\n * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be\n * reused. This mechanism prevents re-execution of each \"step\" but allows the creation of new initialization steps in\n * case an upgrade adds a module that needs to be initialized.\n *\n * For example:\n *\n * [.hljs-theme-light.nopadding]\n * ```\n * contract MyToken is ERC20Upgradeable {\n * function initialize() initializer public {\n * __ERC20_init(\"MyToken\", \"MTK\");\n * }\n * }\n * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {\n * function initializeV2() reinitializer(2) public {\n * __ERC20Permit_init(\"MyToken\");\n * }\n * }\n * ```\n *\n * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as\n * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.\n *\n * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure\n * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.\n *\n * [CAUTION]\n * ====\n * Avoid leaving a contract uninitialized.\n *\n * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation\n * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke\n * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:\n *\n * [.hljs-theme-light.nopadding]\n * ```\n * /// @custom:oz-upgrades-unsafe-allow constructor\n * constructor() {\n * _disableInitializers();\n * }\n * ```\n * ====\n */\nabstract contract Initializable {\n /**\n * @dev Indicates that the contract has been initialized.\n * @custom:oz-retyped-from bool\n */\n uint8 private _initialized;\n\n /**\n * @dev Indicates that the contract is in the process of being initialized.\n */\n bool private _initializing;\n\n /**\n * @dev Triggered when the contract has been initialized or reinitialized.\n */\n event Initialized(uint8 version);\n\n /**\n * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,\n * `onlyInitializing` functions can be used to initialize parent contracts.\n *\n * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a\n * constructor.\n *\n * Emits an {Initialized} event.\n */\n modifier initializer() {\n bool isTopLevelCall = !_initializing;\n require(\n (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),\n \"Initializable: contract is already initialized\"\n );\n _initialized = 1;\n if (isTopLevelCall) {\n _initializing = true;\n }\n _;\n if (isTopLevelCall) {\n _initializing = false;\n emit Initialized(1);\n }\n }\n\n /**\n * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the\n * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be\n * used to initialize parent contracts.\n *\n * A reinitializer may be used after the original initialization step. This is essential to configure modules that\n * are added through upgrades and that require initialization.\n *\n * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`\n * cannot be nested. If one is invoked in the context of another, execution will revert.\n *\n * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in\n * a contract, executing them in the right order is up to the developer or operator.\n *\n * WARNING: setting the version to 255 will prevent any future reinitialization.\n *\n * Emits an {Initialized} event.\n */\n modifier reinitializer(uint8 version) {\n require(!_initializing && _initialized < version, \"Initializable: contract is already initialized\");\n _initialized = version;\n _initializing = true;\n _;\n _initializing = false;\n emit Initialized(version);\n }\n\n /**\n * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the\n * {initializer} and {reinitializer} modifiers, directly or indirectly.\n */\n modifier onlyInitializing() {\n require(_initializing, \"Initializable: contract is not initializing\");\n _;\n }\n\n /**\n * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.\n * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized\n * to any version. It is recommended to use this to lock implementation contracts that are designed to be called\n * through proxies.\n *\n * Emits an {Initialized} event the first time it is successfully executed.\n */\n function _disableInitializers() internal virtual {\n require(!_initializing, \"Initializable: contract is initializing\");\n if (_initialized < type(uint8).max) {\n _initialized = type(uint8).max;\n emit Initialized(type(uint8).max);\n }\n }\n\n /**\n * @dev Returns the highest version that has been initialized. See {reinitializer}.\n */\n function _getInitializedVersion() internal view returns (uint8) {\n return _initialized;\n }\n\n /**\n * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.\n */\n function _isInitializing() internal view returns (bool) {\n return _initializing;\n }\n}\n"
|
||
},
|
||
"@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)\n\npragma solidity ^0.8.1;\n\n/**\n * @dev Collection of functions related to the address type\n */\nlibrary AddressUpgradeable {\n /**\n * @dev Returns true if `account` is a contract.\n *\n * [IMPORTANT]\n * ====\n * It is unsafe to assume that an address for which this function returns\n * false is an externally-owned account (EOA) and not a contract.\n *\n * Among others, `isContract` will return false for the following\n * types of addresses:\n *\n * - an externally-owned account\n * - a contract in construction\n * - an address where a contract will be created\n * - an address where a contract lived, but was destroyed\n * ====\n *\n * [IMPORTANT]\n * ====\n * You shouldn't rely on `isContract` to protect against flash loan attacks!\n *\n * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets\n * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract\n * constructor.\n * ====\n */\n function isContract(address account) internal view returns (bool) {\n // This method relies on extcodesize/address.code.length, which returns 0\n // for contracts in construction, since the code is only stored at the end\n // of the constructor execution.\n\n return account.code.length > 0;\n }\n\n /**\n * @dev Replacement for Solidity's `transfer`: sends `amount` wei to\n * `recipient`, forwarding all available gas and reverting on errors.\n *\n * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost\n * of certain opcodes, possibly making contracts go over the 2300 gas limit\n * imposed by `transfer`, making them unable to receive funds via\n * `transfer`. {sendValue} removes this limitation.\n *\n * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].\n *\n * IMPORTANT: because control is transferred to `recipient`, care must be\n * taken to not create reentrancy vulnerabilities. Consider using\n * {ReentrancyGuard} or the\n * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].\n */\n function sendValue(address payable recipient, uint256 amount) internal {\n require(address(this).balance >= amount, \"Address: insufficient balance\");\n\n (bool success, ) = recipient.call{value: amount}(\"\");\n require(success, \"Address: unable to send value, recipient may have reverted\");\n }\n\n /**\n * @dev Performs a Solidity function call using a low level `call`. A\n * plain `call` is an unsafe replacement for a function call: use this\n * function instead.\n *\n * If `target` reverts with a revert reason, it is bubbled up by this\n * function (like regular Solidity function calls).\n *\n * Returns the raw returned data. To convert to the expected return value,\n * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].\n *\n * Requirements:\n *\n * - `target` must be a contract.\n * - calling `target` with `data` must not revert.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionCallWithValue(target, data, 0, \"Address: low-level call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with\n * `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal returns (bytes memory) {\n return functionCallWithValue(target, data, 0, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but also transferring `value` wei to `target`.\n *\n * Requirements:\n *\n * - the calling contract must have an ETH balance of at least `value`.\n * - the called Solidity function must be `payable`.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(\n address target,\n bytes memory data,\n uint256 value\n ) internal returns (bytes memory) {\n return functionCallWithValue(target, data, value, \"Address: low-level call with value failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but\n * with `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(\n address target,\n bytes memory data,\n uint256 value,\n string memory errorMessage\n ) internal returns (bytes memory) {\n require(address(this).balance >= value, \"Address: insufficient balance for call\");\n (bool success, bytes memory returndata) = target.call{value: value}(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but performing a static call.\n *\n * _Available since v3.3._\n */\n function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {\n return functionStaticCall(target, data, \"Address: low-level static call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n * but performing a static call.\n *\n * _Available since v3.3._\n */\n function functionStaticCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal view returns (bytes memory) {\n (bool success, bytes memory returndata) = target.staticcall(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling\n * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.\n *\n * _Available since v4.8._\n */\n function verifyCallResultFromTarget(\n address target,\n bool success,\n bytes memory returndata,\n string memory errorMessage\n ) internal view returns (bytes memory) {\n if (success) {\n if (returndata.length == 0) {\n // only check isContract if the call was successful and the return data is empty\n // otherwise we already know that it was a contract\n require(isContract(target), \"Address: call to non-contract\");\n }\n return returndata;\n } else {\n _revert(returndata, errorMessage);\n }\n }\n\n /**\n * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the\n * revert reason or using the provided one.\n *\n * _Available since v4.3._\n */\n function verifyCallResult(\n bool success,\n bytes memory returndata,\n string memory errorMessage\n ) internal pure returns (bytes memory) {\n if (success) {\n return returndata;\n } else {\n _revert(returndata, errorMessage);\n }\n }\n\n function _revert(bytes memory returndata, string memory errorMessage) private pure {\n // Look for revert reason and bubble it up if present\n if (returndata.length > 0) {\n // The easiest way to bubble the revert reason is using memory via assembly\n /// @solidity memory-safe-assembly\n assembly {\n let returndata_size := mload(returndata)\n revert(add(32, returndata), returndata_size)\n }\n } else {\n revert(errorMessage);\n }\n }\n}\n"
|
||
},
|
||
"@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)\n\npragma solidity ^0.8.0;\nimport \"../proxy/utils/Initializable.sol\";\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract ContextUpgradeable is Initializable {\n function __Context_init() internal onlyInitializing {\n }\n\n function __Context_init_unchained() internal onlyInitializing {\n }\n function _msgSender() internal view virtual returns (address) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes calldata) {\n return msg.data;\n }\n\n /**\n * @dev This empty reserved space is put in place to allow future versions to add new\n * variables without shifting down storage in the inheritance chain.\n * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps\n */\n uint256[50] private __gap;\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/interfaces/draft-IERC1822.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified\n * proxy whose upgrades are fully controlled by the current implementation.\n */\ninterface IERC1822Proxiable {\n /**\n * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation\n * address.\n *\n * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks\n * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this\n * function revert if invoked through a proxy.\n */\n function proxiableUUID() external view returns (bytes32);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/interfaces/IERC4626.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (interfaces/IERC4626.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../token/ERC20/IERC20.sol\";\nimport \"../token/ERC20/extensions/IERC20Metadata.sol\";\n\n/**\n * @dev Interface of the ERC4626 \"Tokenized Vault Standard\", as defined in\n * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].\n *\n * _Available since v4.7._\n */\ninterface IERC4626 is IERC20, IERC20Metadata {\n event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);\n\n event Withdraw(\n address indexed sender,\n address indexed receiver,\n address indexed owner,\n uint256 assets,\n uint256 shares\n );\n\n /**\n * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.\n *\n * - MUST be an ERC-20 token contract.\n * - MUST NOT revert.\n */\n function asset() external view returns (address assetTokenAddress);\n\n /**\n * @dev Returns the total amount of the underlying asset that is “managed” by Vault.\n *\n * - SHOULD include any compounding that occurs from yield.\n * - MUST be inclusive of any fees that are charged against assets in the Vault.\n * - MUST NOT revert.\n */\n function totalAssets() external view returns (uint256 totalManagedAssets);\n\n /**\n * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal\n * scenario where all the conditions are met.\n *\n * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.\n * - MUST NOT show any variations depending on the caller.\n * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.\n * - MUST NOT revert.\n *\n * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the\n * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and\n * from.\n */\n function convertToShares(uint256 assets) external view returns (uint256 shares);\n\n /**\n * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal\n * scenario where all the conditions are met.\n *\n * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.\n * - MUST NOT show any variations depending on the caller.\n * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.\n * - MUST NOT revert.\n *\n * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the\n * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and\n * from.\n */\n function convertToAssets(uint256 shares) external view returns (uint256 assets);\n\n /**\n * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,\n * through a deposit call.\n *\n * - MUST return a limited value if receiver is subject to some deposit limit.\n * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.\n * - MUST NOT revert.\n */\n function maxDeposit(address receiver) external view returns (uint256 maxAssets);\n\n /**\n * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given\n * current on-chain conditions.\n *\n * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit\n * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called\n * in the same transaction.\n * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the\n * deposit would be accepted, regardless if the user has enough tokens approved, etc.\n * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.\n * - MUST NOT revert.\n *\n * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in\n * share price or some other type of condition, meaning the depositor will lose assets by depositing.\n */\n function previewDeposit(uint256 assets) external view returns (uint256 shares);\n\n /**\n * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.\n *\n * - MUST emit the Deposit event.\n * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the\n * deposit execution, and are accounted for during deposit.\n * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not\n * approving enough underlying tokens to the Vault contract, etc).\n *\n * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.\n */\n function deposit(uint256 assets, address receiver) external returns (uint256 shares);\n\n /**\n * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.\n * - MUST return a limited value if receiver is subject to some mint limit.\n * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.\n * - MUST NOT revert.\n */\n function maxMint(address receiver) external view returns (uint256 maxShares);\n\n /**\n * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given\n * current on-chain conditions.\n *\n * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call\n * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the\n * same transaction.\n * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint\n * would be accepted, regardless if the user has enough tokens approved, etc.\n * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.\n * - MUST NOT revert.\n *\n * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in\n * share price or some other type of condition, meaning the depositor will lose assets by minting.\n */\n function previewMint(uint256 shares) external view returns (uint256 assets);\n\n /**\n * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.\n *\n * - MUST emit the Deposit event.\n * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint\n * execution, and are accounted for during mint.\n * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not\n * approving enough underlying tokens to the Vault contract, etc).\n *\n * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.\n */\n function mint(uint256 shares, address receiver) external returns (uint256 assets);\n\n /**\n * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the\n * Vault, through a withdraw call.\n *\n * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.\n * - MUST NOT revert.\n */\n function maxWithdraw(address owner) external view returns (uint256 maxAssets);\n\n /**\n * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,\n * given current on-chain conditions.\n *\n * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw\n * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if\n * called\n * in the same transaction.\n * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though\n * the withdrawal would be accepted, regardless if the user has enough shares, etc.\n * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.\n * - MUST NOT revert.\n *\n * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in\n * share price or some other type of condition, meaning the depositor will lose assets by depositing.\n */\n function previewWithdraw(uint256 assets) external view returns (uint256 shares);\n\n /**\n * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.\n *\n * - MUST emit the Withdraw event.\n * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the\n * withdraw execution, and are accounted for during withdraw.\n * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner\n * not having enough shares, etc).\n *\n * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.\n * Those methods should be performed separately.\n */\n function withdraw(\n uint256 assets,\n address receiver,\n address owner\n ) external returns (uint256 shares);\n\n /**\n * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,\n * through a redeem call.\n *\n * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.\n * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.\n * - MUST NOT revert.\n */\n function maxRedeem(address owner) external view returns (uint256 maxShares);\n\n /**\n * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,\n * given current on-chain conditions.\n *\n * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call\n * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the\n * same transaction.\n * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the\n * redemption would be accepted, regardless if the user has enough shares, etc.\n * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.\n * - MUST NOT revert.\n *\n * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in\n * share price or some other type of condition, meaning the depositor will lose assets by redeeming.\n */\n function previewRedeem(uint256 shares) external view returns (uint256 assets);\n\n /**\n * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.\n *\n * - MUST emit the Withdraw event.\n * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the\n * redeem execution, and are accounted for during redeem.\n * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner\n * not having enough shares, etc).\n *\n * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.\n * Those methods should be performed separately.\n */\n function redeem(\n uint256 shares,\n address receiver,\n address owner\n ) external returns (uint256 assets);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/proxy/beacon/IBeacon.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev This is the interface that {BeaconProxy} expects of its beacon.\n */\ninterface IBeacon {\n /**\n * @dev Must return an address that can be used as a delegate call target.\n *\n * {BeaconProxy} will check that this address is a contract.\n */\n function implementation() external view returns (address);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/proxy/ERC1967/ERC1967Upgrade.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol)\n\npragma solidity ^0.8.2;\n\nimport \"../beacon/IBeacon.sol\";\nimport \"../../interfaces/draft-IERC1822.sol\";\nimport \"../../utils/Address.sol\";\nimport \"../../utils/StorageSlot.sol\";\n\n/**\n * @dev This abstract contract provides getters and event emitting update functions for\n * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.\n *\n * _Available since v4.1._\n *\n * @custom:oz-upgrades-unsafe-allow delegatecall\n */\nabstract contract ERC1967Upgrade {\n // This is the keccak-256 hash of \"eip1967.proxy.rollback\" subtracted by 1\n bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;\n\n /**\n * @dev Storage slot with the address of the current implementation.\n * This is the keccak-256 hash of \"eip1967.proxy.implementation\" subtracted by 1, and is\n * validated in the constructor.\n */\n bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;\n\n /**\n * @dev Emitted when the implementation is upgraded.\n */\n event Upgraded(address indexed implementation);\n\n /**\n * @dev Returns the current implementation address.\n */\n function _getImplementation() internal view returns (address) {\n return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;\n }\n\n /**\n * @dev Stores a new address in the EIP1967 implementation slot.\n */\n function _setImplementation(address newImplementation) private {\n require(Address.isContract(newImplementation), \"ERC1967: new implementation is not a contract\");\n StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;\n }\n\n /**\n * @dev Perform implementation upgrade\n *\n * Emits an {Upgraded} event.\n */\n function _upgradeTo(address newImplementation) internal {\n _setImplementation(newImplementation);\n emit Upgraded(newImplementation);\n }\n\n /**\n * @dev Perform implementation upgrade with additional setup call.\n *\n * Emits an {Upgraded} event.\n */\n function _upgradeToAndCall(\n address newImplementation,\n bytes memory data,\n bool forceCall\n ) internal {\n _upgradeTo(newImplementation);\n if (data.length > 0 || forceCall) {\n Address.functionDelegateCall(newImplementation, data);\n }\n }\n\n /**\n * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.\n *\n * Emits an {Upgraded} event.\n */\n function _upgradeToAndCallUUPS(\n address newImplementation,\n bytes memory data,\n bool forceCall\n ) internal {\n // Upgrades from old implementations will perform a rollback test. This test requires the new\n // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing\n // this special case will break upgrade paths from old UUPS implementation to new ones.\n if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {\n _setImplementation(newImplementation);\n } else {\n try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {\n require(slot == _IMPLEMENTATION_SLOT, \"ERC1967Upgrade: unsupported proxiableUUID\");\n } catch {\n revert(\"ERC1967Upgrade: new implementation is not UUPS\");\n }\n _upgradeToAndCall(newImplementation, data, forceCall);\n }\n }\n\n /**\n * @dev Storage slot with the admin of the contract.\n * This is the keccak-256 hash of \"eip1967.proxy.admin\" subtracted by 1, and is\n * validated in the constructor.\n */\n bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;\n\n /**\n * @dev Emitted when the admin account has changed.\n */\n event AdminChanged(address previousAdmin, address newAdmin);\n\n /**\n * @dev Returns the current admin.\n */\n function _getAdmin() internal view returns (address) {\n return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;\n }\n\n /**\n * @dev Stores a new address in the EIP1967 admin slot.\n */\n function _setAdmin(address newAdmin) private {\n require(newAdmin != address(0), \"ERC1967: new admin is the zero address\");\n StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;\n }\n\n /**\n * @dev Changes the admin of the proxy.\n *\n * Emits an {AdminChanged} event.\n */\n function _changeAdmin(address newAdmin) internal {\n emit AdminChanged(_getAdmin(), newAdmin);\n _setAdmin(newAdmin);\n }\n\n /**\n * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.\n * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.\n */\n bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;\n\n /**\n * @dev Emitted when the beacon is upgraded.\n */\n event BeaconUpgraded(address indexed beacon);\n\n /**\n * @dev Returns the current beacon.\n */\n function _getBeacon() internal view returns (address) {\n return StorageSlot.getAddressSlot(_BEACON_SLOT).value;\n }\n\n /**\n * @dev Stores a new beacon in the EIP1967 beacon slot.\n */\n function _setBeacon(address newBeacon) private {\n require(Address.isContract(newBeacon), \"ERC1967: new beacon is not a contract\");\n require(\n Address.isContract(IBeacon(newBeacon).implementation()),\n \"ERC1967: beacon implementation is not a contract\"\n );\n StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;\n }\n\n /**\n * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does\n * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).\n *\n * Emits a {BeaconUpgraded} event.\n */\n function _upgradeBeaconToAndCall(\n address newBeacon,\n bytes memory data,\n bool forceCall\n ) internal {\n _setBeacon(newBeacon);\n emit BeaconUpgraded(newBeacon);\n if (data.length > 0 || forceCall) {\n Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);\n }\n }\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/UUPSUpgradeable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../../interfaces/draft-IERC1822.sol\";\nimport \"../ERC1967/ERC1967Upgrade.sol\";\n\n/**\n * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an\n * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.\n *\n * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is\n * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing\n * `UUPSUpgradeable` with a custom implementation of upgrades.\n *\n * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.\n *\n * _Available since v4.1._\n */\nabstract contract UUPSUpgradeable is IERC1822Proxiable, ERC1967Upgrade {\n /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment\n address private immutable __self = address(this);\n\n /**\n * @dev Check that the execution is being performed through a delegatecall call and that the execution context is\n * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case\n * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a\n * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to\n * fail.\n */\n modifier onlyProxy() {\n require(address(this) != __self, \"Function must be called through delegatecall\");\n require(_getImplementation() == __self, \"Function must be called through active proxy\");\n _;\n }\n\n /**\n * @dev Check that the execution is not being performed through a delegate call. This allows a function to be\n * callable on the implementing contract but not through proxies.\n */\n modifier notDelegated() {\n require(address(this) == __self, \"UUPSUpgradeable: must not be called through delegatecall\");\n _;\n }\n\n /**\n * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the\n * implementation. It is used to validate the implementation's compatibility when performing an upgrade.\n *\n * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks\n * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this\n * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.\n */\n function proxiableUUID() external view virtual override notDelegated returns (bytes32) {\n return _IMPLEMENTATION_SLOT;\n }\n\n /**\n * @dev Upgrade the implementation of the proxy to `newImplementation`.\n *\n * Calls {_authorizeUpgrade}.\n *\n * Emits an {Upgraded} event.\n */\n function upgradeTo(address newImplementation) external virtual onlyProxy {\n _authorizeUpgrade(newImplementation);\n _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);\n }\n\n /**\n * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call\n * encoded in `data`.\n *\n * Calls {_authorizeUpgrade}.\n *\n * Emits an {Upgraded} event.\n */\n function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy {\n _authorizeUpgrade(newImplementation);\n _upgradeToAndCallUUPS(newImplementation, data, true);\n }\n\n /**\n * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by\n * {upgradeTo} and {upgradeToAndCall}.\n *\n * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.\n *\n * ```solidity\n * function _authorizeUpgrade(address) internal override onlyOwner {}\n * ```\n */\n function _authorizeUpgrade(address newImplementation) internal virtual;\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in\n * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].\n *\n * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by\n * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't\n * need to send a transaction, and thus is not required to hold Ether at all.\n */\ninterface IERC20Permit {\n /**\n * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,\n * given ``owner``'s signed approval.\n *\n * IMPORTANT: The same issues {IERC20-approve} has related to transaction\n * ordering also apply here.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `deadline` must be a timestamp in the future.\n * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`\n * over the EIP712-formatted function arguments.\n * - the signature must use ``owner``'s current nonce (see {nonces}).\n *\n * For more information on the signature format, see the\n * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP\n * section].\n */\n function permit(\n address owner,\n address spender,\n uint256 value,\n uint256 deadline,\n uint8 v,\n bytes32 r,\n bytes32 s\n ) external;\n\n /**\n * @dev Returns the current nonce for `owner`. This value must be\n * included whenever a signature is generated for {permit}.\n *\n * Every successful call to {permit} increases ``owner``'s nonce by one. This\n * prevents a signature from being used multiple times.\n */\n function nonces(address owner) external view returns (uint256);\n\n /**\n * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.\n */\n // solhint-disable-next-line func-name-mixedcase\n function DOMAIN_SEPARATOR() external view returns (bytes32);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../IERC20.sol\";\n\n/**\n * @dev Interface for the optional metadata functions from the ERC20 standard.\n *\n * _Available since v4.1._\n */\ninterface IERC20Metadata is IERC20 {\n /**\n * @dev Returns the name of the token.\n */\n function name() external view returns (string memory);\n\n /**\n * @dev Returns the symbol of the token.\n */\n function symbol() external view returns (string memory);\n\n /**\n * @dev Returns the decimals places of the token.\n */\n function decimals() external view returns (uint8);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/token/ERC20/IERC20.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP.\n */\ninterface IERC20 {\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller's account to `to`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address to, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender's allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `from` to `to` using the\n * allowance mechanism. `amount` is then deducted from the caller's\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address from,\n address to,\n uint256 amount\n ) external returns (bool);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../IERC20.sol\";\nimport \"../extensions/draft-IERC20Permit.sol\";\nimport \"../../../utils/Address.sol\";\n\n/**\n * @title SafeERC20\n * @dev Wrappers around ERC20 operations that throw on failure (when the token\n * contract returns false). Tokens that return no value (and instead revert or\n * throw on failure) are also supported, non-reverting calls are assumed to be\n * successful.\n * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,\n * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.\n */\nlibrary SafeERC20 {\n using Address for address;\n\n function safeTransfer(\n IERC20 token,\n address to,\n uint256 value\n ) internal {\n _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));\n }\n\n function safeTransferFrom(\n IERC20 token,\n address from,\n address to,\n uint256 value\n ) internal {\n _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));\n }\n\n /**\n * @dev Deprecated. This function has issues similar to the ones found in\n * {IERC20-approve}, and its usage is discouraged.\n *\n * Whenever possible, use {safeIncreaseAllowance} and\n * {safeDecreaseAllowance} instead.\n */\n function safeApprove(\n IERC20 token,\n address spender,\n uint256 value\n ) internal {\n // safeApprove should only be called when setting an initial allowance,\n // or when resetting it to zero. To increase and decrease it, use\n // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'\n require(\n (value == 0) || (token.allowance(address(this), spender) == 0),\n \"SafeERC20: approve from non-zero to non-zero allowance\"\n );\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));\n }\n\n function safeIncreaseAllowance(\n IERC20 token,\n address spender,\n uint256 value\n ) internal {\n uint256 newAllowance = token.allowance(address(this), spender) + value;\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));\n }\n\n function safeDecreaseAllowance(\n IERC20 token,\n address spender,\n uint256 value\n ) internal {\n unchecked {\n uint256 oldAllowance = token.allowance(address(this), spender);\n require(oldAllowance >= value, \"SafeERC20: decreased allowance below zero\");\n uint256 newAllowance = oldAllowance - value;\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));\n }\n }\n\n function safePermit(\n IERC20Permit token,\n address owner,\n address spender,\n uint256 value,\n uint256 deadline,\n uint8 v,\n bytes32 r,\n bytes32 s\n ) internal {\n uint256 nonceBefore = token.nonces(owner);\n token.permit(owner, spender, value, deadline, v, r, s);\n uint256 nonceAfter = token.nonces(owner);\n require(nonceAfter == nonceBefore + 1, \"SafeERC20: permit did not succeed\");\n }\n\n /**\n * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement\n * on the return value: the return value is optional (but if data is returned, it must not be false).\n * @param token The token targeted by the call.\n * @param data The call data (encoded using abi.encode or one of its variants).\n */\n function _callOptionalReturn(IERC20 token, bytes memory data) private {\n // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since\n // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that\n // the target address contains contract code and also asserts for success in the low-level call.\n\n bytes memory returndata = address(token).functionCall(data, \"SafeERC20: low-level call failed\");\n if (returndata.length > 0) {\n // Return data is optional\n require(abi.decode(returndata, (bool)), \"SafeERC20: ERC20 operation did not succeed\");\n }\n }\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../IERC721.sol\";\n\n/**\n * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension\n * @dev See https://eips.ethereum.org/EIPS/eip-721\n */\ninterface IERC721Enumerable is IERC721 {\n /**\n * @dev Returns the total amount of tokens stored by the contract.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns a token ID owned by `owner` at a given `index` of its token list.\n * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.\n */\n function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);\n\n /**\n * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.\n * Use along with {totalSupply} to enumerate all tokens.\n */\n function tokenByIndex(uint256 index) external view returns (uint256);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/token/ERC721/IERC721.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../../utils/introspection/IERC165.sol\";\n\n/**\n * @dev Required interface of an ERC721 compliant contract.\n */\ninterface IERC721 is IERC165 {\n /**\n * @dev Emitted when `tokenId` token is transferred from `from` to `to`.\n */\n event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);\n\n /**\n * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.\n */\n event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);\n\n /**\n * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.\n */\n event ApprovalForAll(address indexed owner, address indexed operator, bool approved);\n\n /**\n * @dev Returns the number of tokens in ``owner``'s account.\n */\n function balanceOf(address owner) external view returns (uint256 balance);\n\n /**\n * @dev Returns the owner of the `tokenId` token.\n *\n * Requirements:\n *\n * - `tokenId` must exist.\n */\n function ownerOf(uint256 tokenId) external view returns (address owner);\n\n /**\n * @dev Safely transfers `tokenId` token from `from` to `to`.\n *\n * Requirements:\n *\n * - `from` cannot be the zero address.\n * - `to` cannot be the zero address.\n * - `tokenId` token must exist and be owned by `from`.\n * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.\n * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.\n *\n * Emits a {Transfer} event.\n */\n function safeTransferFrom(\n address from,\n address to,\n uint256 tokenId,\n bytes calldata data\n ) external;\n\n /**\n * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients\n * are aware of the ERC721 protocol to prevent tokens from being forever locked.\n *\n * Requirements:\n *\n * - `from` cannot be the zero address.\n * - `to` cannot be the zero address.\n * - `tokenId` token must exist and be owned by `from`.\n * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.\n * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.\n *\n * Emits a {Transfer} event.\n */\n function safeTransferFrom(\n address from,\n address to,\n uint256 tokenId\n ) external;\n\n /**\n * @dev Transfers `tokenId` token from `from` to `to`.\n *\n * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721\n * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must\n * understand this adds an external call which potentially creates a reentrancy vulnerability.\n *\n * Requirements:\n *\n * - `from` cannot be the zero address.\n * - `to` cannot be the zero address.\n * - `tokenId` token must be owned by `from`.\n * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address from,\n address to,\n uint256 tokenId\n ) external;\n\n /**\n * @dev Gives permission to `to` to transfer `tokenId` token to another account.\n * The approval is cleared when the token is transferred.\n *\n * Only a single account can be approved at a time, so approving the zero address clears previous approvals.\n *\n * Requirements:\n *\n * - The caller must own the token or be an approved operator.\n * - `tokenId` must exist.\n *\n * Emits an {Approval} event.\n */\n function approve(address to, uint256 tokenId) external;\n\n /**\n * @dev Approve or remove `operator` as an operator for the caller.\n * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.\n *\n * Requirements:\n *\n * - The `operator` cannot be the caller.\n *\n * Emits an {ApprovalForAll} event.\n */\n function setApprovalForAll(address operator, bool _approved) external;\n\n /**\n * @dev Returns the account approved for `tokenId` token.\n *\n * Requirements:\n *\n * - `tokenId` must exist.\n */\n function getApproved(uint256 tokenId) external view returns (address operator);\n\n /**\n * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.\n *\n * See {setApprovalForAll}\n */\n function isApprovedForAll(address owner, address operator) external view returns (bool);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/utils/Address.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)\n\npragma solidity ^0.8.1;\n\n/**\n * @dev Collection of functions related to the address type\n */\nlibrary Address {\n /**\n * @dev Returns true if `account` is a contract.\n *\n * [IMPORTANT]\n * ====\n * It is unsafe to assume that an address for which this function returns\n * false is an externally-owned account (EOA) and not a contract.\n *\n * Among others, `isContract` will return false for the following\n * types of addresses:\n *\n * - an externally-owned account\n * - a contract in construction\n * - an address where a contract will be created\n * - an address where a contract lived, but was destroyed\n * ====\n *\n * [IMPORTANT]\n * ====\n * You shouldn't rely on `isContract` to protect against flash loan attacks!\n *\n * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets\n * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract\n * constructor.\n * ====\n */\n function isContract(address account) internal view returns (bool) {\n // This method relies on extcodesize/address.code.length, which returns 0\n // for contracts in construction, since the code is only stored at the end\n // of the constructor execution.\n\n return account.code.length > 0;\n }\n\n /**\n * @dev Replacement for Solidity's `transfer`: sends `amount` wei to\n * `recipient`, forwarding all available gas and reverting on errors.\n *\n * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost\n * of certain opcodes, possibly making contracts go over the 2300 gas limit\n * imposed by `transfer`, making them unable to receive funds via\n * `transfer`. {sendValue} removes this limitation.\n *\n * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].\n *\n * IMPORTANT: because control is transferred to `recipient`, care must be\n * taken to not create reentrancy vulnerabilities. Consider using\n * {ReentrancyGuard} or the\n * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].\n */\n function sendValue(address payable recipient, uint256 amount) internal {\n require(address(this).balance >= amount, \"Address: insufficient balance\");\n\n (bool success, ) = recipient.call{value: amount}(\"\");\n require(success, \"Address: unable to send value, recipient may have reverted\");\n }\n\n /**\n * @dev Performs a Solidity function call using a low level `call`. A\n * plain `call` is an unsafe replacement for a function call: use this\n * function instead.\n *\n * If `target` reverts with a revert reason, it is bubbled up by this\n * function (like regular Solidity function calls).\n *\n * Returns the raw returned data. To convert to the expected return value,\n * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].\n *\n * Requirements:\n *\n * - `target` must be a contract.\n * - calling `target` with `data` must not revert.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionCallWithValue(target, data, 0, \"Address: low-level call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with\n * `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal returns (bytes memory) {\n return functionCallWithValue(target, data, 0, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but also transferring `value` wei to `target`.\n *\n * Requirements:\n *\n * - the calling contract must have an ETH balance of at least `value`.\n * - the called Solidity function must be `payable`.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(\n address target,\n bytes memory data,\n uint256 value\n ) internal returns (bytes memory) {\n return functionCallWithValue(target, data, value, \"Address: low-level call with value failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but\n * with `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(\n address target,\n bytes memory data,\n uint256 value,\n string memory errorMessage\n ) internal returns (bytes memory) {\n require(address(this).balance >= value, \"Address: insufficient balance for call\");\n (bool success, bytes memory returndata) = target.call{value: value}(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but performing a static call.\n *\n * _Available since v3.3._\n */\n function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {\n return functionStaticCall(target, data, \"Address: low-level static call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n * but performing a static call.\n *\n * _Available since v3.3._\n */\n function functionStaticCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal view returns (bytes memory) {\n (bool success, bytes memory returndata) = target.staticcall(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but performing a delegate call.\n *\n * _Available since v3.4._\n */\n function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionDelegateCall(target, data, \"Address: low-level delegate call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n * but performing a delegate call.\n *\n * _Available since v3.4._\n */\n function functionDelegateCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal returns (bytes memory) {\n (bool success, bytes memory returndata) = target.delegatecall(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling\n * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.\n *\n * _Available since v4.8._\n */\n function verifyCallResultFromTarget(\n address target,\n bool success,\n bytes memory returndata,\n string memory errorMessage\n ) internal view returns (bytes memory) {\n if (success) {\n if (returndata.length == 0) {\n // only check isContract if the call was successful and the return data is empty\n // otherwise we already know that it was a contract\n require(isContract(target), \"Address: call to non-contract\");\n }\n return returndata;\n } else {\n _revert(returndata, errorMessage);\n }\n }\n\n /**\n * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the\n * revert reason or using the provided one.\n *\n * _Available since v4.3._\n */\n function verifyCallResult(\n bool success,\n bytes memory returndata,\n string memory errorMessage\n ) internal pure returns (bytes memory) {\n if (success) {\n return returndata;\n } else {\n _revert(returndata, errorMessage);\n }\n }\n\n function _revert(bytes memory returndata, string memory errorMessage) private pure {\n // Look for revert reason and bubble it up if present\n if (returndata.length > 0) {\n // The easiest way to bubble the revert reason is using memory via assembly\n /// @solidity memory-safe-assembly\n assembly {\n let returndata_size := mload(returndata)\n revert(add(32, returndata), returndata_size)\n }\n } else {\n revert(errorMessage);\n }\n }\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/utils/introspection/IERC165.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC165 standard, as defined in the\n * https://eips.ethereum.org/EIPS/eip-165[EIP].\n *\n * Implementers can declare support of contract interfaces, which can then be\n * queried by others ({ERC165Checker}).\n *\n * For an implementation, see {ERC165}.\n */\ninterface IERC165 {\n /**\n * @dev Returns true if this contract implements the interface defined by\n * `interfaceId`. See the corresponding\n * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]\n * to learn more about how these ids are created.\n *\n * This function call must use less than 30 000 gas.\n */\n function supportsInterface(bytes4 interfaceId) external view returns (bool);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/utils/StorageSlot.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Library for reading and writing primitive types to specific storage slots.\n *\n * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.\n * This library helps with reading and writing to such slots without the need for inline assembly.\n *\n * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.\n *\n * Example usage to set ERC1967 implementation slot:\n * ```\n * contract ERC1967 {\n * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;\n *\n * function _getImplementation() internal view returns (address) {\n * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;\n * }\n *\n * function _setImplementation(address newImplementation) internal {\n * require(Address.isContract(newImplementation), \"ERC1967: new implementation is not a contract\");\n * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;\n * }\n * }\n * ```\n *\n * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._\n */\nlibrary StorageSlot {\n struct AddressSlot {\n address value;\n }\n\n struct BooleanSlot {\n bool value;\n }\n\n struct Bytes32Slot {\n bytes32 value;\n }\n\n struct Uint256Slot {\n uint256 value;\n }\n\n /**\n * @dev Returns an `AddressSlot` with member `value` located at `slot`.\n */\n function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {\n /// @solidity memory-safe-assembly\n assembly {\n r.slot := slot\n }\n }\n\n /**\n * @dev Returns an `BooleanSlot` with member `value` located at `slot`.\n */\n function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {\n /// @solidity memory-safe-assembly\n assembly {\n r.slot := slot\n }\n }\n\n /**\n * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.\n */\n function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {\n /// @solidity memory-safe-assembly\n assembly {\n r.slot := slot\n }\n }\n\n /**\n * @dev Returns an `Uint256Slot` with member `value` located at `slot`.\n */\n function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {\n /// @solidity memory-safe-assembly\n assembly {\n r.slot := slot\n }\n }\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/utils/structs/EnumerableSet.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)\n// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Library for managing\n * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive\n * types.\n *\n * Sets have the following properties:\n *\n * - Elements are added, removed, and checked for existence in constant time\n * (O(1)).\n * - Elements are enumerated in O(n). No guarantees are made on the ordering.\n *\n * ```\n * contract Example {\n * // Add the library methods\n * using EnumerableSet for EnumerableSet.AddressSet;\n *\n * // Declare a set state variable\n * EnumerableSet.AddressSet private mySet;\n * }\n * ```\n *\n * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)\n * and `uint256` (`UintSet`) are supported.\n *\n * [WARNING]\n * ====\n * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure\n * unusable.\n * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.\n *\n * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an\n * array of EnumerableSet.\n * ====\n */\nlibrary EnumerableSet {\n // To implement this library for multiple types with as little code\n // repetition as possible, we write it in terms of a generic Set type with\n // bytes32 values.\n // The Set implementation uses private functions, and user-facing\n // implementations (such as AddressSet) are just wrappers around the\n // underlying Set.\n // This means that we can only create new EnumerableSets for types that fit\n // in bytes32.\n\n struct Set {\n // Storage of set values\n bytes32[] _values;\n // Position of the value in the `values` array, plus 1 because index 0\n // means a value is not in the set.\n mapping(bytes32 => uint256) _indexes;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function _add(Set storage set, bytes32 value) private returns (bool) {\n if (!_contains(set, value)) {\n set._values.push(value);\n // The value is stored at length-1, but we add 1 to all indexes\n // and use 0 as a sentinel value\n set._indexes[value] = set._values.length;\n return true;\n } else {\n return false;\n }\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function _remove(Set storage set, bytes32 value) private returns (bool) {\n // We read and store the value's index to prevent multiple reads from the same storage slot\n uint256 valueIndex = set._indexes[value];\n\n if (valueIndex != 0) {\n // Equivalent to contains(set, value)\n // To delete an element from the _values array in O(1), we swap the element to delete with the last one in\n // the array, and then remove the last element (sometimes called as 'swap and pop').\n // This modifies the order of the array, as noted in {at}.\n\n uint256 toDeleteIndex = valueIndex - 1;\n uint256 lastIndex = set._values.length - 1;\n\n if (lastIndex != toDeleteIndex) {\n bytes32 lastValue = set._values[lastIndex];\n\n // Move the last value to the index where the value to delete is\n set._values[toDeleteIndex] = lastValue;\n // Update the index for the moved value\n set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex\n }\n\n // Delete the slot where the moved value was stored\n set._values.pop();\n\n // Delete the index for the deleted slot\n delete set._indexes[value];\n\n return true;\n } else {\n return false;\n }\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function _contains(Set storage set, bytes32 value) private view returns (bool) {\n return set._indexes[value] != 0;\n }\n\n /**\n * @dev Returns the number of values on the set. O(1).\n */\n function _length(Set storage set) private view returns (uint256) {\n return set._values.length;\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function _at(Set storage set, uint256 index) private view returns (bytes32) {\n return set._values[index];\n }\n\n /**\n * @dev Return the entire set in an array\n *\n * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed\n * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that\n * this function has an unbounded cost, and using it as part of a state-changing function may render the function\n * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.\n */\n function _values(Set storage set) private view returns (bytes32[] memory) {\n return set._values;\n }\n\n // Bytes32Set\n\n struct Bytes32Set {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {\n return _add(set._inner, value);\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {\n return _remove(set._inner, value);\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {\n return _contains(set._inner, value);\n }\n\n /**\n * @dev Returns the number of values in the set. O(1).\n */\n function length(Bytes32Set storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {\n return _at(set._inner, index);\n }\n\n /**\n * @dev Return the entire set in an array\n *\n * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed\n * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that\n * this function has an unbounded cost, and using it as part of a state-changing function may render the function\n * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.\n */\n function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {\n bytes32[] memory store = _values(set._inner);\n bytes32[] memory result;\n\n /// @solidity memory-safe-assembly\n assembly {\n result := store\n }\n\n return result;\n }\n\n // AddressSet\n\n struct AddressSet {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(AddressSet storage set, address value) internal returns (bool) {\n return _add(set._inner, bytes32(uint256(uint160(value))));\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(AddressSet storage set, address value) internal returns (bool) {\n return _remove(set._inner, bytes32(uint256(uint160(value))));\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(AddressSet storage set, address value) internal view returns (bool) {\n return _contains(set._inner, bytes32(uint256(uint160(value))));\n }\n\n /**\n * @dev Returns the number of values in the set. O(1).\n */\n function length(AddressSet storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(AddressSet storage set, uint256 index) internal view returns (address) {\n return address(uint160(uint256(_at(set._inner, index))));\n }\n\n /**\n * @dev Return the entire set in an array\n *\n * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed\n * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that\n * this function has an unbounded cost, and using it as part of a state-changing function may render the function\n * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.\n */\n function values(AddressSet storage set) internal view returns (address[] memory) {\n bytes32[] memory store = _values(set._inner);\n address[] memory result;\n\n /// @solidity memory-safe-assembly\n assembly {\n result := store\n }\n\n return result;\n }\n\n // UintSet\n\n struct UintSet {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(UintSet storage set, uint256 value) internal returns (bool) {\n return _add(set._inner, bytes32(value));\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(UintSet storage set, uint256 value) internal returns (bool) {\n return _remove(set._inner, bytes32(value));\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(UintSet storage set, uint256 value) internal view returns (bool) {\n return _contains(set._inner, bytes32(value));\n }\n\n /**\n * @dev Returns the number of values in the set. O(1).\n */\n function length(UintSet storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(UintSet storage set, uint256 index) internal view returns (uint256) {\n return uint256(_at(set._inner, index));\n }\n\n /**\n * @dev Return the entire set in an array\n *\n * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed\n * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that\n * this function has an unbounded cost, and using it as part of a state-changing function may render the function\n * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.\n */\n function values(UintSet storage set) internal view returns (uint256[] memory) {\n bytes32[] memory store = _values(set._inner);\n uint256[] memory result;\n\n /// @solidity memory-safe-assembly\n assembly {\n result := store\n }\n\n return result;\n }\n}\n"
|
||
},
|
||
"contracts/infiniteProxy/interfaces/iProxy.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\ninterface IProxy {\n function setAdmin(address newAdmin_) external;\n\n function setDummyImplementation(address newDummyImplementation_) external;\n\n function addImplementation(address implementation_, bytes4[] calldata sigs_) external;\n\n function removeImplementation(address implementation_) external;\n\n function getAdmin() external view returns (address);\n\n function getDummyImplementation() external view returns (address);\n\n function getImplementationSigs(address impl_) external view returns (bytes4[] memory);\n\n function getSigsImplementation(bytes4 sig_) external view returns (address);\n\n function readFromStorage(bytes32 slot_) external view returns (uint256 result_);\n}\n"
|
||
},
|
||
"contracts/libraries/bigMathMinified.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\n/// @title library that represents a number in BigNumber(coefficient and exponent) format to store in smaller bits.\n/// @notice the number is divided into two parts: a coefficient and an exponent. This comes at a cost of losing some precision\n/// at the end of the number because the exponent simply fills it with zeroes. This precision is oftentimes negligible and can\n/// result in significant gas cost reduction due to storage space reduction.\n/// Also note, a valid big number is as follows: if the exponent is > 0, then coefficient last bits should be occupied to have max precision.\n/// @dev roundUp is more like a increase 1, which happens everytime for the same number.\n/// roundDown simply sets trailing digits after coefficientSize to zero (floor), only once for the same number.\nlibrary BigMathMinified {\n /// @dev constants to use for `roundUp` input param to increase readability\n bool internal constant ROUND_DOWN = false;\n bool internal constant ROUND_UP = true;\n\n /// @dev converts `normal` number to BigNumber with `exponent` and `coefficient` (or precision).\n /// e.g.:\n /// 5035703444687813576399599 (normal) = (coefficient[32bits], exponent[8bits])[40bits]\n /// 5035703444687813576399599 (decimal) => 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 (binary)\n /// => 10000101010010110100000011111011000000000000000000000000000000000000000000000000000\n /// ^-------------------- 51(exponent) -------------- ^\n /// coefficient = 1000,0101,0100,1011,0100,0000,1111,1011 (2236301563)\n /// exponent = 0011,0011 (51)\n /// bigNumber = 1000,0101,0100,1011,0100,0000,1111,1011,0011,0011 (572493200179)\n ///\n /// @param normal number which needs to be converted into Big Number\n /// @param coefficientSize at max how many bits of precision there should be (64 = uint64 (64 bits precision))\n /// @param exponentSize at max how many bits of exponent there should be (8 = uint8 (8 bits exponent))\n /// @param roundUp signals if result should be rounded down or up\n /// @return bigNumber converted bigNumber (coefficient << exponent)\n function toBigNumber(\n uint256 normal,\n uint256 coefficientSize,\n uint256 exponentSize,\n bool roundUp\n ) internal pure returns (uint256 bigNumber) {\n assembly {\n let lastBit_\n let number_ := normal\n if gt(number_, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) {\n number_ := shr(0x80, number_)\n lastBit_ := 0x80\n }\n if gt(number_, 0xFFFFFFFFFFFFFFFF) {\n number_ := shr(0x40, number_)\n lastBit_ := add(lastBit_, 0x40)\n }\n if gt(number_, 0xFFFFFFFF) {\n number_ := shr(0x20, number_)\n lastBit_ := add(lastBit_, 0x20)\n }\n if gt(number_, 0xFFFF) {\n number_ := shr(0x10, number_)\n lastBit_ := add(lastBit_, 0x10)\n }\n if gt(number_, 0xFF) {\n number_ := shr(0x8, number_)\n lastBit_ := add(lastBit_, 0x8)\n }\n if gt(number_, 0xF) {\n number_ := shr(0x4, number_)\n lastBit_ := add(lastBit_, 0x4)\n }\n if gt(number_, 0x3) {\n number_ := shr(0x2, number_)\n lastBit_ := add(lastBit_, 0x2)\n }\n if gt(number_, 0x1) {\n lastBit_ := add(lastBit_, 1)\n }\n if gt(number_, 0) {\n lastBit_ := add(lastBit_, 1)\n }\n if lt(lastBit_, coefficientSize) {\n // for throw exception\n lastBit_ := coefficientSize\n }\n let exponent := sub(lastBit_, coefficientSize)\n let coefficient := shr(exponent, normal)\n if and(roundUp, gt(exponent, 0)) {\n // rounding up is only needed if exponent is > 0, as otherwise the coefficient fully holds the original number\n coefficient := add(coefficient, 1)\n if eq(shl(coefficientSize, 1), coefficient) {\n // case were coefficient was e.g. 111, with adding 1 it became 1000 (in binary) and coefficientSize 3 bits\n // final coefficient would exceed it's size. -> reduce coefficent to 100 and increase exponent by 1.\n coefficient := shl(sub(coefficientSize, 1), 1)\n exponent := add(exponent, 1)\n }\n }\n if iszero(lt(exponent, shl(exponentSize, 1))) {\n // if exponent is >= exponentSize, the normal number is too big to fit within\n // BigNumber with too small sizes for coefficient and exponent\n revert(0, 0)\n }\n bigNumber := shl(exponentSize, coefficient)\n bigNumber := add(bigNumber, exponent)\n }\n }\n\n /// @dev get `normal` number from `bigNumber`, `exponentSize` and `exponentMask`\n function fromBigNumber(\n uint256 bigNumber,\n uint256 exponentSize,\n uint256 exponentMask\n ) internal pure returns (uint256 normal) {\n assembly {\n let coefficient := shr(exponentSize, bigNumber)\n let exponent := and(bigNumber, exponentMask)\n normal := shl(exponent, coefficient)\n }\n }\n\n /// @dev gets the most significant bit `lastBit` of a `normal` number (length of given number of binary format).\n /// e.g.\n /// 5035703444687813576399599 = 10000101010010110100000011111011110010100110100000000011100101001101001101011101111\n /// lastBit = ^--------------------------------- 83 ----------------------------------------^\n function mostSignificantBit(uint256 normal) internal pure returns (uint lastBit) {\n assembly {\n let number_ := normal\n if gt(normal, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) {\n number_ := shr(0x80, number_)\n lastBit := 0x80\n }\n if gt(number_, 0xFFFFFFFFFFFFFFFF) {\n number_ := shr(0x40, number_)\n lastBit := add(lastBit, 0x40)\n }\n if gt(number_, 0xFFFFFFFF) {\n number_ := shr(0x20, number_)\n lastBit := add(lastBit, 0x20)\n }\n if gt(number_, 0xFFFF) {\n number_ := shr(0x10, number_)\n lastBit := add(lastBit, 0x10)\n }\n if gt(number_, 0xFF) {\n number_ := shr(0x8, number_)\n lastBit := add(lastBit, 0x8)\n }\n if gt(number_, 0xF) {\n number_ := shr(0x4, number_)\n lastBit := add(lastBit, 0x4)\n }\n if gt(number_, 0x3) {\n number_ := shr(0x2, number_)\n lastBit := add(lastBit, 0x2)\n }\n if gt(number_, 0x1) {\n lastBit := add(lastBit, 1)\n }\n if gt(number_, 0) {\n lastBit := add(lastBit, 1)\n }\n }\n }\n}\n"
|
||
},
|
||
"contracts/libraries/bigMathVault.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { BigMathMinified } from \"./bigMathMinified.sol\";\n\n/// @title Extended version of BigMathMinified. Implements functions for normal operators (*, /, etc) modified to interact with big numbers.\n/// @notice this is an optimized version mainly created by taking Fluid vault's codebase into consideration so it's use is limited for other cases.\nlibrary BigMathVault {\n uint private constant COEFFICIENT_SIZE_DEBT_FACTOR = 35;\n uint private constant EXPONENT_SIZE_DEBT_FACTOR = 15;\n uint private constant COEFFICIENT_MAX_DEBT_FACTOR = (1 << COEFFICIENT_SIZE_DEBT_FACTOR) - 1;\n uint private constant EXPONENT_MAX_DEBT_FACTOR = (1 << EXPONENT_SIZE_DEBT_FACTOR) - 1;\n uint private constant DECIMALS_DEBT_FACTOR = 16384;\n uint internal constant MAX_MASK_DEBT_FACTOR = (1 << (COEFFICIENT_SIZE_DEBT_FACTOR + EXPONENT_SIZE_DEBT_FACTOR)) - 1;\n\n // Having precision as 2**64 on vault\n uint internal constant PRECISION = 64;\n uint internal constant TWO_POWER_64 = 1 << PRECISION;\n // Max bit for 35 bits * 35 bits number will be 70\n // why do we use 69 then here instead of 70\n uint internal constant TWO_POWER_69_MINUS_1 = (1 << 69) - 1;\n\n uint private constant COEFFICIENT_PLUS_PRECISION = COEFFICIENT_SIZE_DEBT_FACTOR + PRECISION; // 99\n uint private constant COEFFICIENT_PLUS_PRECISION_MINUS_1 = COEFFICIENT_PLUS_PRECISION - 1; // 98\n uint private constant TWO_POWER_COEFFICIENT_PLUS_PRECISION_MINUS_1 = (1 << COEFFICIENT_PLUS_PRECISION_MINUS_1) - 1; // (1 << 98) - 1;\n uint private constant TWO_POWER_COEFFICIENT_PLUS_PRECISION_MINUS_1_MINUS_1 =\n (1 << (COEFFICIENT_PLUS_PRECISION_MINUS_1 - 1)) - 1; // (1 << 97) - 1;\n\n /// @dev multiplies a `normal` number with a `bigNumber1` and then divides by `bigNumber2`.\n /// @dev For vault's use case MUST always:\n /// - bigNumbers have exponent size 15 bits\n /// - bigNumbers have coefficient size 35 bits and have 35th bit always 1 (when exponent > 0 BigMath numbers have max precision)\n /// so coefficients must always be in range 17179869184 <= coefficient <= 34359738367.\n /// - bigNumber1 (debt factor) always have exponent >= 1 & <= 16384\n /// - bigNumber2 (connection factor) always have exponent >= 1 & <= 32767 (15 bits)\n /// - bigNumber2 always >= bigNumber1 (connection factor can never be < base branch debt factor)\n /// - as a result of previous points, numbers must never be 0\n /// - normal is positionRawDebt and is always within 10000 and type(int128).max\n /// @return normal * bigNumber1 / bigNumber2\n function mulDivNormal(uint256 normal, uint256 bigNumber1, uint256 bigNumber2) internal pure returns (uint256) {\n unchecked {\n // exponent2_ - exponent1_\n uint netExponent_ = (bigNumber2 & EXPONENT_MAX_DEBT_FACTOR) - (bigNumber1 & EXPONENT_MAX_DEBT_FACTOR);\n if (netExponent_ < 129) {\n // (normal * coefficient1_) / (coefficient2_ << netExponent_);\n return ((normal * (bigNumber1 >> EXPONENT_SIZE_DEBT_FACTOR)) /\n ((bigNumber2 >> EXPONENT_SIZE_DEBT_FACTOR) << netExponent_));\n }\n // else:\n // biggest possible nominator: type(int128).max * 35bits max = 5846006549323611672814739330865132078589370433536\n // smallest possible denominator: 17179869184 << 129 (= 1 << 163) = 11692013098647223345629478661730264157247460343808\n // -> can only ever be 0\n return 0;\n }\n }\n\n /// @dev multiplies a `bigNumber` with normal `number1` and then divides by `TWO_POWER_64`.\n /// @dev For vault's use case (calculating new branch debt factor after liquidation):\n /// - number1 is debtFactor, intialized as TWO_POWER_64 and reduced from there, hence it's always <= TWO_POWER_64 and always > 0.\n /// - bigNumber is branch debt factor, which starts as ((X35 << 15) | (1 << 14)) and reduces from there.\n /// - bigNumber must have have exponent size 15 bits and be >= 1 & <= 16384\n /// - bigNumber must have coefficient size 35 bits and have 35th bit always 1 (when exponent > 0 BigMath numbers have max precision)\n /// so coefficients must always be in range 17179869184 <= coefficient <= 34359738367.\n /// @param bigNumber Coefficient | Exponent.\n /// @param number1 normal number.\n /// @return result bigNumber * number1 / TWO_POWER_64.\n function mulDivBigNumber(uint256 bigNumber, uint256 number1) internal pure returns (uint256 result) {\n // using unchecked as we are only at 1 place in Vault and it won't overflow there.\n unchecked {\n uint256 _resultNumerator = (bigNumber >> EXPONENT_SIZE_DEBT_FACTOR) * number1; // bigNumber coefficient * normal number\n // 99% chances are that most sig bit should be 64 + 35 - 1 or 64 + 35 - 2\n // diff = mostSigBit. Can only ever be >= 35 and <= 98\n uint256 diff = (_resultNumerator > TWO_POWER_COEFFICIENT_PLUS_PRECISION_MINUS_1)\n ? COEFFICIENT_PLUS_PRECISION\n : (_resultNumerator > TWO_POWER_COEFFICIENT_PLUS_PRECISION_MINUS_1_MINUS_1)\n ? COEFFICIENT_PLUS_PRECISION_MINUS_1\n : BigMathMinified.mostSignificantBit(_resultNumerator);\n\n // diff = difference in bits to make the _resultNumerator 35 bits again\n diff = diff - COEFFICIENT_SIZE_DEBT_FACTOR;\n _resultNumerator = _resultNumerator >> diff;\n // starting exponent is 16384, so exponent should never get 0 here\n result = (bigNumber & EXPONENT_MAX_DEBT_FACTOR) + diff;\n if (result > PRECISION) {\n result = (_resultNumerator << EXPONENT_SIZE_DEBT_FACTOR) + result - PRECISION; // divides by TWO_POWER_64 by reducing exponent by 64\n } else {\n // if number1 is small, e.g. 1e4 and bigNumber is also small e.g. coefficient = 17179869184 & exponent is at 50\n // then: resultNumerator = 171798691840000, diff most significant bit = 48, ending up with diff = 13\n // for exponent in result we end up doing: 50 + 13 - 64 -> underflowing exponent.\n // this should never happen anyway, but if it does better to revert than to continue with unknown effects.\n revert(); // debt factor should never become a BigNumber with exponent <= 0\n }\n }\n }\n\n /// @dev multiplies a `bigNumber1` with another `bigNumber2`.\n /// @dev For vault's use case (calculating connection factor of merged branches userTickDebtFactor * connectionDebtFactor *... connectionDebtFactor):\n /// - bigNumbers must have have exponent size 15 bits and be >= 1 & <= 32767\n /// - bigNumber must have coefficient size 35 bits and have 35th bit always 1 (when exponent > 0 BigMath numbers have max precision)\n /// so coefficients must always be in range 17179869184 <= coefficient <= 34359738367.\n /// @dev sum of exponents from `bigNumber1` `bigNumber2` should be > 16384.\n /// e.g. res = bigNumber1 * bigNumber2 = [(coe1, exp1) * (coe2, exp2)] >> decimal\n /// = (coe1*coe2>>overflow, exp1+exp2+overflow-decimal)\n /// @param bigNumber1 BigNumber format with coefficient and exponent.\n /// @param bigNumber2 BigNumber format with coefficient and exponent.\n /// @return BigNumber format with coefficient and exponent\n function mulBigNumber(uint256 bigNumber1, uint256 bigNumber2) internal pure returns (uint256) {\n unchecked {\n // coefficient1_ * coefficient2_\n uint resCoefficient_ = (bigNumber1 >> EXPONENT_SIZE_DEBT_FACTOR) *\n (bigNumber2 >> EXPONENT_SIZE_DEBT_FACTOR);\n // res coefficient at min can be 17179869184 * 17179869184 = 295147905179352825856 (= 1 << 68; 69th bit as 1)\n // res coefficient at max can be 34359738367 * 34359738367 = 1180591620648691826689 (X35 * X35 fits in 70 bits)\n uint overflowLen_ = resCoefficient_ > TWO_POWER_69_MINUS_1\n ? COEFFICIENT_SIZE_DEBT_FACTOR\n : COEFFICIENT_SIZE_DEBT_FACTOR - 1;\n // overflowLen_ is either 34 or 35\n resCoefficient_ = resCoefficient_ >> overflowLen_;\n\n // bigNumber2 is connection factor\n // exponent1_ + exponent2_ + overflowLen_ - decimals\n uint resExponent_ = ((bigNumber1 & EXPONENT_MAX_DEBT_FACTOR) +\n (bigNumber2 & EXPONENT_MAX_DEBT_FACTOR) +\n overflowLen_);\n if (resExponent_ < DECIMALS_DEBT_FACTOR) {\n // for this ever to happen, the debt factors used to calculate connection factors would have to be at extremely\n // unrealistic values. Like e.g.\n // branch3 (debt factor X35 << 15 | 16383) got merged into branch2 (debt factor X35 << 15 | 8190)\n // -> connection factor (divBigNumber): ((coe1<<precision_)/coe2>>overflowLen, exp1+decimal+overflowLen-exp2-precision_) so:\n // coefficient: (X35<<64)/X35 >> 30 = 17179869184\n // exponent: 8190+16384+30-16383-64 = 8157.\n // result: 17179869184 << 15 | 8157\n // and then branch2 into branch1 (debt factor X35 << 15 | 22). -> connection factor:\n // coefficient: (X35<<64)/X35 >> 30 = 17179869184\n // exponent: 22+16384+30-8190-64 = 8182.\n // result: 17179869184 << 15 | 8182\n // connection factors sum up (mulBigNumber): (coe1*coe2>>overflow, exp1+exp2+overflow-decimal)\n // exponent: 8182+8157+35-16384=16374-16384=-10. underflow.\n // this should never happen anyway, but if it does better to revert than to continue with unknown effects.\n revert();\n }\n resExponent_ = resExponent_ - DECIMALS_DEBT_FACTOR;\n\n if (resExponent_ > EXPONENT_MAX_DEBT_FACTOR) {\n // if resExponent_ is not within limits that means user's got ~100% (something like 99.999999999999...)\n // this situation will probably never happen and this basically means user's position is ~100% liquidated\n return MAX_MASK_DEBT_FACTOR;\n }\n\n return ((resCoefficient_ << EXPONENT_SIZE_DEBT_FACTOR) | resExponent_);\n }\n }\n\n /// @dev divides a `bigNumber1` by `bigNumber2`.\n /// @dev For vault's use case (calculating connectionFactor_ = baseBranchDebtFactor / currentBranchDebtFactor) bigNumbers MUST always:\n /// - have exponent size 15 bits and be >= 1 & <= 16384\n /// - have coefficient size 35 bits and have 35th bit always 1 (when exponent > 0 BigMath numbers have max precision)\n /// so coefficients must always be in range 17179869184 <= coefficient <= 34359738367.\n /// - as a result of previous points, numbers must never be 0\n /// e.g. res = bigNumber1 / bigNumber2 = [(coe1, exp1) / (coe2, exp2)] << decimal\n /// = ((coe1<<precision_)/coe2, exp1+decimal-exp2-precision_)\n /// @param bigNumber1 BigNumber format with coefficient and exponent\n /// @param bigNumber2 BigNumber format with coefficient and exponent\n /// @return BigNumber format with coefficient and exponent\n /// Returned connection factor can only ever be >= baseBranchDebtFactor (c = x*100/y with both x,y > 0 & x,y <= 100: c can only ever be >= x)\n function divBigNumber(uint256 bigNumber1, uint256 bigNumber2) internal pure returns (uint256) {\n unchecked {\n // (coefficient1_ << PRECISION) / coefficient2_\n uint256 resCoefficient_ = ((bigNumber1 >> EXPONENT_SIZE_DEBT_FACTOR) << PRECISION) /\n (bigNumber2 >> EXPONENT_SIZE_DEBT_FACTOR);\n // nominator at min 17179869184 << 64 = 316912650057057350374175801344. at max 34359738367 << 64 = 633825300095667956674642051072.\n // so min value resCoefficient_ 9223372037123211264 (64 bits) vs max 36893488146345361408 (fits in 65 bits)\n\n // mostSigBit will be PRECISION + 1 or PRECISION\n uint256 overflowLen_ = ((resCoefficient_ >> PRECISION) == 1) ? (PRECISION + 1) : PRECISION;\n // Overflow will be PRECISION - COEFFICIENT_SIZE_DEBT_FACTOR or (PRECISION + 1) - COEFFICIENT_SIZE_DEBT_FACTOR\n // Meaning 64 - 35 = 29 or 65 - 35 = 30\n overflowLen_ = overflowLen_ - COEFFICIENT_SIZE_DEBT_FACTOR;\n resCoefficient_ = resCoefficient_ >> overflowLen_;\n\n // exponent1_ will always be less than or equal to 16384\n // exponent2_ will always be less than or equal to 16384\n // Even if exponent2_ is 0 (not possible) & resExponent_ = DECIMALS_DEBT_FACTOR then also resExponent_ will be less than max limit, so no overflow\n // result exponent = (exponent1_ + DECIMALS_DEBT_FACTOR + overflowLen_) - (exponent2_ + PRECISION);\n uint256 resExponent_ = ((bigNumber1 & EXPONENT_MAX_DEBT_FACTOR) + // exponent1_\n DECIMALS_DEBT_FACTOR + // DECIMALS_DEBT_FACTOR is 100% as it is percentage value\n overflowLen_); // addition part resExponent_ here min 16414, max 32798\n // reuse overFlowLen_ variable for subtraction sum of exponent\n overflowLen_ = (bigNumber2 & EXPONENT_MAX_DEBT_FACTOR) + PRECISION; // subtraction part overflowLen_ here: min 65, max 16448\n if (resExponent_ > overflowLen_) {\n resExponent_ = resExponent_ - overflowLen_;\n\n return ((resCoefficient_ << EXPONENT_SIZE_DEBT_FACTOR) | resExponent_);\n }\n\n // Can happen if bigNumber1 exponent is < 35 (35+16384+29 = 16448) and bigNumber2 exponent is e.g. max 16384.\n // this would mean a branch with a normal big debt factor (bigNumber2) is merged into a base branch with an extremely small\n // debt factor (bigNumber1).\n // this should never happen anyway, but if it does better to revert than to continue with unknown effects.\n revert(); // connection factor should never become a BigNumber with exponent <= 0\n }\n }\n}\n"
|
||
},
|
||
"contracts/libraries/errorTypes.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nlibrary LibsErrorTypes {\n /***********************************|\n | LiquidityCalcs | \n |__________________________________*/\n\n /// @notice thrown when supply or borrow exchange price is zero at calc token data (token not configured yet)\n uint256 internal constant LiquidityCalcs__ExchangePriceZero = 70001;\n\n /// @notice thrown when rate data is set to a version that is not implemented\n uint256 internal constant LiquidityCalcs__UnsupportedRateVersion = 70002;\n\n /***********************************|\n | SafeTransfer | \n |__________________________________*/\n\n /// @notice thrown when safe transfer from for an ERC20 fails\n uint256 internal constant SafeTransfer__TransferFromFailed = 71001;\n\n /// @notice thrown when safe transfer for an ERC20 fails\n uint256 internal constant SafeTransfer__TransferFailed = 71002;\n}\n"
|
||
},
|
||
"contracts/libraries/liquidityCalcs.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { LibsErrorTypes as ErrorTypes } from \"./errorTypes.sol\";\nimport { LiquiditySlotsLink } from \"./liquiditySlotsLink.sol\";\nimport { BigMathMinified } from \"./bigMathMinified.sol\";\n\n/// @notice implements calculation methods used for Fluid liquidity such as updated exchange prices,\n/// borrow rate, withdrawal / borrow limits, revenue amount.\nlibrary LiquidityCalcs {\n error FluidLiquidityCalcsError(uint256 errorId_);\n\n /// @notice emitted if the calculated borrow rate surpassed max borrow rate (16 bits) and was capped at maximum value 65535\n event BorrowRateMaxCap();\n\n /// @dev constants as from Liquidity variables.sol\n uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12;\n\n /// @dev Ignoring leap years\n uint256 internal constant SECONDS_PER_YEAR = 365 days;\n // constants used for BigMath conversion from and to storage\n uint256 internal constant DEFAULT_EXPONENT_SIZE = 8;\n uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF;\n\n uint256 internal constant FOUR_DECIMALS = 1e4;\n uint256 internal constant TWELVE_DECIMALS = 1e12;\n uint256 internal constant X14 = 0x3fff;\n uint256 internal constant X15 = 0x7fff;\n uint256 internal constant X16 = 0xffff;\n uint256 internal constant X18 = 0x3ffff;\n uint256 internal constant X24 = 0xffffff;\n uint256 internal constant X33 = 0x1ffffffff;\n uint256 internal constant X64 = 0xffffffffffffffff;\n\n ///////////////////////////////////////////////////////////////////////////\n ////////// CALC EXCHANGE PRICES /////////\n ///////////////////////////////////////////////////////////////////////////\n\n /// @dev calculates interest (exchange prices) for a token given its' exchangePricesAndConfig from storage.\n /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage\n /// @return supplyExchangePrice_ updated supplyExchangePrice\n /// @return borrowExchangePrice_ updated borrowExchangePrice\n function calcExchangePrices(\n uint256 exchangePricesAndConfig_\n ) internal view returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) {\n // Extracting exchange prices\n supplyExchangePrice_ =\n (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) &\n X64;\n borrowExchangePrice_ =\n (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) &\n X64;\n\n if (supplyExchangePrice_ == 0 || borrowExchangePrice_ == 0) {\n revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__ExchangePriceZero);\n }\n\n uint256 temp_ = exchangePricesAndConfig_ & X16; // temp_ = borrowRate\n\n unchecked {\n // last timestamp can not be > current timestamp\n uint256 secondsSinceLastUpdate_ = block.timestamp -\n ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33);\n\n uint256 borrowRatio_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO) &\n X15;\n if (secondsSinceLastUpdate_ == 0 || temp_ == 0 || borrowRatio_ == 1) {\n // if no time passed, borrow rate is 0, or no raw borrowings: no exchange price update needed\n // (if borrowRatio_ == 1 means there is only borrowInterestFree, as first bit is 1 and rest is 0)\n return (supplyExchangePrice_, borrowExchangePrice_);\n }\n\n // calculate new borrow exchange price.\n // formula borrowExchangePriceIncrease: previous price * borrow rate * secondsSinceLastUpdate_.\n // nominator is max uint112 (uint64 * uint16 * uint32). Divisor can not be 0.\n borrowExchangePrice_ +=\n (borrowExchangePrice_ * temp_ * secondsSinceLastUpdate_) /\n (SECONDS_PER_YEAR * FOUR_DECIMALS);\n\n // FOR SUPPLY EXCHANGE PRICE:\n // all yield paid by borrowers (in mode with interest) goes to suppliers in mode with interest.\n // formula: previous price * supply rate * secondsSinceLastUpdate_.\n // where supply rate = (borrow rate - revenueFee%) * ratioSupplyYield. And\n // ratioSupplyYield = utilization * supplyRatio * borrowRatio\n //\n // Example:\n // supplyRawInterest is 80, supplyInterestFree is 20. totalSupply is 100. BorrowedRawInterest is 50.\n // BorrowInterestFree is 10. TotalBorrow is 60. borrow rate 40%, revenueFee 10%.\n // yield is 10 (so half a year must have passed).\n // supplyRawInterest must become worth 89. totalSupply must become 109. BorrowedRawInterest must become 60.\n // borrowInterestFree must still be 10. supplyInterestFree still 20. totalBorrow 70.\n // supplyExchangePrice would have to go from 1 to 1,125 (+ 0.125). borrowExchangePrice from 1 to 1,2 (+0.2).\n // utilization is 60%. supplyRatio = 20 / 80 = 25% (only 80% of lenders receiving yield).\n // borrowRatio = 10 / 50 = 20% (only 83,333% of borrowers paying yield):\n // x of borrowers paying yield = 100% - (20 / (100 + 20)) = 100% - 16.6666666% = 83,333%.\n // ratioSupplyYield = 60% * 83,33333% * (100% + 20%) = 62,5%\n // supplyRate = (40% * (100% - 10%)) * = 36% * 62,5% = 22.5%\n // increase in supplyExchangePrice, assuming 100 as previous price.\n // 100 * 22,5% * 1/2 (half a year) = 0,1125.\n // cross-check supplyRawInterest worth = 80 * 1.1125 = 89. totalSupply worth = 89 + 20.\n\n // -------------- 1. calculate ratioSupplyYield --------------------------------\n // step1: utilization * supplyRatio (or actually part of lenders receiving yield)\n\n // temp_ => supplyRatio (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383)\n // if first bit 0 then ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)\n // else ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)\n temp_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) & X15;\n\n if (temp_ == 1) {\n // if no raw supply: no exchange price update needed\n // (if supplyRatio_ == 1 means there is only supplyInterestFree, as first bit is 1 and rest is 0)\n return (supplyExchangePrice_, borrowExchangePrice_);\n }\n\n // ratioSupplyYield precision is 1e27 as 100% for increased precision when supplyInterestFree > supplyWithInterest\n if (temp_ & 1 == 1) {\n // ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)\n temp_ = temp_ >> 1;\n\n // Note: case where temp_ == 0 (only supplyInterestFree, no yield) already covered by early return\n // in the if statement a little above.\n\n // based on above example but supplyRawInterest is 20, supplyInterestFree is 80. no fee.\n // supplyRawInterest must become worth 30. totalSupply must become 110.\n // supplyExchangePrice would have to go from 1 to 1,5. borrowExchangePrice from 1 to 1,2.\n // so ratioSupplyYield must come out as 2.5 (250%).\n // supplyRatio would be (20 * 10_000 / 80) = 2500. but must be inverted.\n temp_ = (1e27 * FOUR_DECIMALS) / temp_; // e.g. 1e31 / 2500 = 4e27. (* 1e27 for precision)\n // e.g. 5_000 * (1e27 + 4e27) / 1e27 = 25_000 (=250%).\n temp_ =\n // utilization * (100% + 100% / supplyRatio)\n (((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) *\n (1e27 + temp_)) / // extract utilization (max 16_383 so there is no way this can overflow).\n (FOUR_DECIMALS);\n // max possible value of temp_ here is 16383 * (1e27 + 1e31) / 1e4 = ~1.64e31\n } else {\n // ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)\n temp_ = temp_ >> 1;\n // if temp_ == 0 then only supplyWithInterest => full yield. temp_ is already 0\n\n // e.g. 5_000 * 10_000 + (20 * 10_000 / 80) / 10_000 = 5000 * 12500 / 10000 = 6250 (=62.5%).\n temp_ =\n // 1e27 * utilization * (100% + supplyRatio) / 100%\n (1e27 *\n ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * // extract utilization (max 16_383 so there is no way this can overflow).\n (FOUR_DECIMALS + temp_)) /\n (FOUR_DECIMALS * FOUR_DECIMALS);\n // max possible temp_ value: 1e27 * 16383 * 2e4 / 1e8 = 3.2766e27\n }\n // from here temp_ => ratioSupplyYield (utilization * supplyRatio part) scaled by 1e27. max possible value ~1.64e31\n\n // step2 of ratioSupplyYield: add borrowRatio (only x% of borrowers paying yield)\n if (borrowRatio_ & 1 == 1) {\n // ratio is borrowWithInterest / borrowInterestFree (borrowInterestFree is bigger)\n borrowRatio_ = borrowRatio_ >> 1;\n // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.\n\n // Note: case where borrowRatio_ == 0 (only borrowInterestFree, no yield) already covered\n // at the beginning of the method by early return if `borrowRatio_ == 1`.\n\n // based on above example but borrowRawInterest is 10, borrowInterestFree is 50. no fee. borrowRatio = 20%.\n // so only 16.66% of borrowers are paying yield. so the 100% - part of the formula is not needed.\n // x of borrowers paying yield = (borrowRatio / (100 + borrowRatio)) = 16.6666666%\n // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.\n borrowRatio_ = (borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_);\n // max value here for borrowRatio_ is (1e31 / (1e4 + 1e4))= 5e26 (= 50% of borrowers paying yield).\n } else {\n // ratio is borrowInterestFree / borrowWithInterest (borrowWithInterest is bigger)\n borrowRatio_ = borrowRatio_ >> 1;\n\n // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.\n // x of borrowers paying yield = 100% - (borrowRatio / (100 + borrowRatio)) = 100% - 16.6666666% = 83,333%.\n borrowRatio_ = (1e27 - ((borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_)));\n // borrowRatio can never be > 100%. so max subtraction can be 100% - 100% / 200%.\n // or if borrowRatio_ is 0 -> 100% - 0. or if borrowRatio_ is 1 -> 100% - 1 / 101.\n // max value here for borrowRatio_ is 1e27 - 0 = 1e27 (= 100% of borrowers paying yield).\n }\n\n // temp_ => ratioSupplyYield. scaled down from 1e25 = 1% each to normal percent precision 1e2 = 1%.\n // max nominator value is ~1.64e31 * 1e27 = 1.64e58. max result = 1.64e8\n temp_ = (FOUR_DECIMALS * temp_ * borrowRatio_) / 1e54;\n\n // 2. calculate supply rate\n // temp_ => supply rate (borrow rate - revenueFee%) * ratioSupplyYield.\n // division part is done in next step to increase precision. (divided by 2x FOUR_DECIMALS, fee + borrowRate)\n // Note that all calculation divisions for supplyExchangePrice are rounded down.\n // Note supply rate can be bigger than the borrowRate, e.g. if there are only few lenders with interest\n // but more suppliers not earning interest.\n temp_ = ((exchangePricesAndConfig_ & X16) * // borrow rate\n temp_ * // ratioSupplyYield\n (FOUR_DECIMALS - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14))); // revenueFee\n // fee can not be > 100%. max possible = 65535 * ~1.64e8 * 1e4 =~1.074774e17.\n\n // 3. calculate increase in supply exchange price\n supplyExchangePrice_ += ((supplyExchangePrice_ * temp_ * secondsSinceLastUpdate_) /\n (SECONDS_PER_YEAR * FOUR_DECIMALS * FOUR_DECIMALS * FOUR_DECIMALS));\n // max possible nominator = max uint 64 * 1.074774e17 * max uint32 = ~8.52e45. Denominator can not be 0.\n }\n }\n\n ///////////////////////////////////////////////////////////////////////////\n ////////// CALC REVENUE /////////\n ///////////////////////////////////////////////////////////////////////////\n\n /// @dev gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from storage\n /// and the current balance of the Fluid liquidity contract for the token.\n /// @param totalAmounts_ total amounts packed uint256 read from storage\n /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage\n /// @param liquidityTokenBalance_ current balance of Liquidity contract (IERC20(token_).balanceOf(address(this)))\n /// @return revenueAmount_ collectable revenue amount\n function calcRevenue(\n uint256 totalAmounts_,\n uint256 exchangePricesAndConfig_,\n uint256 liquidityTokenBalance_\n ) internal view returns (uint256 revenueAmount_) {\n // @dev no need to super-optimize this method as it is only used by admin\n\n // calculate the new exchange prices based on earned interest\n (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) = calcExchangePrices(exchangePricesAndConfig_);\n\n // total supply = interest free + with interest converted from raw\n uint256 totalSupply_ = getTotalSupply(totalAmounts_, supplyExchangePrice_);\n\n if (totalSupply_ > 0) {\n // available revenue: balanceOf(token) + totalBorrowings - totalLendings.\n revenueAmount_ = liquidityTokenBalance_ + getTotalBorrow(totalAmounts_, borrowExchangePrice_);\n // ensure there is no possible case because of rounding etc. where this would revert,\n // explicitly check if >\n revenueAmount_ = revenueAmount_ > totalSupply_ ? revenueAmount_ - totalSupply_ : 0;\n // Note: if utilization > 100% (totalSupply < totalBorrow), then all the amount above 100% utilization\n // can only be revenue.\n } else {\n // if supply is 0, then rest of balance can be withdrawn as revenue so that no amounts get stuck\n revenueAmount_ = liquidityTokenBalance_;\n }\n }\n\n ///////////////////////////////////////////////////////////////////////////\n ////////// CALC LIMITS /////////\n ///////////////////////////////////////////////////////////////////////////\n\n /// @dev calculates withdrawal limit before an operate execution:\n /// amount of user supply that must stay supplied (not amount that can be withdrawn).\n /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M\n /// @param userSupplyData_ user supply data packed uint256 from storage\n /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and converted from BigMath\n /// @return currentWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction.\n /// returned value is in raw for with interest mode, normal amount for interest free mode!\n function calcWithdrawalLimitBeforeOperate(\n uint256 userSupplyData_,\n uint256 userSupply_\n ) internal view returns (uint256 currentWithdrawalLimit_) {\n // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet).\n // first tx where timestamp is 0 will enter `if (lastWithdrawalLimit_ == 0)` because lastWithdrawalLimit_ is not set yet.\n // returning max withdrawal allowed, which is not exactly right but doesn't matter because the first interaction must be\n // a deposit anyway. Important is that it would not revert.\n\n // Note the first time a deposit brings the user supply amount to above the base withdrawal limit, the active limit\n // is the fully expanded limit immediately.\n\n // extract last set withdrawal limit\n uint256 lastWithdrawalLimit_ = (userSupplyData_ >>\n LiquiditySlotsLink.BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT) & X64;\n lastWithdrawalLimit_ =\n (lastWithdrawalLimit_ >> DEFAULT_EXPONENT_SIZE) <<\n (lastWithdrawalLimit_ & DEFAULT_EXPONENT_MASK);\n if (lastWithdrawalLimit_ == 0) {\n // withdrawal limit is not activated. Max withdrawal allowed\n return 0;\n }\n\n uint256 maxWithdrawableLimit_;\n uint256 temp_;\n unchecked {\n // extract max withdrawable percent of user supply and\n // calculate maximum withdrawable amount expandPercentage of user supply at full expansion duration elapsed\n // e.g.: if 10% expandPercentage, meaning 10% is withdrawable after full expandDuration has elapsed.\n\n // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).\n maxWithdrawableLimit_ =\n (((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14) * userSupply_) /\n FOUR_DECIMALS;\n\n // time elapsed since last withdrawal limit was set (in seconds)\n // @dev last process timestamp is guaranteed to exist for withdrawal, as a supply must have happened before.\n // last timestamp can not be > current timestamp\n temp_ =\n block.timestamp -\n ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) & X33);\n }\n // calculate withdrawable amount of expandPercent that is elapsed of expandDuration.\n // e.g. if 60% of expandDuration has elapsed, then user should be able to withdraw 6% of user supply, down to 94%.\n // Note: no explicit check for this needed, it is covered by setting minWithdrawalLimit_ if needed.\n temp_ =\n (maxWithdrawableLimit_ * temp_) /\n // extract expand duration: After this, decrement won't happen (user can withdraw 100% of withdraw limit)\n ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24); // expand duration can never be 0\n // calculate expanded withdrawal limit: last withdrawal limit - withdrawable amount.\n // Note: withdrawable amount here can grow bigger than userSupply if timeElapsed is a lot bigger than expandDuration,\n // which would cause the subtraction `lastWithdrawalLimit_ - withdrawableAmount_` to revert. In that case, set 0\n // which will cause minimum (fully expanded) withdrawal limit to be set in lines below.\n unchecked {\n // underflow explicitly checked & handled\n currentWithdrawalLimit_ = lastWithdrawalLimit_ > temp_ ? lastWithdrawalLimit_ - temp_ : 0;\n // calculate minimum withdrawal limit: minimum amount of user supply that must stay supplied at full expansion.\n // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_\n temp_ = userSupply_ - maxWithdrawableLimit_;\n }\n // if withdrawal limit is decreased below minimum then set minimum\n // (e.g. when more than expandDuration time has elapsed)\n if (temp_ > currentWithdrawalLimit_) {\n currentWithdrawalLimit_ = temp_;\n }\n }\n\n /// @dev calculates withdrawal limit after an operate execution:\n /// amount of user supply that must stay supplied (not amount that can be withdrawn).\n /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M\n /// @param userSupplyData_ user supply data packed uint256 from storage\n /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and added / subtracted with the executed operate amount\n /// @param newWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction, result from `calcWithdrawalLimitBeforeOperate`\n /// @return withdrawalLimit_ updated withdrawal limit that should be written to storage. returned value is in\n /// raw for with interest mode, normal amount for interest free mode!\n function calcWithdrawalLimitAfterOperate(\n uint256 userSupplyData_,\n uint256 userSupply_,\n uint256 newWithdrawalLimit_\n ) internal pure returns (uint256) {\n // temp_ => base withdrawal limit. below this, maximum withdrawals are allowed\n uint256 temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18;\n temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);\n\n // if user supply is below base limit then max withdrawals are allowed\n if (userSupply_ < temp_) {\n return 0;\n }\n // temp_ => withdrawal limit expandPercent (is in 1e2 decimals)\n temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14;\n unchecked {\n // temp_ => minimum withdrawal limit: userSupply - max withdrawable limit (userSupply * expandPercent))\n // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).\n // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_\n temp_ = userSupply_ - ((userSupply_ * temp_) / FOUR_DECIMALS);\n }\n // if new (before operation) withdrawal limit is less than minimum limit then set minimum limit.\n // e.g. can happen on new deposits. withdrawal limit is instantly fully expanded in a scenario where\n // increased deposit amount outpaces withrawals.\n if (temp_ > newWithdrawalLimit_) {\n return temp_;\n }\n return newWithdrawalLimit_;\n }\n\n /// @dev calculates borrow limit before an operate execution:\n /// total amount user borrow can reach (not borrowable amount in current operation).\n /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M\n /// @param userBorrowData_ user borrow data packed uint256 from storage\n /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_`\n /// @return currentBorrowLimit_ current borrow limit updated for expansion since last interaction. returned value is in\n /// raw for with interest mode, normal amount for interest free mode!\n function calcBorrowLimitBeforeOperate(\n uint256 userBorrowData_,\n uint256 userBorrow_\n ) internal view returns (uint256 currentBorrowLimit_) {\n // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet) -> base limit.\n // first tx where timestamp is 0 will enter `if (maxExpandedBorrowLimit_ < baseBorrowLimit_)` because `userBorrow_` and thus\n // `maxExpansionLimit_` and thus `maxExpandedBorrowLimit_` is 0 and `baseBorrowLimit_` can not be 0.\n\n // temp_ = extract borrow expand percent (is in 1e2 decimals)\n uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14;\n\n uint256 maxExpansionLimit_;\n uint256 maxExpandedBorrowLimit_;\n unchecked {\n // calculate max expansion limit: Max amount limit can expand to since last interaction\n // userBorrow_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).\n maxExpansionLimit_ = ((userBorrow_ * temp_) / FOUR_DECIMALS);\n\n // calculate max borrow limit: Max point limit can increase to since last interaction\n maxExpandedBorrowLimit_ = userBorrow_ + maxExpansionLimit_;\n }\n\n // currentBorrowLimit_ = extract base borrow limit\n currentBorrowLimit_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;\n currentBorrowLimit_ =\n (currentBorrowLimit_ >> DEFAULT_EXPONENT_SIZE) <<\n (currentBorrowLimit_ & DEFAULT_EXPONENT_MASK);\n\n if (maxExpandedBorrowLimit_ < currentBorrowLimit_) {\n return currentBorrowLimit_;\n }\n // time elapsed since last borrow limit was set (in seconds)\n unchecked {\n // temp_ = timeElapsed_ (last timestamp can not be > current timestamp)\n temp_ =\n block.timestamp -\n ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) & X33); // extract last udpate timestamp\n }\n\n // currentBorrowLimit_ = expandedBorrowableAmount + extract last set borrow limit\n currentBorrowLimit_ =\n // calculate borrow limit expansion since last interaction for `expandPercent` that is elapsed of `expandDuration`.\n // divisor is extract expand duration (after this, full expansion to expandPercentage happened).\n ((maxExpansionLimit_ * temp_) /\n ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24)) + // expand duration can never be 0\n // extract last set borrow limit\n BigMathMinified.fromBigNumber(\n (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT) & X64,\n DEFAULT_EXPONENT_SIZE,\n DEFAULT_EXPONENT_MASK\n );\n\n // if timeElapsed is bigger than expandDuration, new borrow limit would be > max expansion,\n // so set to `maxExpandedBorrowLimit_` in that case.\n // also covers the case where last process timestamp = 0 (timeElapsed would simply be very big)\n if (currentBorrowLimit_ > maxExpandedBorrowLimit_) {\n currentBorrowLimit_ = maxExpandedBorrowLimit_;\n }\n // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)\n temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;\n temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);\n\n if (currentBorrowLimit_ > temp_) {\n currentBorrowLimit_ = temp_;\n }\n }\n\n /// @dev calculates borrow limit after an operate execution:\n /// total amount user borrow can reach (not borrowable amount in current operation).\n /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M\n /// @param userBorrowData_ user borrow data packed uint256 from storage\n /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` and added / subtracted with the executed operate amount\n /// @param newBorrowLimit_ current borrow limit updated for expansion since last interaction, result from `calcBorrowLimitBeforeOperate`\n /// @return borrowLimit_ updated borrow limit that should be written to storage.\n /// returned value is in raw for with interest mode, normal amount for interest free mode!\n function calcBorrowLimitAfterOperate(\n uint256 userBorrowData_,\n uint256 userBorrow_,\n uint256 newBorrowLimit_\n ) internal pure returns (uint256 borrowLimit_) {\n // temp_ = extract borrow expand percent\n uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; // (is in 1e2 decimals)\n\n unchecked {\n // borrowLimit_ = calculate maximum borrow limit at full expansion.\n // userBorrow_ needs to be at least 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).\n borrowLimit_ = userBorrow_ + ((userBorrow_ * temp_) / FOUR_DECIMALS);\n }\n\n // temp_ = extract base borrow limit\n temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;\n temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);\n\n if (borrowLimit_ < temp_) {\n // below base limit, borrow limit is always base limit\n return temp_;\n }\n // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)\n temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;\n temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);\n\n // make sure fully expanded borrow limit is not above hard max borrow limit\n if (borrowLimit_ > temp_) {\n borrowLimit_ = temp_;\n }\n // if new borrow limit (from before operate) is > max borrow limit, set max borrow limit.\n // (e.g. on a repay shrinking instantly to fully expanded borrow limit from new borrow amount. shrinking is instant)\n if (newBorrowLimit_ > borrowLimit_) {\n return borrowLimit_;\n }\n return newBorrowLimit_;\n }\n\n ///////////////////////////////////////////////////////////////////////////\n ////////// CALC RATES /////////\n ///////////////////////////////////////////////////////////////////////////\n\n /// @dev Calculates new borrow rate from utilization for a token\n /// @param rateData_ rate data packed uint256 from storage for the token\n /// @param utilization_ totalBorrow / totalSupply. 1e4 = 100% utilization\n /// @return rate_ rate for that particular token in 1e2 precision (e.g. 5% rate = 500)\n function calcBorrowRateFromUtilization(uint256 rateData_, uint256 utilization_) internal returns (uint256 rate_) {\n // extract rate version: 4 bits (0xF) starting from bit 0\n uint256 rateVersion_ = (rateData_ & 0xF);\n\n if (rateVersion_ == 1) {\n rate_ = calcRateV1(rateData_, utilization_);\n } else if (rateVersion_ == 2) {\n rate_ = calcRateV2(rateData_, utilization_);\n } else {\n revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__UnsupportedRateVersion);\n }\n\n if (rate_ > X16) {\n // hard cap for borrow rate at maximum value 16 bits (65535) to make sure it does not overflow storage space.\n // this is unlikely to ever happen if configs stay within expected levels.\n rate_ = X16;\n // emit event to more easily become aware\n emit BorrowRateMaxCap();\n }\n }\n\n /// @dev calculates the borrow rate based on utilization for rate data version 1 (with one kink) in 1e2 precision\n /// @param rateData_ rate data packed uint256 from storage for the token\n /// @param utilization_ in 1e2 (100% = 1e4)\n /// @return rate_ rate in 1e2 precision\n function calcRateV1(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) {\n /// For rate v1 (one kink) ------------------------------------------------------\n /// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 52- 67 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Last 188 bits => 68-255 => blank, might come in use in future\n\n // y = mx + c.\n // y is borrow rate\n // x is utilization\n // m = slope (m can be 0 but never negative)\n // c is constant (c can be negative)\n\n uint256 y1_;\n uint256 y2_;\n uint256 x1_;\n uint256 x2_;\n\n // extract kink1: 16 bits (0xFFFF) starting from bit 20\n // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two\n uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_UTILIZATION_AT_KINK) & X16;\n if (utilization_ < kink1_) {\n // if utilization is less than kink\n y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO) & X16;\n y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16;\n x1_ = 0; // 0%\n x2_ = kink1_;\n } else {\n // else utilization is greater than kink\n y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16;\n y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX) & X16;\n x1_ = kink1_;\n x2_ = FOUR_DECIMALS; // 100%\n }\n\n int256 constant_;\n uint256 slope_;\n unchecked {\n // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1).\n // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor) and rate at y2 can not be < rate at y1\n // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS\n slope_ = ((y2_ - y1_) * TWELVE_DECIMALS) / (x2_ - x1_);\n\n // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx.\n // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256\n // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12;\n // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256\n // subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256\n constant_ = int256(y1_ * TWELVE_DECIMALS) - int256(slope_ * x1_);\n\n // calculating new borrow rate\n // - slope_ max value is 65535 * 1e12,\n // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply)\n // - constant max value is 65535 * 1e12\n // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256\n // divisor TWELVE_DECIMALS can not be 0\n rate_ = (uint256(int256(slope_ * utilization_) + constant_)) / TWELVE_DECIMALS;\n }\n }\n\n /// @dev calculates the borrow rate based on utilization for rate data version 2 (with two kinks) in 1e4 precision\n /// @param rateData_ rate data packed uint256 from storage for the token\n /// @param utilization_ in 1e2 (100% = 1e4)\n /// @return rate_ rate in 1e4 precision\n function calcRateV2(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) {\n /// For rate v2 (two kinks) -----------------------------------------------------\n /// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 52- 67 => Utilization at kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 68- 83 => Rate at utilization kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 84- 99 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Last 156 bits => 100-255 => blank, might come in use in future\n\n // y = mx + c.\n // y is borrow rate\n // x is utilization\n // m = slope (m can be 0 but never negative)\n // c is constant (c can be negative)\n\n uint256 y1_;\n uint256 y2_;\n uint256 x1_;\n uint256 x2_;\n\n // extract kink1: 16 bits (0xFFFF) starting from bit 20\n // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two\n uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1) & X16;\n if (utilization_ < kink1_) {\n // if utilization is less than kink1\n y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO) & X16;\n y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16;\n x1_ = 0; // 0%\n x2_ = kink1_;\n } else {\n // extract kink2: 16 bits (0xFFFF) starting from bit 52\n uint256 kink2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2) & X16;\n if (utilization_ < kink2_) {\n // if utilization is less than kink2\n y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16;\n y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16;\n x1_ = kink1_;\n x2_ = kink2_;\n } else {\n // else utilization is greater than kink2\n y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16;\n y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX) & X16;\n x1_ = kink2_;\n x2_ = FOUR_DECIMALS;\n }\n }\n\n int256 constant_;\n uint256 slope_;\n unchecked {\n // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1).\n // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor) and rate at y2 can not be < rate at y1\n // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS\n slope_ = ((y2_ - y1_) * TWELVE_DECIMALS) / (x2_ - x1_);\n\n // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx.\n // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256\n // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12;\n // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256\n // subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256\n constant_ = int256(y1_ * TWELVE_DECIMALS) - int256(slope_ * x1_);\n\n // calculating new borrow rate\n // - slope_ max value is 65535 * 1e12,\n // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply)\n // - constant max value is 65535 * 1e12\n // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256\n // divisor TWELVE_DECIMALS can not be 0\n rate_ = (uint256(int256(slope_ * utilization_) + constant_)) / TWELVE_DECIMALS;\n }\n }\n\n /// @dev reads the total supply out of Liquidity packed storage `totalAmounts_` for `supplyExchangePrice_`\n function getTotalSupply(\n uint256 totalAmounts_,\n uint256 supplyExchangePrice_\n ) internal pure returns (uint256 totalSupply_) {\n // totalSupply_ => supplyInterestFree\n totalSupply_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64;\n totalSupply_ = (totalSupply_ >> DEFAULT_EXPONENT_SIZE) << (totalSupply_ & DEFAULT_EXPONENT_MASK);\n\n uint256 totalSupplyRaw_ = totalAmounts_ & X64; // no shifting as supplyRaw is first 64 bits\n totalSupplyRaw_ = (totalSupplyRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalSupplyRaw_ & DEFAULT_EXPONENT_MASK);\n\n // totalSupply = supplyInterestFree + supplyRawInterest normalized from raw\n totalSupply_ += ((totalSupplyRaw_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION);\n }\n\n /// @dev reads the total borrow out of Liquidity packed storage `totalAmounts_` for `borrowExchangePrice_`\n function getTotalBorrow(\n uint256 totalAmounts_,\n uint256 borrowExchangePrice_\n ) internal pure returns (uint256 totalBorrow_) {\n // totalBorrow_ => borrowInterestFree\n // no & mask needed for borrow interest free as it occupies the last bits in the storage slot\n totalBorrow_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE);\n totalBorrow_ = (totalBorrow_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrow_ & DEFAULT_EXPONENT_MASK);\n\n uint256 totalBorrowRaw_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64;\n totalBorrowRaw_ = (totalBorrowRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrowRaw_ & DEFAULT_EXPONENT_MASK);\n\n // totalBorrow = borrowInterestFree + borrowRawInterest normalized from raw\n totalBorrow_ += ((totalBorrowRaw_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION);\n }\n}\n"
|
||
},
|
||
"contracts/libraries/liquiditySlotsLink.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\n/// @notice library that helps in reading / working with storage slot data of Fluid Liquidity.\n/// @dev as all data for Fluid Liquidity is internal, any data must be fetched directly through manual\n/// slot reading through this library or, if gas usage is less important, through the FluidLiquidityResolver.\nlibrary LiquiditySlotsLink {\n /// @dev storage slot for status at Liquidity\n uint256 internal constant LIQUIDITY_STATUS_SLOT = 1;\n /// @dev storage slot for auths mapping at Liquidity\n uint256 internal constant LIQUIDITY_AUTHS_MAPPING_SLOT = 2;\n /// @dev storage slot for guardians mapping at Liquidity\n uint256 internal constant LIQUIDITY_GUARDIANS_MAPPING_SLOT = 3;\n /// @dev storage slot for user class mapping at Liquidity\n uint256 internal constant LIQUIDITY_USER_CLASS_MAPPING_SLOT = 4;\n /// @dev storage slot for exchangePricesAndConfig mapping at Liquidity\n uint256 internal constant LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT = 5;\n /// @dev storage slot for rateData mapping at Liquidity\n uint256 internal constant LIQUIDITY_RATE_DATA_MAPPING_SLOT = 6;\n /// @dev storage slot for totalAmounts mapping at Liquidity\n uint256 internal constant LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT = 7;\n /// @dev storage slot for user supply double mapping at Liquidity\n uint256 internal constant LIQUIDITY_USER_SUPPLY_DOUBLE_MAPPING_SLOT = 8;\n /// @dev storage slot for user borrow double mapping at Liquidity\n uint256 internal constant LIQUIDITY_USER_BORROW_DOUBLE_MAPPING_SLOT = 9;\n /// @dev storage slot for listed tokens array at Liquidity\n uint256 internal constant LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT = 10;\n\n // --------------------------------\n // @dev stacked uint256 storage slots bits position data for each:\n\n // ExchangePricesAndConfig\n uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATE = 0;\n uint256 internal constant BITS_EXCHANGE_PRICES_FEE = 16;\n uint256 internal constant BITS_EXCHANGE_PRICES_UTILIZATION = 30;\n uint256 internal constant BITS_EXCHANGE_PRICES_UPDATE_THRESHOLD = 44;\n uint256 internal constant BITS_EXCHANGE_PRICES_LAST_TIMESTAMP = 58;\n uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE = 91;\n uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE = 155;\n uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_RATIO = 219;\n uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATIO = 234;\n\n // RateData:\n uint256 internal constant BITS_RATE_DATA_VERSION = 0;\n // RateData: V1\n uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO = 4;\n uint256 internal constant BITS_RATE_DATA_V1_UTILIZATION_AT_KINK = 20;\n uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK = 36;\n uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX = 52;\n // RateData: V2\n uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO = 4;\n uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1 = 20;\n uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1 = 36;\n uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2 = 52;\n uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2 = 68;\n uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX = 84;\n\n // TotalAmounts\n uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_WITH_INTEREST = 0;\n uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE = 64;\n uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST = 128;\n uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE = 192;\n\n // UserSupplyData\n uint256 internal constant BITS_USER_SUPPLY_MODE = 0;\n uint256 internal constant BITS_USER_SUPPLY_AMOUNT = 1;\n uint256 internal constant BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT = 65;\n uint256 internal constant BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP = 129;\n uint256 internal constant BITS_USER_SUPPLY_EXPAND_PERCENT = 162;\n uint256 internal constant BITS_USER_SUPPLY_EXPAND_DURATION = 176;\n uint256 internal constant BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT = 200;\n uint256 internal constant BITS_USER_SUPPLY_IS_PAUSED = 255;\n\n // UserBorrowData\n uint256 internal constant BITS_USER_BORROW_MODE = 0;\n uint256 internal constant BITS_USER_BORROW_AMOUNT = 1;\n uint256 internal constant BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT = 65;\n uint256 internal constant BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP = 129;\n uint256 internal constant BITS_USER_BORROW_EXPAND_PERCENT = 162;\n uint256 internal constant BITS_USER_BORROW_EXPAND_DURATION = 176;\n uint256 internal constant BITS_USER_BORROW_BASE_BORROW_LIMIT = 200;\n uint256 internal constant BITS_USER_BORROW_MAX_BORROW_LIMIT = 218;\n uint256 internal constant BITS_USER_BORROW_IS_PAUSED = 255;\n\n // --------------------------------\n\n /// @notice Calculating the slot ID for Liquidity contract for single mapping at `slot_` for `key_`\n function calculateMappingStorageSlot(uint256 slot_, address key_) internal pure returns (bytes32) {\n return keccak256(abi.encode(key_, slot_));\n }\n\n /// @notice Calculating the slot ID for Liquidity contract for double mapping at `slot_` for `key1_` and `key2_`\n function calculateDoubleMappingStorageSlot(\n uint256 slot_,\n address key1_,\n address key2_\n ) internal pure returns (bytes32) {\n bytes32 intermediateSlot_ = keccak256(abi.encode(key1_, slot_));\n return keccak256(abi.encode(key2_, intermediateSlot_));\n }\n}\n"
|
||
},
|
||
"contracts/libraries/safeTransfer.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT OR Apache-2.0\npragma solidity 0.8.21;\n\nimport { LibsErrorTypes as ErrorTypes } from \"./errorTypes.sol\";\n\n/// @notice provides minimalistic methods for safe transfers, e.g. ERC20 safeTransferFrom\nlibrary SafeTransfer {\n error FluidSafeTransferError(uint256 errorId_);\n\n /// @dev Transfer `amount_` of `token_` from `from_` to `to_`, spending the approval given by `from_` to the\n /// calling contract. If `token_` returns no value, non-reverting calls are assumed to be successful.\n /// Minimally modified from Solmate SafeTransferLib (address as input param for token, Custom Error):\n /// https://github.com/transmissions11/solmate/blob/50e15bb566f98b7174da9b0066126a4c3e75e0fd/src/utils/SafeTransferLib.sol#L31-L63\n function safeTransferFrom(address token_, address from_, address to_, uint256 amount_) internal {\n bool success_;\n\n /// @solidity memory-safe-assembly\n assembly {\n // Get a pointer to some free memory.\n let freeMemoryPointer := mload(0x40)\n\n // Write the abi-encoded calldata into memory, beginning with the function selector.\n mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)\n mstore(add(freeMemoryPointer, 4), and(from_, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the \"from_\" argument.\n mstore(add(freeMemoryPointer, 36), and(to_, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the \"to_\" argument.\n mstore(add(freeMemoryPointer, 68), amount_) // Append the \"amount_\" argument. Masking not required as it's a full 32 byte type.\n\n success_ := and(\n // Set success to whether the call reverted, if not we check it either\n // returned exactly 1 (can't just be non-zero data), or had no return data.\n or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),\n // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.\n // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.\n // Counterintuitively, this call must be positioned second to the or() call in the\n // surrounding and() call or else returndatasize() will be zero during the computation.\n call(gas(), token_, 0, freeMemoryPointer, 100, 0, 32)\n )\n }\n\n if (!success_) {\n revert FluidSafeTransferError(ErrorTypes.SafeTransfer__TransferFromFailed);\n }\n }\n\n /// @dev Transfer `amount_` of `token_` to `to_`.\n /// If `token_` returns no value, non-reverting calls are assumed to be successful.\n /// Minimally modified from Solmate SafeTransferLib (address as input param for token, Custom Error):\n /// https://github.com/transmissions11/solmate/blob/50e15bb566f98b7174da9b0066126a4c3e75e0fd/src/utils/SafeTransferLib.sol#L65-L95\n function safeTransfer(address token_, address to_, uint256 amount_) internal {\n bool success_;\n\n /// @solidity memory-safe-assembly\n assembly {\n // Get a pointer to some free memory.\n let freeMemoryPointer := mload(0x40)\n\n // Write the abi-encoded calldata into memory, beginning with the function selector.\n mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)\n mstore(add(freeMemoryPointer, 4), and(to_, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the \"to_\" argument.\n mstore(add(freeMemoryPointer, 36), amount_) // Append the \"amount_\" argument. Masking not required as it's a full 32 byte type.\n\n success_ := and(\n // Set success to whether the call reverted, if not we check it either\n // returned exactly 1 (can't just be non-zero data), or had no return data.\n or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),\n // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.\n // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.\n // Counterintuitively, this call must be positioned second to the or() call in the\n // surrounding and() call or else returndatasize() will be zero during the computation.\n call(gas(), token_, 0, freeMemoryPointer, 68, 0, 32)\n )\n }\n\n if (!success_) {\n revert FluidSafeTransferError(ErrorTypes.SafeTransfer__TransferFailed);\n }\n }\n\n /// @dev Transfer `amount_` of ` native token to `to_`.\n /// Minimally modified from Solmate SafeTransferLib (Custom Error):\n /// https://github.com/transmissions11/solmate/blob/50e15bb566f98b7174da9b0066126a4c3e75e0fd/src/utils/SafeTransferLib.sol#L15-L25\n function safeTransferNative(address to_, uint256 amount_) internal {\n bool success_;\n\n /// @solidity memory-safe-assembly\n assembly {\n // Transfer the ETH and store if it succeeded or not.\n success_ := call(gas(), to_, amount_, 0, 0, 0, 0)\n }\n\n if (!success_) {\n revert FluidSafeTransferError(ErrorTypes.SafeTransfer__TransferFailed);\n }\n }\n}\n"
|
||
},
|
||
"contracts/libraries/storageRead.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\n/// @notice implements a method to read uint256 data from storage at a bytes32 storage slot key.\ncontract StorageRead {\n function readFromStorage(bytes32 slot_) public view returns (uint256 result_) {\n assembly {\n result_ := sload(slot_) // read value from the storage slot\n }\n }\n}\n"
|
||
},
|
||
"contracts/libraries/tickMath.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\n/// @title library that calculates number \"tick\" and \"ratioX96\" from this: ratioX96 = (1.0015^tick) * 2^96\n/// @notice this library is used in Fluid Vault protocol for optimiziation.\n/// @dev \"tick\" supports between -32767 and 32767. \"ratioX96\" supports between 37075072 and 169307877264527972847801929085841449095838922544595\nlibrary TickMath {\n /// The minimum tick that can be passed in getRatioAtTick. 1.0015**-32767\n int24 internal constant MIN_TICK = -32767;\n /// The maximum tick that can be passed in getRatioAtTick. 1.0015**32767\n int24 internal constant MAX_TICK = 32767;\n\n uint256 internal constant FACTOR00 = 0x100000000000000000000000000000000;\n uint256 internal constant FACTOR01 = 0xff9dd7de423466c20352b1246ce4856f; // 2^128/1.0015**1 = 339772707859149738855091969477551883631\n uint256 internal constant FACTOR02 = 0xff3bd55f4488ad277531fa1c725a66d0; // 2^128/1.0015**2 = 339263812140938331358054887146831636176\n uint256 internal constant FACTOR03 = 0xfe78410fd6498b73cb96a6917f853259; // 2^128/1.0015**4 = 338248306163758188337119769319392490073\n uint256 internal constant FACTOR04 = 0xfcf2d9987c9be178ad5bfeffaa123273; // 2^128/1.0015**8 = 336226404141693512316971918999264834163\n uint256 internal constant FACTOR05 = 0xf9ef02c4529258b057769680fc6601b3; // 2^128/1.0015**16 = 332218786018727629051611634067491389875\n uint256 internal constant FACTOR06 = 0xf402d288133a85a17784a411f7aba082; // 2^128/1.0015**32 = 324346285652234375371948336458280706178\n uint256 internal constant FACTOR07 = 0xe895615b5beb6386553757b0352bda90; // 2^128/1.0015**64 = 309156521885964218294057947947195947664\n uint256 internal constant FACTOR08 = 0xd34f17a00ffa00a8309940a15930391a; // 2^128/1.0015**128 = 280877777739312896540849703637713172762 \n uint256 internal constant FACTOR09 = 0xae6b7961714e20548d88ea5123f9a0ff; // 2^128/1.0015**256 = 231843708922198649176471782639349113087\n uint256 internal constant FACTOR10 = 0x76d6461f27082d74e0feed3b388c0ca1; // 2^128/1.0015**512 = 157961477267171621126394973980180876449\n uint256 internal constant FACTOR11 = 0x372a3bfe0745d8b6b19d985d9a8b85bb; // 2^128/1.0015**1024 = 73326833024599564193373530205717235131\n uint256 internal constant FACTOR12 = 0x0be32cbee48979763cf7247dd7bb539d; // 2^128/1.0015**2048 = 15801066890623697521348224657638773661\n uint256 internal constant FACTOR13 = 0x8d4f70c9ff4924dac37612d1e2921e; // 2^128/1.0015**4096 = 733725103481409245883800626999235102\n uint256 internal constant FACTOR14 = 0x4e009ae5519380809a02ca7aec77; // 2^128/1.0015**8192 = 1582075887005588088019997442108535\n uint256 internal constant FACTOR15 = 0x17c45e641b6e95dee056ff10; // 2^128/1.0015**16384 = 7355550435635883087458926352\n\n /// The minimum value that can be returned from getRatioAtTick. Equivalent to getRatioAtTick(MIN_TICK). ~ Equivalent to `(1 << 96) * (1.0015**-32767)`\n uint256 internal constant MIN_RATIOX96 = 37075072;\n /// The maximum value that can be returned from getRatioAtTick. Equivalent to getRatioAtTick(MAX_TICK).\n /// ~ Equivalent to `(1 << 96) * (1.0015**32767)`, rounding etc. leading to minor difference\n uint256 internal constant MAX_RATIOX96 = 169307877264527972847801929085841449095838922544595;\n\n uint256 internal constant ZERO_TICK_SCALED_RATIO = 0x1000000000000000000000000; // 1 << 96 // 79228162514264337593543950336\n uint256 internal constant _1E26 = 1e26;\n\n /// @notice ratioX96 = (1.0015^tick) * 2^96\n /// @dev Throws if |tick| > max tick\n /// @param tick The input tick for the above formula\n /// @return ratioX96 ratio = (debt amount/collateral amount)\n function getRatioAtTick(int tick) internal pure returns (uint256 ratioX96) {\n assembly {\n let absTick_ := sub(xor(tick, sar(255, tick)), sar(255, tick))\n\n if gt(absTick_, MAX_TICK) {\n revert(0, 0)\n }\n let factor_ := FACTOR00\n if and(absTick_, 0x1) {\n factor_ := FACTOR01\n }\n if and(absTick_, 0x2) {\n factor_ := shr(128, mul(factor_, FACTOR02))\n }\n if and(absTick_, 0x4) {\n factor_ := shr(128, mul(factor_, FACTOR03))\n }\n if and(absTick_, 0x8) {\n factor_ := shr(128, mul(factor_, FACTOR04))\n }\n if and(absTick_, 0x10) {\n factor_ := shr(128, mul(factor_, FACTOR05))\n }\n if and(absTick_, 0x20) {\n factor_ := shr(128, mul(factor_, FACTOR06))\n }\n if and(absTick_, 0x40) {\n factor_ := shr(128, mul(factor_, FACTOR07))\n }\n if and(absTick_, 0x80) {\n factor_ := shr(128, mul(factor_, FACTOR08))\n }\n if and(absTick_, 0x100) {\n factor_ := shr(128, mul(factor_, FACTOR09))\n }\n if and(absTick_, 0x200) {\n factor_ := shr(128, mul(factor_, FACTOR10))\n }\n if and(absTick_, 0x400) {\n factor_ := shr(128, mul(factor_, FACTOR11))\n }\n if and(absTick_, 0x800) {\n factor_ := shr(128, mul(factor_, FACTOR12))\n }\n if and(absTick_, 0x1000) {\n factor_ := shr(128, mul(factor_, FACTOR13))\n }\n if and(absTick_, 0x2000) {\n factor_ := shr(128, mul(factor_, FACTOR14))\n }\n if and(absTick_, 0x4000) {\n factor_ := shr(128, mul(factor_, FACTOR15))\n }\n\n let precision_ := 0\n if iszero(and(tick, 0x8000000000000000000000000000000000000000000000000000000000000000)) {\n factor_ := div(0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, factor_)\n // we round up in the division so getTickAtRatio of the output price is always consistent\n if mod(factor_, 0x100000000) {\n precision_ := 1\n }\n }\n ratioX96 := add(shr(32, factor_), precision_)\n }\n }\n\n /// @notice ratioX96 = (1.0015^tick) * 2^96\n /// @dev Throws if ratioX96 > max ratio || ratioX96 < min ratio\n /// @param ratioX96 The input ratio; ratio = (debt amount/collateral amount)\n /// @return tick The output tick for the above formula. Returns in round down form. if tick is 123.23 then 123, if tick is -123.23 then returns -124\n /// @return perfectRatioX96 perfect ratio for the above tick\n function getTickAtRatio(uint256 ratioX96) internal pure returns (int tick, uint perfectRatioX96) {\n assembly {\n if or(gt(ratioX96, MAX_RATIOX96), lt(ratioX96, MIN_RATIOX96)) {\n revert(0, 0)\n }\n\n let cond := lt(ratioX96, ZERO_TICK_SCALED_RATIO)\n let factor_\n\n if iszero(cond) {\n // if ratioX96 >= ZERO_TICK_SCALED_RATIO\n factor_ := div(mul(ratioX96, _1E26), ZERO_TICK_SCALED_RATIO)\n }\n if cond {\n // ratioX96 < ZERO_TICK_SCALED_RATIO\n factor_ := div(mul(ZERO_TICK_SCALED_RATIO, _1E26), ratioX96)\n }\n\n // put in https://www.wolframalpha.com/ whole equation: (1.0015^tick) * 2^96 * 10^26 / 79228162514264337593543950336\n\n // for tick = 16384\n // ratioX96 = (1.0015^16384) * 2^96 = 3665252098134783297721995888537077351735\n // 3665252098134783297721995888537077351735 * 10^26 / 79228162514264337593543950336 =\n // 4626198540796508716348404308345255985.06131964639489434655721\n if iszero(lt(factor_, 4626198540796508716348404308345255985)) {\n tick := or(tick, 0x4000)\n factor_ := div(mul(factor_, _1E26), 4626198540796508716348404308345255985)\n }\n // for tick = 8192\n // ratioX96 = (1.0015^8192) * 2^96 = 17040868196391020479062776466509865\n // 17040868196391020479062776466509865 * 10^26 / 79228162514264337593543950336 =\n // 21508599537851153911767490449162.3037648642153898377655505172\n if iszero(lt(factor_, 21508599537851153911767490449162)) {\n tick := or(tick, 0x2000)\n factor_ := div(mul(factor_, _1E26), 21508599537851153911767490449162)\n }\n // for tick = 4096\n // ratioX96 = (1.0015^4096) * 2^96 = 36743933851015821532611831851150\n // 36743933851015821532611831851150 * 10^26 / 79228162514264337593543950336 =\n // 46377364670549310883002866648.9777607649742626173648716941385\n if iszero(lt(factor_, 46377364670549310883002866649)) {\n tick := or(tick, 0x1000)\n factor_ := div(mul(factor_, _1E26), 46377364670549310883002866649)\n }\n // for tick = 2048\n // ratioX96 = (1.0015^2048) * 2^96 = 1706210527034005899209104452335\n // 1706210527034005899209104452335 * 10^26 / 79228162514264337593543950336 =\n // 2153540449365864845468344760.06357108484096046743300420319322\n if iszero(lt(factor_, 2153540449365864845468344760)) {\n tick := or(tick, 0x800)\n factor_ := div(mul(factor_, _1E26), 2153540449365864845468344760)\n }\n // for tick = 1024\n // ratioX96 = (1.0015^1024) * 2^96 = 367668226692760093024536487236\n // 367668226692760093024536487236 * 10^26 / 79228162514264337593543950336 =\n // 464062544207767844008185024.950588990554136265212906454481127\n if iszero(lt(factor_, 464062544207767844008185025)) {\n tick := or(tick, 0x400)\n factor_ := div(mul(factor_, _1E26), 464062544207767844008185025)\n }\n // for tick = 512\n // ratioX96 = (1.0015^512) * 2^96 = 170674186729409605620119663668\n // 170674186729409605620119663668 * 10^26 / 79228162514264337593543950336 =\n // 215421109505955298802281577.031879604792139232258508172947569\n if iszero(lt(factor_, 215421109505955298802281577)) {\n tick := or(tick, 0x200)\n factor_ := div(mul(factor_, _1E26), 215421109505955298802281577)\n }\n // for tick = 256\n // ratioX96 = (1.0015^256) * 2^96 = 116285004205991934861656513301\n // 116285004205991934861656513301 * 10^26 / 79228162514264337593543950336 =\n // 146772309890508740607270614.667650899656438875541505058062410\n if iszero(lt(factor_, 146772309890508740607270615)) {\n tick := or(tick, 0x100)\n factor_ := div(mul(factor_, _1E26), 146772309890508740607270615)\n }\n // for tick = 128\n // ratioX96 = (1.0015^128) * 2^96 = 95984619659632141743747099590\n // 95984619659632141743747099590 * 10^26 / 79228162514264337593543950336 =\n // 121149622323187099817270416.157248837742741760456796835775887\n if iszero(lt(factor_, 121149622323187099817270416)) {\n tick := or(tick, 0x80)\n factor_ := div(mul(factor_, _1E26), 121149622323187099817270416)\n }\n // for tick = 64\n // ratioX96 = (1.0015^64) * 2^96 = 87204845308406958006717891124\n // 87204845308406958006717891124 * 10^26 / 79228162514264337593543950336 =\n // 110067989135437147685980801.568068573422377364214113968609839\n if iszero(lt(factor_, 110067989135437147685980801)) {\n tick := or(tick, 0x40)\n factor_ := div(mul(factor_, _1E26), 110067989135437147685980801)\n }\n // for tick = 32\n // ratioX96 = (1.0015^32) * 2^96 = 83120873769022354029916374475\n // 83120873769022354029916374475 * 10^26 / 79228162514264337593543950336 =\n // 104913292358707887270979599.831816586773651266562785765558183\n if iszero(lt(factor_, 104913292358707887270979600)) {\n tick := or(tick, 0x20)\n factor_ := div(mul(factor_, _1E26), 104913292358707887270979600)\n }\n // for tick = 16\n // ratioX96 = (1.0015^16) * 2^96 = 81151180492336368327184716176\n // 81151180492336368327184716176 * 10^26 / 79228162514264337593543950336 =\n // 102427189924701091191840927.762844039579442328381455567932128\n if iszero(lt(factor_, 102427189924701091191840928)) {\n tick := or(tick, 0x10)\n factor_ := div(mul(factor_, _1E26), 102427189924701091191840928)\n }\n // for tick = 8\n // ratioX96 = (1.0015^8) * 2^96 = 80183906840906820640659903620\n // 80183906840906820640659903620 * 10^26 / 79228162514264337593543950336 =\n // 101206318935480056907421312.890625\n if iszero(lt(factor_, 101206318935480056907421313)) {\n tick := or(tick, 0x8)\n factor_ := div(mul(factor_, _1E26), 101206318935480056907421313)\n }\n // for tick = 4\n // ratioX96 = (1.0015^4) * 2^96 = 79704602139525152702959747603\n // 79704602139525152702959747603 * 10^26 / 79228162514264337593543950336 =\n // 100601351350506250000000000\n if iszero(lt(factor_, 100601351350506250000000000)) {\n tick := or(tick, 0x4)\n factor_ := div(mul(factor_, _1E26), 100601351350506250000000000)\n }\n // for tick = 2\n // ratioX96 = (1.0015^2) * 2^96 = 79466025265172787701084167660\n // 79466025265172787701084167660 * 10^26 / 79228162514264337593543950336 =\n // 100300225000000000000000000\n if iszero(lt(factor_, 100300225000000000000000000)) {\n tick := or(tick, 0x2)\n factor_ := div(mul(factor_, _1E26), 100300225000000000000000000)\n }\n // for tick = 1\n // ratioX96 = (1.0015^1) * 2^96 = 79347004758035734099934266261\n // 79347004758035734099934266261 * 10^26 / 79228162514264337593543950336 =\n // 100150000000000000000000000\n if iszero(lt(factor_, 100150000000000000000000000)) {\n tick := or(tick, 0x1)\n factor_ := div(mul(factor_, _1E26), 100150000000000000000000000)\n }\n if iszero(cond) {\n // if ratioX96 >= ZERO_TICK_SCALED_RATIO\n perfectRatioX96 := div(mul(ratioX96, _1E26), factor_)\n }\n if cond {\n // ratioX96 < ZERO_TICK_SCALED_RATIO\n tick := not(tick)\n perfectRatioX96 := div(mul(ratioX96, factor_), 100150000000000000000000000)\n }\n }\n }\n}\n"
|
||
},
|
||
"contracts/liquidity/adminModule/structs.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nabstract contract Structs {\n struct AddressBool {\n address addr;\n bool value;\n }\n\n struct AddressUint256 {\n address addr;\n uint256 value;\n }\n\n /// @notice struct to set borrow rate data for version 1\n struct RateDataV1Params {\n ///\n /// @param token for rate data\n address token;\n ///\n /// @param kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100\n /// utilization below kink usually means slow increase in rate, once utilization is above kink borrow rate increases fast\n uint256 kink;\n ///\n /// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100\n /// i.e. constant minimum borrow rate\n /// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then)\n uint256 rateAtUtilizationZero;\n ///\n /// @param rateAtUtilizationKink borrow rate when utilization is at kink. in 1e2: 100% = 10_000; 1% = 100\n /// e.g. when rate should be 7% at kink then rateAtUtilizationKink would be 700\n uint256 rateAtUtilizationKink;\n ///\n /// @param rateAtUtilizationMax borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100\n /// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500\n uint256 rateAtUtilizationMax;\n }\n\n /// @notice struct to set borrow rate data for version 2\n struct RateDataV2Params {\n ///\n /// @param token for rate data\n address token;\n ///\n /// @param kink1 first kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100\n /// utilization below kink 1 usually means slow increase in rate, once utilization is above kink 1 borrow rate increases faster\n uint256 kink1;\n ///\n /// @param kink2 second kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100\n /// utilization below kink 2 usually means slow / medium increase in rate, once utilization is above kink 2 borrow rate increases fast\n uint256 kink2;\n ///\n /// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100\n /// i.e. constant minimum borrow rate\n /// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then)\n uint256 rateAtUtilizationZero;\n ///\n /// @param rateAtUtilizationKink1 desired borrow rate when utilization is at first kink. in 1e2: 100% = 10_000; 1% = 100\n /// e.g. when rate should be 7% at first kink then rateAtUtilizationKink would be 700\n uint256 rateAtUtilizationKink1;\n ///\n /// @param rateAtUtilizationKink2 desired borrow rate when utilization is at second kink. in 1e2: 100% = 10_000; 1% = 100\n /// e.g. when rate should be 7% at second kink then rateAtUtilizationKink would be 1_200\n uint256 rateAtUtilizationKink2;\n ///\n /// @param rateAtUtilizationMax desired borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100\n /// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500\n uint256 rateAtUtilizationMax;\n }\n\n /// @notice struct to set token config\n struct TokenConfig {\n ///\n /// @param token address\n address token;\n ///\n /// @param fee charges on borrower's interest. in 1e2: 100% = 10_000; 1% = 100\n uint256 fee;\n ///\n /// @param threshold on when to update the storage slot. in 1e2: 100% = 10_000; 1% = 100\n uint256 threshold;\n }\n\n /// @notice struct to set user supply & withdrawal config\n struct UserSupplyConfig {\n ///\n /// @param user address\n address user;\n ///\n /// @param token address\n address token;\n ///\n /// @param mode: 0 = without interest. 1 = with interest\n uint8 mode;\n ///\n /// @param expandPercent withdrawal limit expand percent. in 1e2: 100% = 10_000; 1% = 100\n /// Also used to calculate rate at which withdrawal limit should decrease (instant).\n uint256 expandPercent;\n ///\n /// @param expandDuration withdrawal limit expand duration in seconds.\n /// used to calculate rate together with expandPercent\n uint256 expandDuration;\n ///\n /// @param baseWithdrawalLimit base limit, below this, user can withdraw the entire amount.\n /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:\n /// with interest -> raw, without interest -> normal\n uint256 baseWithdrawalLimit;\n }\n\n /// @notice struct to set user borrow & payback config\n struct UserBorrowConfig {\n ///\n /// @param user address\n address user;\n ///\n /// @param token address\n address token;\n ///\n /// @param mode: 0 = without interest. 1 = with interest\n uint8 mode;\n ///\n /// @param expandPercent debt limit expand percent. in 1e2: 100% = 10_000; 1% = 100\n /// Also used to calculate rate at which debt limit should decrease (instant).\n uint256 expandPercent;\n ///\n /// @param expandDuration debt limit expand duration in seconds.\n /// used to calculate rate together with expandPercent\n uint256 expandDuration;\n ///\n /// @param baseDebtCeiling base borrow limit. until here, borrow limit remains as baseDebtCeiling\n /// (user can borrow until this point at once without stepped expansion). Above this, automated limit comes in place.\n /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:\n /// with interest -> raw, without interest -> normal\n uint256 baseDebtCeiling;\n ///\n /// @param maxDebtCeiling max borrow ceiling, maximum amount the user can borrow.\n /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:\n /// with interest -> raw, without interest -> normal\n uint256 maxDebtCeiling;\n }\n}\n"
|
||
},
|
||
"contracts/liquidity/interfaces/iLiquidity.sol": {
|
||
"content": "//SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\nimport { IProxy } from \"../../infiniteProxy/interfaces/iProxy.sol\";\nimport { Structs as AdminModuleStructs } from \"../adminModule/structs.sol\";\n\ninterface IFluidLiquidityAdmin {\n /// @notice adds/removes auths. Auths generally could be contracts which can have restricted actions defined on contract.\n /// auths can be helpful in reducing governance overhead where it's not needed.\n /// @param authsStatus_ array of structs setting allowed status for an address.\n /// status true => add auth, false => remove auth\n function updateAuths(AdminModuleStructs.AddressBool[] calldata authsStatus_) external;\n\n /// @notice adds/removes guardians. Only callable by Governance.\n /// @param guardiansStatus_ array of structs setting allowed status for an address.\n /// status true => add guardian, false => remove guardian\n function updateGuardians(AdminModuleStructs.AddressBool[] calldata guardiansStatus_) external;\n\n /// @notice changes the revenue collector address (contract that is sent revenue). Only callable by Governance.\n /// @param revenueCollector_ new revenue collector address\n function updateRevenueCollector(address revenueCollector_) external;\n\n /// @notice changes current status, e.g. for pausing or unpausing all user operations. Only callable by Auths.\n /// @param newStatus_ new status\n /// status = 2 -> pause, status = 1 -> resume.\n function changeStatus(uint256 newStatus_) external;\n\n /// @notice update tokens rate data version 1. Only callable by Auths.\n /// @param tokensRateData_ array of RateDataV1Params with rate data to set for each token\n function updateRateDataV1s(AdminModuleStructs.RateDataV1Params[] calldata tokensRateData_) external;\n\n /// @notice update tokens rate data version 2. Only callable by Auths.\n /// @param tokensRateData_ array of RateDataV2Params with rate data to set for each token\n function updateRateDataV2s(AdminModuleStructs.RateDataV2Params[] calldata tokensRateData_) external;\n\n /// @notice updates token configs: fee charge on borrowers interest & storage update utilization threshold.\n /// Only callable by Auths.\n /// @param tokenConfigs_ contains token address, fee & utilization threshold\n function updateTokenConfigs(AdminModuleStructs.TokenConfig[] calldata tokenConfigs_) external;\n\n /// @notice updates user classes: 0 is for new protocols, 1 is for established protocols.\n /// Only callable by Auths.\n /// @param userClasses_ struct array of uint256 value to assign for each user address\n function updateUserClasses(AdminModuleStructs.AddressUint256[] calldata userClasses_) external;\n\n /// @notice sets user supply configs per token basis. Eg: with interest or interest-free and automated limits.\n /// Only callable by Auths.\n /// @param userSupplyConfigs_ struct array containing user supply config, see `UserSupplyConfig` struct for more info\n function updateUserSupplyConfigs(AdminModuleStructs.UserSupplyConfig[] memory userSupplyConfigs_) external;\n\n /// @notice setting user borrow configs per token basis. Eg: with interest or interest-free and automated limits.\n /// Only callable by Auths.\n /// @param userBorrowConfigs_ struct array containing user borrow config, see `UserBorrowConfig` struct for more info\n function updateUserBorrowConfigs(AdminModuleStructs.UserBorrowConfig[] memory userBorrowConfigs_) external;\n\n /// @notice pause operations for a particular user in class 0 (class 1 users can't be paused by guardians).\n /// Only callable by Guardians.\n /// @param user_ address of user to pause operations for\n /// @param supplyTokens_ token addresses to pause withdrawals for\n /// @param borrowTokens_ token addresses to pause borrowings for\n function pauseUser(address user_, address[] calldata supplyTokens_, address[] calldata borrowTokens_) external;\n\n /// @notice unpause operations for a particular user in class 0 (class 1 users can't be paused by guardians).\n /// Only callable by Guardians.\n /// @param user_ address of user to unpause operations for\n /// @param supplyTokens_ token addresses to unpause withdrawals for\n /// @param borrowTokens_ token addresses to unpause borrowings for\n function unpauseUser(address user_, address[] calldata supplyTokens_, address[] calldata borrowTokens_) external;\n\n /// @notice collects revenue for tokens to configured revenueCollector address.\n /// @param tokens_ array of tokens to collect revenue for\n /// @dev Note that this can revert if token balance is < revenueAmount (utilization > 100%)\n function collectRevenue(address[] calldata tokens_) external;\n\n /// @notice gets the current updated exchange prices for n tokens and updates all prices, rates related data in storage.\n /// @param tokens_ tokens to update exchange prices for\n /// @return supplyExchangePrices_ new supply rates of overall system for each token\n /// @return borrowExchangePrices_ new borrow rates of overall system for each token\n function updateExchangePrices(\n address[] calldata tokens_\n ) external returns (uint256[] memory supplyExchangePrices_, uint256[] memory borrowExchangePrices_);\n}\n\ninterface IFluidLiquidityLogic is IFluidLiquidityAdmin {\n /// @notice Single function which handles supply, withdraw, borrow & payback\n /// @param token_ address of token (0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE for native)\n /// @param supplyAmount_ if +ve then supply, if -ve then withdraw, if 0 then nothing\n /// @param borrowAmount_ if +ve then borrow, if -ve then payback, if 0 then nothing\n /// @param withdrawTo_ if withdrawal then to which address\n /// @param borrowTo_ if borrow then to which address\n /// @param callbackData_ callback data passed to `liquidityCallback` method of protocol\n /// @return memVar3_ updated supplyExchangePrice\n /// @return memVar4_ updated borrowExchangePrice\n /// @dev to trigger skipping in / out transfers when in&out amounts balance themselves out (gas optimization):\n /// - supply(+) == borrow(+), withdraw(-) == payback(-).\n /// - `withdrawTo_` / `borrowTo_` must be msg.sender (protocol)\n /// - `callbackData_` MUST be encoded so that \"from\" address is at last 20 bytes (if this optimization is desired),\n /// also for native token operations where liquidityCallback is not triggered!\n /// from address must come at last position if there is more data. I.e. encode like:\n /// abi.encode(otherVar1, otherVar2, FROM_ADDRESS). Note dynamic types used with abi.encode come at the end\n /// so if dynamic types are needed, you must use abi.encodePacked to ensure the from address is at the end.\n function operate(\n address token_,\n int256 supplyAmount_,\n int256 borrowAmount_,\n address withdrawTo_,\n address borrowTo_,\n bytes calldata callbackData_\n ) external payable returns (uint256 memVar3_, uint256 memVar4_);\n}\n\ninterface IFluidLiquidity is IProxy, IFluidLiquidityLogic {}\n"
|
||
},
|
||
"contracts/oracle/fluidOracle.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IFluidOracle } from \"./interfaces/iFluidOracle.sol\";\n\n/// @title FluidOracle\n/// @notice Base contract that any Fluid Oracle must implement\nabstract contract FluidOracle is IFluidOracle {\n /// @inheritdoc IFluidOracle\n function getExchangeRate() external view virtual returns (uint256 exchangeRate_);\n}\n"
|
||
},
|
||
"contracts/oracle/interfaces/iFluidOracle.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\ninterface IFluidOracle {\n /// @notice Get the `exchangeRate_` between the underlying asset and the peg asset in 1e27\n function getExchangeRate() external view returns (uint256 exchangeRate_);\n}\n"
|
||
},
|
||
"contracts/periphery/resolvers/liquidity/iLiquidityResolver.sol": {
|
||
"content": "//SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\nimport { Structs as LiquidityStructs } from \"../../../periphery/resolvers/liquidity/structs.sol\";\n\ninterface IFluidLiquidityResolver {\n /// @notice gets the `revenueAmount_` for a `token_`.\n function getRevenue(address token_) external view returns (uint256 revenueAmount_);\n\n /// @notice address of contract that gets sent the revenue. Configurable by governance\n function getRevenueCollector() external view returns (address);\n\n /// @notice Liquidity contract paused status: status = 1 -> normal. status = 2 -> paused.\n function getStatus() external view returns (uint256);\n\n /// @notice checks if `auth_` is an allowed auth on Liquidity.\n /// Auths can set most config values. E.g. contracts that automate certain flows like e.g. adding a new fToken.\n /// Governance can add/remove auths. Governance is auth by default.\n function isAuth(address auth_) external view returns (uint256);\n\n /// @notice checks if `guardian_` is an allowed Guardian on Liquidity.\n /// Guardians can pause lower class users.\n /// Governance can add/remove guardians. Governance is guardian by default.\n function isGuardian(address guardian_) external view returns (uint256);\n\n /// @notice gets user class for `user_`. Class defines which protocols can be paused by guardians.\n /// Currently there are 2 classes: 0 can be paused by guardians. 1 cannot be paused by guardians.\n /// New protocols are added as class 0 and will be upgraded to 1 over time.\n function getUserClass(address user_) external view returns (uint256);\n\n /// @notice gets exchangePricesAndConfig packed uint256 storage slot for `token_`.\n function getExchangePricesAndConfig(address token_) external view returns (uint256);\n\n /// @notice gets rateConfig packed uint256 storage slot for `token_`.\n function getRateConfig(address token_) external view returns (uint256);\n\n /// @notice gets totalAmounts packed uint256 storage slot for `token_`.\n function getTotalAmounts(address token_) external view returns (uint256);\n\n /// @notice gets userSupply data packed uint256 storage slot for `user_` and `token_`.\n function getUserSupply(address user_, address token_) external view returns (uint256);\n\n /// @notice gets userBorrow data packed uint256 storage slot for `user_` and `token_`.\n function getUserBorrow(address user_, address token_) external view returns (uint256);\n\n /// @notice returns all `listedTokens_` at the Liquidity contract. Once configured, a token can never be removed.\n function listedTokens() external view returns (address[] memory listedTokens_);\n\n /// @notice get the Rate config data `rateData_` for a `token_` compiled from the packed uint256 rateConfig storage slot\n function getTokenRateData(address token_) external view returns (LiquidityStructs.RateData memory rateData_);\n\n /// @notice get the Rate config datas `rateDatas_` for multiple `tokens_` compiled from the packed uint256 rateConfig storage slot\n function getTokensRateData(\n address[] calldata tokens_\n ) external view returns (LiquidityStructs.RateData[] memory rateDatas_);\n\n /// @notice returns general data for `token_` such as rates, exchange prices, utilization, fee, total amounts etc.\n function getOverallTokenData(\n address token_\n ) external view returns (LiquidityStructs.OverallTokenData memory overallTokenData_);\n\n /// @notice returns general data for multiple `tokens_` such as rates, exchange prices, utilization, fee, total amounts etc.\n function getOverallTokensData(\n address[] calldata tokens_\n ) external view returns (LiquidityStructs.OverallTokenData[] memory overallTokensData_);\n\n /// @notice returns `user_` supply data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for `token_`\n function getUserSupplyData(\n address user_,\n address token_\n )\n external\n view\n returns (\n LiquidityStructs.UserSupplyData memory userSupplyData_,\n LiquidityStructs.OverallTokenData memory overallTokenData_\n );\n\n /// @notice returns `user_` supply data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for multiple `tokens_`\n function getUserMultipleSupplyData(\n address user_,\n address[] calldata tokens_\n )\n external\n view\n returns (\n LiquidityStructs.UserSupplyData[] memory userSuppliesData_,\n LiquidityStructs.OverallTokenData[] memory overallTokensData_\n );\n\n /// @notice returns `user_` borrow data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for `token_`\n function getUserBorrowData(\n address user_,\n address token_\n )\n external\n view\n returns (\n LiquidityStructs.UserBorrowData memory userBorrowData_,\n LiquidityStructs.OverallTokenData memory overallTokenData_\n );\n\n /// @notice returns `user_` borrow data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for multiple `tokens_`\n function getUserMultipleBorrowData(\n address user_,\n address[] calldata tokens_\n )\n external\n view\n returns (\n LiquidityStructs.UserBorrowData[] memory userBorrowingsData_,\n LiquidityStructs.OverallTokenData[] memory overallTokensData_\n );\n\n /// @notice returns `user_` supply data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for multiple `supplyTokens_`\n /// and returns `user_` borrow data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for multiple `borrowTokens_`\n function getUserMultipleBorrowSupplyData(\n address user_,\n address[] calldata supplyTokens_,\n address[] calldata borrowTokens_\n )\n external\n view\n returns (\n LiquidityStructs.UserSupplyData[] memory userSuppliesData_,\n LiquidityStructs.OverallTokenData[] memory overallSupplyTokensData_,\n LiquidityStructs.UserBorrowData[] memory userBorrowingsData_,\n LiquidityStructs.OverallTokenData[] memory overallBorrowTokensData_\n );\n}\n"
|
||
},
|
||
"contracts/periphery/resolvers/liquidity/structs.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { Structs as AdminModuleStructs } from \"../../../liquidity/adminModule/structs.sol\";\n\nabstract contract Structs {\n struct RateData {\n uint256 version;\n AdminModuleStructs.RateDataV1Params rateDataV1;\n AdminModuleStructs.RateDataV2Params rateDataV2;\n }\n\n struct OverallTokenData {\n uint256 borrowRate;\n uint256 supplyRate;\n uint256 fee; // revenue fee\n uint256 lastStoredUtilization;\n uint256 storageUpdateThreshold;\n uint256 lastUpdateTimestamp;\n uint256 supplyExchangePrice;\n uint256 borrowExchangePrice;\n uint256 supplyRawInterest;\n uint256 supplyInterestFree;\n uint256 borrowRawInterest;\n uint256 borrowInterestFree;\n uint256 totalSupply;\n uint256 totalBorrow;\n uint256 revenue;\n RateData rateData;\n }\n\n // amounts are always in normal (for withInterest already multiplied with exchange price)\n struct UserSupplyData {\n bool modeWithInterest; // true if mode = with interest, false = without interest\n uint256 supply; // user supply amount\n // the withdrawal limit (e.g. if 10% is the limit, and 100M is supplied, it would be 90M)\n uint256 withdrawalLimit;\n uint256 lastUpdateTimestamp;\n uint256 expandPercent; // withdrawal limit expand percent in 1e2\n uint256 expandDuration; // withdrawal limit expand duration in seconds\n uint256 baseWithdrawalLimit;\n // the current actual max withdrawable amount (e.g. if 10% is the limit, and 100M is supplied, it would be 10M)\n uint256 withdrawableUntilLimit;\n uint256 withdrawable; // actual currently withdrawable amount (supply - withdrawal Limit) & considering balance\n }\n\n // amounts are always in normal (for withInterest already multiplied with exchange price)\n struct UserBorrowData {\n bool modeWithInterest; // true if mode = with interest, false = without interest\n uint256 borrow; // user borrow amount\n uint256 borrowLimit;\n uint256 lastUpdateTimestamp;\n uint256 expandPercent;\n uint256 expandDuration;\n uint256 baseBorrowLimit;\n uint256 maxBorrowLimit;\n uint256 borrowableUntilLimit;\n uint256 borrowable; // actual currently borrowable amount (borrow limit - already borrowed) & considering balance\n }\n}\n"
|
||
},
|
||
"contracts/periphery/resolvers/vault/helpers.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { Variables } from \"./variables.sol\";\nimport { Structs } from \"./structs.sol\";\n\ncontract Helpers is Variables, Structs {\n function normalSlot(uint256 slot_) public pure returns (bytes32) {\n return bytes32(slot_);\n }\n\n /// @notice Calculating the slot ID for Liquidity contract for single mapping\n function calculateStorageSlotUintMapping(uint256 slot_, uint key_) public pure returns (bytes32) {\n return keccak256(abi.encode(key_, slot_));\n }\n\n /// @notice Calculating the slot ID for Liquidity contract for single mapping\n function calculateStorageSlotIntMapping(uint256 slot_, int key_) public pure returns (bytes32) {\n return keccak256(abi.encode(key_, slot_));\n }\n\n /// @notice Calculating the slot ID for Liquidity contract for double mapping\n function calculateDoubleIntUintMapping(uint256 slot_, int key1_, uint key2_) public pure returns (bytes32) {\n bytes32 intermediateSlot_ = keccak256(abi.encode(key1_, slot_));\n return keccak256(abi.encode(key2_, intermediateSlot_));\n }\n\n function tickHelper(uint tickRaw_) public pure returns (int tick) {\n require(tickRaw_ < X20, \"invalid-number\");\n if (tickRaw_ > 0) {\n tick = tickRaw_ & 1 == 1 ? int((tickRaw_ >> 1) & X19) : -int((tickRaw_ >> 1) & X19);\n } else {\n tick = type(int).min;\n }\n }\n\n constructor(\n address factory_,\n address liquidity_,\n address liquidityResolver_\n ) Variables(factory_, liquidity_, liquidityResolver_) {}\n}\n"
|
||
},
|
||
"contracts/periphery/resolvers/vault/main.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { Helpers } from \"./helpers.sol\";\nimport { TickMath } from \"../../../libraries/tickMath.sol\";\nimport { BigMathMinified } from \"../../../libraries/bigMathMinified.sol\";\nimport { IFluidOracle } from \"../../../oracle/fluidOracle.sol\";\nimport { IFluidVaultT1 } from \"../../../protocols/vault/interfaces/iVaultT1.sol\";\nimport { Structs as LiquidityStructs } from \"../liquidity/structs.sol\";\nimport { LiquiditySlotsLink } from \"../../../libraries/liquiditySlotsLink.sol\";\nimport { LiquidityCalcs } from \"../../../libraries/liquidityCalcs.sol\";\n\ninterface TokenInterface {\n function balanceOf(address) external view returns (uint);\n}\n\n/// @notice Fluid Vault protocol resolver\n/// Implements various view-only methods to give easy access to Vault protocol data.\ncontract FluidVaultResolver is Helpers {\n function getVaultAddress(uint256 vaultId_) public view returns (address vault_) {\n // @dev based on https://ethereum.stackexchange.com/a/61413\n bytes memory data;\n if (vaultId_ == 0x00) {\n // nonce of smart contract always starts with 1. so, with nonce 0 there won't be any deployment\n return address(0);\n } else if (vaultId_ <= 0x7f) {\n data = abi.encodePacked(bytes1(0xd6), bytes1(0x94), address(FACTORY), uint8(vaultId_));\n } else if (vaultId_ <= 0xff) {\n data = abi.encodePacked(bytes1(0xd7), bytes1(0x94), address(FACTORY), bytes1(0x81), uint8(vaultId_));\n } else if (vaultId_ <= 0xffff) {\n data = abi.encodePacked(bytes1(0xd8), bytes1(0x94), address(FACTORY), bytes1(0x82), uint16(vaultId_));\n } else if (vaultId_ <= 0xffffff) {\n data = abi.encodePacked(bytes1(0xd9), bytes1(0x94), address(FACTORY), bytes1(0x83), uint24(vaultId_));\n } else {\n data = abi.encodePacked(bytes1(0xda), bytes1(0x94), address(FACTORY), bytes1(0x84), uint32(vaultId_));\n }\n\n return address(uint160(uint256(keccak256(data))));\n }\n\n function getVaultId(address vault_) public view returns (uint id_) {\n id_ = IFluidVaultT1(vault_).VAULT_ID();\n }\n\n function getTokenConfig(uint nftId_) public view returns (uint) {\n return FACTORY.readFromStorage(calculateStorageSlotUintMapping(3, nftId_));\n }\n\n function getVaultVariablesRaw(address vault_) public view returns (uint) {\n return IFluidVaultT1(vault_).readFromStorage(normalSlot(0));\n }\n\n function getVaultVariables2Raw(address vault_) public view returns (uint) {\n return IFluidVaultT1(vault_).readFromStorage(normalSlot(1));\n }\n\n function getAbsorbedLiquidityRaw(address vault_) public view returns (uint) {\n return IFluidVaultT1(vault_).readFromStorage(normalSlot(2));\n }\n\n function getPositionDataRaw(address vault_, uint positionId_) public view returns (uint) {\n return IFluidVaultT1(vault_).readFromStorage(calculateStorageSlotUintMapping(3, positionId_));\n }\n\n // if tick > 0 then key_ = tick / 256\n // if tick < 0 then key_ = (tick / 256) - 1\n function getTickHasDebtRaw(address vault_, int key_) public view returns (uint) {\n return IFluidVaultT1(vault_).readFromStorage(calculateStorageSlotIntMapping(4, key_));\n }\n\n function getTickDataRaw(address vault_, int tick_) public view returns (uint) {\n return IFluidVaultT1(vault_).readFromStorage(calculateStorageSlotIntMapping(5, tick_));\n }\n\n // TODO: Verify below\n // id_ = (realId_ / 3) + 1\n function getTickIdDataRaw(address vault_, int tick_, uint id_) public view returns (uint) {\n return IFluidVaultT1(vault_).readFromStorage(calculateDoubleIntUintMapping(6, tick_, id_));\n }\n\n function getBranchDataRaw(address vault_, uint branch_) public view returns (uint) {\n return IFluidVaultT1(vault_).readFromStorage(calculateStorageSlotUintMapping(7, branch_));\n }\n\n function getRateRaw(address vault_) public view returns (uint) {\n return IFluidVaultT1(vault_).readFromStorage(normalSlot(8));\n }\n\n function getRebalancer(address vault_) public view returns (address) {\n return address(uint160(IFluidVaultT1(vault_).readFromStorage(normalSlot(9))));\n }\n\n function getTotalVaults() public view returns (uint) {\n return FACTORY.totalVaults();\n }\n\n function getAllVaultsAddresses() public view returns (address[] memory vaults_) {\n uint totalVaults_ = getTotalVaults();\n vaults_ = new address[](totalVaults_);\n for (uint i = 0; i < totalVaults_; i++) {\n vaults_[i] = getVaultAddress((i + 1));\n }\n }\n\n function getVaultConstants(address vault_) internal view returns (IFluidVaultT1.ConstantViews memory constants_) {\n constants_ = IFluidVaultT1(vault_).constantsView();\n }\n\n function getVaultConfig(address vault_) internal view returns (Configs memory configs_) {\n uint vaultVariables2_ = getVaultVariables2Raw(vault_);\n configs_.supplyRateMagnifier = uint16(vaultVariables2_ & X16);\n configs_.borrowRateMagnifier = uint16((vaultVariables2_ >> 16) & X16);\n configs_.collateralFactor = (uint16((vaultVariables2_ >> 32) & X10)) * 10;\n configs_.liquidationThreshold = (uint16((vaultVariables2_ >> 42) & X10)) * 10;\n configs_.liquidationMaxLimit = (uint16((vaultVariables2_ >> 52) & X10) * 10);\n configs_.withdrawalGap = uint16((vaultVariables2_ >> 62) & X10) * 10;\n configs_.liquidationPenalty = uint16((vaultVariables2_ >> 72) & X10);\n configs_.borrowFee = uint16((vaultVariables2_ >> 82) & X10);\n configs_.oracle = address(uint160(vaultVariables2_ >> 96));\n configs_.oraclePrice = IFluidOracle(configs_.oracle).getExchangeRate();\n configs_.rebalancer = getRebalancer(vault_);\n }\n\n function getExchangePricesAndRates(\n address vault_,\n Configs memory configs_,\n LiquidityStructs.OverallTokenData memory liquiditySupplytokenData_,\n LiquidityStructs.OverallTokenData memory liquidityBorrowtokenData_\n ) internal view returns (ExchangePricesAndRates memory exchangePricesAndRates_) {\n uint exchangePrices_ = getRateRaw(vault_);\n exchangePricesAndRates_.lastStoredLiquiditySupplyExchangePrice = exchangePrices_ & X64;\n exchangePricesAndRates_.lastStoredLiquidityBorrowExchangePrice = (exchangePrices_ >> 64) & X64;\n exchangePricesAndRates_.lastStoredVaultSupplyExchangePrice = (exchangePrices_ >> 128) & X64;\n exchangePricesAndRates_.lastStoredVaultBorrowExchangePrice = (exchangePrices_ >> 192) & X64;\n\n (\n exchangePricesAndRates_.liquiditySupplyExchangePrice,\n exchangePricesAndRates_.liquidityBorrowExchangePrice,\n exchangePricesAndRates_.vaultSupplyExchangePrice,\n exchangePricesAndRates_.vaultBorrowExchangePrice\n ) = IFluidVaultT1(vault_).updateExchangePrices(getVaultVariables2Raw(vault_));\n\n exchangePricesAndRates_.supplyRateLiquidity = liquiditySupplytokenData_.supplyRate;\n exchangePricesAndRates_.borrowRateLiquidity = liquidityBorrowtokenData_.borrowRate;\n exchangePricesAndRates_.supplyRateVault =\n (liquiditySupplytokenData_.supplyRate * configs_.supplyRateMagnifier) /\n 10000;\n exchangePricesAndRates_.borrowRateVault =\n (liquidityBorrowtokenData_.borrowRate * configs_.borrowRateMagnifier) /\n 10000;\n exchangePricesAndRates_.rewardsRate = configs_.supplyRateMagnifier > 10000\n ? configs_.supplyRateMagnifier - 10000\n : 0;\n }\n\n function getTotalSupplyAndBorrow(\n address vault_,\n ExchangePricesAndRates memory exchangePricesAndRates_,\n IFluidVaultT1.ConstantViews memory constantsVariables_\n ) internal view returns (TotalSupplyAndBorrow memory totalSupplyAndBorrow_) {\n uint vaultVariables_ = getVaultVariablesRaw(vault_);\n uint absorbedLiquidity_ = getAbsorbedLiquidityRaw(vault_);\n uint totalSupplyLiquidity_ = LIQUIDITY.readFromStorage(constantsVariables_.liquidityUserSupplySlot);\n // extracting user's supply\n totalSupplyLiquidity_ = (totalSupplyLiquidity_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64;\n // converting big number into normal number\n totalSupplyLiquidity_ = (totalSupplyLiquidity_ >> 8) << (totalSupplyLiquidity_ & X8);\n uint totalBorrowLiquidity_ = LIQUIDITY.readFromStorage(constantsVariables_.liquidityUserBorrowSlot);\n // extracting user's borrow\n totalBorrowLiquidity_ = (totalBorrowLiquidity_ >> LiquiditySlotsLink.BITS_USER_BORROW_AMOUNT) & X64;\n // converting big number into normal number\n totalBorrowLiquidity_ = (totalBorrowLiquidity_ >> 8) << (totalBorrowLiquidity_ & X8);\n\n totalSupplyAndBorrow_.totalSupplyVault = (vaultVariables_ >> 82) & X64;\n // Converting bignumber into normal number\n totalSupplyAndBorrow_.totalSupplyVault =\n (totalSupplyAndBorrow_.totalSupplyVault >> 8) <<\n (totalSupplyAndBorrow_.totalSupplyVault & X8);\n totalSupplyAndBorrow_.totalBorrowVault = (vaultVariables_ >> 146) & X64;\n // Converting bignumber into normal number\n totalSupplyAndBorrow_.totalBorrowVault =\n (totalSupplyAndBorrow_.totalBorrowVault >> 8) <<\n (totalSupplyAndBorrow_.totalBorrowVault & X8);\n\n totalSupplyAndBorrow_.totalSupplyLiquidity = totalSupplyLiquidity_;\n totalSupplyAndBorrow_.totalBorrowLiquidity = totalBorrowLiquidity_;\n\n totalSupplyAndBorrow_.absorbedBorrow = absorbedLiquidity_ & X128;\n totalSupplyAndBorrow_.absorbedSupply = absorbedLiquidity_ >> 128;\n\n // converting raw total supply & total borrow into normal amounts\n totalSupplyAndBorrow_.totalSupplyVault =\n (totalSupplyAndBorrow_.totalSupplyVault * exchangePricesAndRates_.vaultSupplyExchangePrice) /\n 1e12;\n totalSupplyAndBorrow_.totalBorrowVault =\n (totalSupplyAndBorrow_.totalBorrowVault * exchangePricesAndRates_.vaultBorrowExchangePrice) /\n 1e12;\n totalSupplyAndBorrow_.totalSupplyLiquidity =\n (totalSupplyAndBorrow_.totalSupplyLiquidity * exchangePricesAndRates_.liquiditySupplyExchangePrice) /\n 1e12;\n totalSupplyAndBorrow_.totalBorrowLiquidity =\n (totalSupplyAndBorrow_.totalBorrowLiquidity * exchangePricesAndRates_.liquidityBorrowExchangePrice) /\n 1e12;\n }\n\n function getLimitsAndAvailability(\n TotalSupplyAndBorrow memory totalSupplyAndBorrow_,\n ExchangePricesAndRates memory exchangePricesAndRates_,\n IFluidVaultT1.ConstantViews memory constantsVariables_,\n Configs memory configs_\n ) internal view returns (LimitsAndAvailability memory limitsAndAvailability_) {\n // fetching user's supply slot data\n uint userSupplyLiquidityData_ = LIQUIDITY.readFromStorage(constantsVariables_.liquidityUserSupplySlot);\n uint userBorrowLiquidityData_ = LIQUIDITY.readFromStorage(constantsVariables_.liquidityUserBorrowSlot);\n\n // converting current user's supply from big number to normal\n uint userSupply_ = (userSupplyLiquidityData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64;\n userSupply_ = (userSupply_ >> 8) << (userSupply_ & X8);\n\n // fetching liquidity's withdrawal limit\n uint supplyLimitRaw_ = LiquidityCalcs.calcWithdrawalLimitBeforeOperate(userSupplyLiquidityData_, userSupply_);\n\n // converting current user's supply from big number to normal\n uint userBorrow_ = (userBorrowLiquidityData_ >> LiquiditySlotsLink.BITS_USER_BORROW_AMOUNT) & X64;\n userBorrow_ = (userBorrow_ >> 8) << (userBorrow_ & X8);\n\n uint borrowLimitRaw_ = LiquidityCalcs.calcBorrowLimitBeforeOperate(userBorrowLiquidityData_, userBorrow_);\n\n limitsAndAvailability_.withdrawLimit =\n (supplyLimitRaw_ * exchangePricesAndRates_.liquiditySupplyExchangePrice) /\n 1e12;\n limitsAndAvailability_.borrowLimit =\n (borrowLimitRaw_ * exchangePricesAndRates_.liquidityBorrowExchangePrice) /\n 1e12;\n limitsAndAvailability_.borrowableUntilLimit = ((limitsAndAvailability_.borrowLimit * 999999) / 1000000);\n limitsAndAvailability_.borrowableUntilLimit = (limitsAndAvailability_.borrowableUntilLimit >\n totalSupplyAndBorrow_.totalBorrowLiquidity)\n ? limitsAndAvailability_.borrowableUntilLimit - totalSupplyAndBorrow_.totalBorrowLiquidity\n : 0;\n\n uint balanceOf_;\n if (constantsVariables_.borrowToken == NATIVE_TOKEN_ADDRESS) {\n balanceOf_ = address(LIQUIDITY).balance;\n } else {\n balanceOf_ = TokenInterface(constantsVariables_.borrowToken).balanceOf(address(LIQUIDITY));\n }\n limitsAndAvailability_.borrowable = balanceOf_ > limitsAndAvailability_.borrowableUntilLimit\n ? limitsAndAvailability_.borrowableUntilLimit\n : balanceOf_;\n\n limitsAndAvailability_.withdrawableUntilLimit = totalSupplyAndBorrow_.totalSupplyLiquidity >\n limitsAndAvailability_.withdrawLimit\n ? totalSupplyAndBorrow_.totalSupplyLiquidity - limitsAndAvailability_.withdrawLimit\n : 0;\n uint withdrawalGap_ = (totalSupplyAndBorrow_.totalSupplyLiquidity * configs_.withdrawalGap) / 1e4;\n limitsAndAvailability_.withdrawableUntilLimit = (limitsAndAvailability_.withdrawableUntilLimit > withdrawalGap_)\n ? (((limitsAndAvailability_.withdrawableUntilLimit - withdrawalGap_) * 999999) / 1000000)\n : 0;\n\n if (constantsVariables_.supplyToken == NATIVE_TOKEN_ADDRESS) {\n balanceOf_ = address(LIQUIDITY).balance;\n } else {\n balanceOf_ = TokenInterface(constantsVariables_.supplyToken).balanceOf(address(LIQUIDITY));\n }\n limitsAndAvailability_.withdrawable = balanceOf_ > limitsAndAvailability_.withdrawableUntilLimit\n ? limitsAndAvailability_.withdrawableUntilLimit\n : balanceOf_;\n\n limitsAndAvailability_.minimumBorrowing = (10001 * exchangePricesAndRates_.vaultBorrowExchangePrice) / 1e12;\n }\n\n function getVaultState(address vault_) public view returns (VaultState memory vaultState_) {\n uint vaultVariables_ = getVaultVariablesRaw(vault_);\n\n vaultState_.topTick = tickHelper(((vaultVariables_ >> 2) & X20));\n vaultState_.currentBranch = (vaultVariables_ >> 22) & X30;\n vaultState_.totalBranch = (vaultVariables_ >> 52) & X30;\n vaultState_.totalSupply = BigMathMinified.fromBigNumber((vaultVariables_ >> 82) & X64, 8, X8);\n vaultState_.totalBorrow = BigMathMinified.fromBigNumber((vaultVariables_ >> 146) & X64, 8, X8);\n vaultState_.totalPositions = (vaultVariables_ >> 210) & X32;\n\n uint currentBranchData_ = getBranchDataRaw(vault_, vaultState_.currentBranch);\n vaultState_.currentBranchState.status = currentBranchData_ & 3;\n vaultState_.currentBranchState.minimaTick = tickHelper(((currentBranchData_ >> 2) & X20));\n vaultState_.currentBranchState.debtFactor = (currentBranchData_ >> 116) & X50;\n vaultState_.currentBranchState.partials = (currentBranchData_ >> 22) & X30;\n vaultState_.currentBranchState.debtLiquidity = BigMathMinified.fromBigNumber(\n (currentBranchData_ >> 52) & X64,\n 8,\n X8\n );\n vaultState_.currentBranchState.baseBranchId = (currentBranchData_ >> 166) & X30;\n vaultState_.currentBranchState.baseBranchMinima = tickHelper(((currentBranchData_ >> 196) & X20));\n }\n\n function getVaultEntireData(address vault_) public view returns (VaultEntireData memory vaultData_) {\n vaultData_.vault = vault_;\n vaultData_.constantVariables = getVaultConstants(vault_);\n\n (\n LiquidityStructs.UserSupplyData memory liquidityUserSupplyData_,\n LiquidityStructs.OverallTokenData memory liquiditySupplytokenData_\n ) = LIQUIDITY_RESOLVER.getUserSupplyData(vault_, vaultData_.constantVariables.supplyToken);\n\n (\n LiquidityStructs.UserBorrowData memory liquidityUserBorrowData_,\n LiquidityStructs.OverallTokenData memory liquidityBorrowtokenData_\n ) = LIQUIDITY_RESOLVER.getUserBorrowData(vault_, vaultData_.constantVariables.borrowToken);\n\n vaultData_.configs = getVaultConfig(vault_);\n vaultData_.exchangePricesAndRates = getExchangePricesAndRates(\n vault_,\n vaultData_.configs,\n liquiditySupplytokenData_,\n liquidityBorrowtokenData_\n );\n vaultData_.totalSupplyAndBorrow = getTotalSupplyAndBorrow(\n vault_,\n vaultData_.exchangePricesAndRates,\n vaultData_.constantVariables\n );\n vaultData_.limitsAndAvailability = getLimitsAndAvailability(\n vaultData_.totalSupplyAndBorrow,\n vaultData_.exchangePricesAndRates,\n vaultData_.constantVariables,\n vaultData_.configs\n );\n vaultData_.vaultState = getVaultState(vault_);\n\n vaultData_.liquidityUserSupplyData = liquidityUserSupplyData_;\n vaultData_.liquidityUserBorrowData = liquidityUserBorrowData_;\n }\n\n function getVaultsEntireData(\n address[] memory vaults_\n ) external view returns (VaultEntireData[] memory vaultsData_) {\n uint length_ = vaults_.length;\n vaultsData_ = new VaultEntireData[](length_);\n for (uint i = 0; i < length_; i++) {\n vaultsData_[i] = getVaultEntireData(vaults_[i]);\n }\n }\n\n function getVaultsEntireData() external view returns (VaultEntireData[] memory vaultsData_) {\n address[] memory vaults_ = getAllVaultsAddresses();\n uint length_ = vaults_.length;\n vaultsData_ = new VaultEntireData[](length_);\n for (uint i = 0; i < length_; i++) {\n vaultsData_[i] = getVaultEntireData(vaults_[i]);\n }\n }\n\n function positionByNftId(\n uint nftId_\n ) public view returns (UserPosition memory userPosition_, VaultEntireData memory vaultData_) {\n userPosition_.nftId = nftId_;\n address vault_ = vaultByNftId(nftId_);\n\n uint positionData_ = getPositionDataRaw(vault_, nftId_);\n vaultData_ = getVaultEntireData(vault_);\n\n userPosition_.owner = FACTORY.ownerOf(nftId_);\n userPosition_.isSupplyPosition = (positionData_ & 1) == 1;\n userPosition_.supply = (positionData_ >> 45) & X64;\n // Converting big number into normal number\n userPosition_.supply = (userPosition_.supply >> 8) << (userPosition_.supply & X8);\n userPosition_.beforeSupply = userPosition_.supply;\n userPosition_.dustBorrow = (positionData_ >> 109) & X64;\n // Converting big number into normal number\n userPosition_.dustBorrow = (userPosition_.dustBorrow >> 8) << (userPosition_.dustBorrow & X8);\n userPosition_.beforeDustBorrow = userPosition_.dustBorrow;\n if (!userPosition_.isSupplyPosition) {\n userPosition_.tick = (positionData_ & 2) == 2\n ? int((positionData_ >> 2) & X19)\n : -int((positionData_ >> 2) & X19);\n userPosition_.tickId = (positionData_ >> 21) & X24;\n userPosition_.borrow = (TickMath.getRatioAtTick(int24(userPosition_.tick)) * userPosition_.supply) >> 96;\n userPosition_.beforeBorrow = userPosition_.borrow - userPosition_.beforeDustBorrow;\n\n uint tickData_ = getTickDataRaw(vault_, userPosition_.tick);\n\n if (((tickData_ & 1) == 1) || (((tickData_ >> 1) & X24) > userPosition_.tickId)) {\n // user got liquidated\n userPosition_.isLiquidated = true;\n (userPosition_.tick, userPosition_.borrow, userPosition_.supply, , ) = IFluidVaultT1(vault_)\n .fetchLatestPosition(userPosition_.tick, userPosition_.tickId, userPosition_.borrow, tickData_);\n }\n\n if (userPosition_.borrow > userPosition_.dustBorrow) {\n userPosition_.borrow = userPosition_.borrow - userPosition_.dustBorrow;\n } else {\n // TODO: Make sure this is right. If borrow is less than dust debt then both gets 0\n userPosition_.borrow = 0;\n userPosition_.dustBorrow = 0;\n }\n }\n\n // converting raw amounts into normal\n userPosition_.beforeSupply =\n (userPosition_.beforeSupply * vaultData_.exchangePricesAndRates.vaultSupplyExchangePrice) /\n 1e12;\n userPosition_.beforeBorrow =\n (userPosition_.beforeBorrow * vaultData_.exchangePricesAndRates.vaultBorrowExchangePrice) /\n 1e12;\n userPosition_.beforeDustBorrow =\n (userPosition_.beforeDustBorrow * vaultData_.exchangePricesAndRates.vaultBorrowExchangePrice) /\n 1e12;\n userPosition_.supply =\n (userPosition_.supply * vaultData_.exchangePricesAndRates.vaultSupplyExchangePrice) /\n 1e12;\n userPosition_.borrow =\n (userPosition_.borrow * vaultData_.exchangePricesAndRates.vaultBorrowExchangePrice) /\n 1e12;\n userPosition_.dustBorrow =\n (userPosition_.dustBorrow * vaultData_.exchangePricesAndRates.vaultBorrowExchangePrice) /\n 1e12;\n }\n\n function positionsNftIdOfUser(address user_) public view returns (uint[] memory nftIds_) {\n uint totalPositions_ = FACTORY.balanceOf(user_);\n nftIds_ = new uint[](totalPositions_);\n for (uint i; i < totalPositions_; i++) {\n nftIds_[i] = FACTORY.tokenOfOwnerByIndex(user_, i);\n }\n }\n\n function vaultByNftId(uint nftId_) public view returns (address vault_) {\n uint tokenConfig_ = getTokenConfig(nftId_);\n vault_ = FACTORY.getVaultAddress((tokenConfig_ >> 192) & X32);\n }\n\n function positionsByUser(\n address user_\n ) external view returns (UserPosition[] memory userPositions_, VaultEntireData[] memory vaultsData_) {\n uint[] memory nftIds_ = positionsNftIdOfUser(user_);\n uint length_ = nftIds_.length;\n userPositions_ = new UserPosition[](length_);\n vaultsData_ = new VaultEntireData[](length_);\n address[] memory vaults_ = new address[](length_);\n for (uint i = 0; i < length_; i++) {\n (userPositions_[i], vaultsData_[i]) = positionByNftId(nftIds_[i]);\n }\n }\n\n function totalPositions() external view returns (uint) {\n return FACTORY.totalSupply();\n }\n\n /// @dev fetches available liquidations\n /// @param vault_ address of vault for which to fetch\n /// @param tokenInAmt_ token in aka debt to payback, leave 0 to get max\n /// @return liquidationData_ liquidation related data. Check out structs.sol\n function getVaultLiquidation(\n address vault_,\n uint tokenInAmt_\n ) public returns (LiquidationStruct memory liquidationData_) {\n liquidationData_.vault = vault_;\n IFluidVaultT1.ConstantViews memory constants_ = getVaultConstants(vault_);\n liquidationData_.tokenIn = constants_.borrowToken;\n liquidationData_.tokenOut = constants_.supplyToken;\n\n uint amtOut_;\n uint amtIn_;\n\n tokenInAmt_ = tokenInAmt_ == 0 ? X128 : tokenInAmt_;\n // running without absorb\n try IFluidVaultT1(vault_).liquidate(tokenInAmt_, 0, 0x000000000000000000000000000000000000dEaD, false) {\n // Handle successful execution\n } catch Error(string memory reason) {\n // Handle generic errors with a reason\n } catch (bytes memory lowLevelData_) {\n // Check if the error data is long enough to contain a selector\n if (lowLevelData_.length >= 68) {\n bytes4 errorSelector_;\n assembly {\n // Extract the selector from the error data\n errorSelector_ := mload(add(lowLevelData_, 0x20))\n }\n if (errorSelector_ == IFluidVaultT1.FluidLiquidateResult.selector) {\n assembly {\n amtOut_ := mload(add(lowLevelData_, 36))\n amtIn_ := mload(add(lowLevelData_, 68))\n }\n liquidationData_.tokenOutAmtOne = amtOut_;\n liquidationData_.tokenInAmtOne = amtIn_;\n } else {\n // tokenInAmtOne & tokenOutAmtOne remains 0\n }\n }\n }\n\n // running with absorb\n try IFluidVaultT1(vault_).liquidate(tokenInAmt_, 0, 0x000000000000000000000000000000000000dEaD, true) {\n // Handle successful execution\n } catch Error(string memory reason) {\n // Handle generic errors with a reason\n } catch (bytes memory lowLevelData_) {\n // Check if the error data is long enough to contain a selector\n if (lowLevelData_.length >= 68) {\n bytes4 errorSelector_;\n bytes memory errorData_;\n assembly {\n // Extract the selector from the error data\n errorSelector_ := mload(add(lowLevelData_, 0x20))\n }\n if (errorSelector_ == IFluidVaultT1.FluidLiquidateResult.selector) {\n assembly {\n amtOut_ := mload(add(lowLevelData_, 36))\n amtIn_ := mload(add(lowLevelData_, 68))\n }\n liquidationData_.tokenOutAmtTwo = amtOut_;\n liquidationData_.tokenInAmtTwo = amtIn_;\n } else {\n // tokenInAmtTwo & tokenOutAmtTwo remains 0\n }\n }\n }\n }\n\n function getMultipleVaultsLiquidation(\n address[] memory vaults_,\n uint[] memory tokensInAmt_\n ) external returns (LiquidationStruct[] memory liquidationsData_) {\n uint length_ = vaults_.length;\n liquidationsData_ = new LiquidationStruct[](length_);\n for (uint i = 0; i < length_; i++) {\n liquidationsData_[i] = getVaultLiquidation(vaults_[i], tokensInAmt_[i]);\n }\n }\n\n function getAllVaultsLiquidation() external returns (LiquidationStruct[] memory liquidationsData_) {\n address[] memory vaults_ = getAllVaultsAddresses();\n uint length_ = vaults_.length;\n\n liquidationsData_ = new LiquidationStruct[](length_);\n for (uint i = 0; i < length_; i++) {\n liquidationsData_[i] = getVaultLiquidation(vaults_[i], 0);\n }\n }\n\n // TODO: Need Branch & ticks related data?\n // TODO: Branch history?\n\n constructor(\n address factory_,\n address liquidity_,\n address liquidityResolver_\n ) Helpers(factory_, liquidity_, liquidityResolver_) {}\n}\n"
|
||
},
|
||
"contracts/periphery/resolvers/vault/structs.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IFluidVaultT1 } from \"../../../protocols/vault/interfaces/iVaultT1.sol\";\nimport { Structs as FluidLiquidityResolverStructs } from \"../liquidity/structs.sol\";\n\ncontract Structs {\n struct Configs {\n uint16 supplyRateMagnifier;\n uint16 borrowRateMagnifier;\n uint16 collateralFactor;\n uint16 liquidationThreshold;\n uint16 liquidationMaxLimit;\n uint16 withdrawalGap;\n uint16 liquidationPenalty;\n uint16 borrowFee;\n address oracle;\n uint oraclePrice;\n address rebalancer;\n }\n\n struct ExchangePricesAndRates {\n uint lastStoredLiquiditySupplyExchangePrice;\n uint lastStoredLiquidityBorrowExchangePrice;\n uint lastStoredVaultSupplyExchangePrice;\n uint lastStoredVaultBorrowExchangePrice;\n uint liquiditySupplyExchangePrice;\n uint liquidityBorrowExchangePrice;\n uint vaultSupplyExchangePrice;\n uint vaultBorrowExchangePrice;\n uint supplyRateVault;\n uint borrowRateVault;\n uint supplyRateLiquidity;\n uint borrowRateLiquidity;\n uint rewardsRate; // rewards rate in percent 1e2 precision (1% = 100, 100% = 10000)\n }\n\n struct TotalSupplyAndBorrow {\n uint totalSupplyVault;\n uint totalBorrowVault;\n uint totalSupplyLiquidity;\n uint totalBorrowLiquidity;\n uint absorbedSupply;\n uint absorbedBorrow;\n }\n\n struct LimitsAndAvailability {\n uint withdrawLimit;\n uint withdrawableUntilLimit;\n uint withdrawable;\n uint borrowLimit;\n uint borrowableUntilLimit;\n uint borrowable;\n uint minimumBorrowing;\n }\n\n struct CurrentBranchState {\n uint status; // if 0 then not liquidated, if 1 then liquidated, if 2 then merged, if 3 then closed\n int minimaTick;\n uint debtFactor;\n uint partials;\n uint debtLiquidity;\n uint baseBranchId;\n int baseBranchMinima;\n }\n\n struct VaultState {\n uint totalPositions;\n int topTick;\n uint currentBranch;\n uint totalBranch;\n uint totalBorrow;\n uint totalSupply;\n CurrentBranchState currentBranchState;\n }\n\n struct VaultEntireData {\n address vault;\n IFluidVaultT1.ConstantViews constantVariables;\n Configs configs;\n ExchangePricesAndRates exchangePricesAndRates;\n TotalSupplyAndBorrow totalSupplyAndBorrow;\n LimitsAndAvailability limitsAndAvailability;\n VaultState vaultState;\n // liquidity related data such as supply amount, limits, expansion etc.\n FluidLiquidityResolverStructs.UserSupplyData liquidityUserSupplyData;\n // liquidity related data such as borrow amount, limits, expansion etc.\n FluidLiquidityResolverStructs.UserBorrowData liquidityUserBorrowData;\n }\n\n struct UserPosition {\n uint nftId;\n address owner;\n bool isLiquidated;\n bool isSupplyPosition; // if true that means borrowing is 0\n int tick;\n uint tickId;\n uint beforeSupply;\n uint beforeBorrow;\n uint beforeDustBorrow;\n uint supply;\n uint borrow;\n uint dustBorrow;\n }\n\n /// @dev liquidation related data\n /// @param vault address of vault\n /// @param tokenIn_ address of token in\n /// @param tokenOut_ address of token out\n /// @param tokenInAmtOne_ (without absorb liquidity) minimum of available liquidation & tokenInAmt_\n /// @param tokenOutAmtOne_ (without absorb liquidity) expected token out, collateral to withdraw\n /// @param tokenInAmtTwo_ (absorb liquidity included) minimum of available liquidation & tokenInAmt_. In most cases it'll be same as tokenInAmtOne_ but sometimes can be bigger.\n /// @param tokenOutAmtTwo_ (absorb liquidity included) expected token out, collateral to withdraw. In most cases it'll be same as tokenOutAmtOne_ but sometimes can be bigger.\n /// @dev sometimes Liquidity in Two will always be >= One. Sometimes One can provide better swaps, sometimes Two can provide better swaps. But as mentioned availability in Two will always be >= One\n struct LiquidationStruct {\n address vault;\n address tokenIn;\n address tokenOut;\n uint tokenInAmtOne;\n uint tokenOutAmtOne;\n uint tokenInAmtTwo;\n uint tokenOutAmtTwo;\n }\n}\n"
|
||
},
|
||
"contracts/periphery/resolvers/vault/variables.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IFluidLiquidityResolver } from \"../liquidity/iLiquidityResolver.sol\";\nimport { IFluidVaultFactory } from \"../../../protocols/vault/interfaces/iVaultFactory.sol\";\n\ninterface IFluidLiquidity {\n function readFromStorage(bytes32 slot_) external view returns (uint256 result_);\n}\n\ncontract Variables {\n IFluidVaultFactory public immutable FACTORY;\n IFluidLiquidity public immutable LIQUIDITY;\n IFluidLiquidityResolver public immutable LIQUIDITY_RESOLVER;\n\n // 30 bits (used for partials mainly)\n uint internal constant X8 = 0xff;\n uint internal constant X10 = 0x3ff;\n uint internal constant X14 = 0x3fff;\n uint internal constant X15 = 0x7fff;\n uint internal constant X16 = 0xffff;\n uint internal constant X19 = 0x7ffff;\n uint internal constant X20 = 0xfffff;\n uint internal constant X24 = 0xffffff;\n uint internal constant X25 = 0x1ffffff;\n uint internal constant X30 = 0x3fffffff;\n uint internal constant X32 = 0xffffffff;\n uint internal constant X35 = 0x7ffffffff;\n uint internal constant X40 = 0xffffffffff;\n uint internal constant X50 = 0x3ffffffffffff;\n uint internal constant X64 = 0xffffffffffffffff;\n uint internal constant X96 = 0xffffffffffffffffffffffff;\n uint internal constant X128 = 0xffffffffffffffffffffffffffffffff;\n /// @dev address that is mapped to the chain native token\n address internal constant NATIVE_TOKEN_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;\n\n constructor(address factory_, address liquidity_, address liquidityResolver_) {\n FACTORY = IFluidVaultFactory(factory_);\n LIQUIDITY = IFluidLiquidity(liquidity_);\n LIQUIDITY_RESOLVER = IFluidLiquidityResolver(liquidityResolver_);\n }\n}\n"
|
||
},
|
||
"contracts/protocols/lending/interfaces/iFToken.sol": {
|
||
"content": "//SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\nimport { IERC4626 } from \"@openzeppelin/contracts/interfaces/IERC4626.sol\";\n\nimport { IAllowanceTransfer } from \"./permit2/iAllowanceTransfer.sol\";\nimport { IFluidLendingRewardsRateModel } from \"./iLendingRewardsRateModel.sol\";\nimport { IFluidLendingFactory } from \"./iLendingFactory.sol\";\nimport { IFluidLiquidity } from \"../../../liquidity/interfaces/iLiquidity.sol\";\n\ninterface IFTokenAdmin {\n /// @notice updates the rewards rate model contract.\n /// Only callable by LendingFactory auths.\n /// @param rewardsRateModel_ the new rewards rate model contract address.\n /// can be set to address(0) to set no rewards (to save gas)\n function updateRewards(IFluidLendingRewardsRateModel rewardsRateModel_) external;\n\n /// @notice Balances out the difference between fToken supply at Liquidity vs totalAssets().\n /// Deposits underlying from rebalancer address into Liquidity but doesn't mint any shares\n /// -> thus making deposit available as rewards.\n /// Only callable by rebalancer.\n /// @return assets_ amount deposited to Liquidity\n function rebalance() external payable returns (uint256 assets_);\n\n /// @notice gets the liquidity exchange price of the underlying asset, calculates the updated exchange price (with reward rates)\n /// and writes those values to storage.\n /// Callable by anyone.\n /// @return tokenExchangePrice_ exchange price of fToken share to underlying asset\n /// @return liquidityExchangePrice_ exchange price at Liquidity for the underlying asset\n function updateRates() external returns (uint256 tokenExchangePrice_, uint256 liquidityExchangePrice_);\n\n /// @notice sends any potentially stuck funds to Liquidity contract. Only callable by LendingFactory auths.\n function rescueFunds(address token_) external;\n\n /// @notice Updates the rebalancer address (ReserveContract). Only callable by LendingFactory auths.\n function updateRebalancer(address rebalancer_) external;\n}\n\ninterface IFToken is IERC4626, IFTokenAdmin {\n /// @notice returns minimum amount required for deposit (rounded up)\n function minDeposit() external view returns (uint256);\n\n /// @notice returns config, rewards and exchange prices data in a single view method.\n /// @return liquidity_ address of the Liquidity contract.\n /// @return lendingFactory_ address of the Lending factory contract.\n /// @return lendingRewardsRateModel_ address of the rewards rate model contract. changeable by LendingFactory auths.\n /// @return permit2_ address of the Permit2 contract used for deposits / mint with signature\n /// @return rebalancer_ address of the rebalancer allowed to execute `rebalance()`\n /// @return rewardsActive_ true if rewards are currently active\n /// @return liquidityBalance_ current Liquidity supply balance of `address(this)` for the underyling asset\n /// @return liquidityExchangePrice_ (updated) exchange price for the underlying assset in the liquidity protocol (without rewards)\n /// @return tokenExchangePrice_ (updated) exchange price between fToken and the underlying assset (with rewards)\n function getData()\n external\n view\n returns (\n IFluidLiquidity liquidity_,\n IFluidLendingFactory lendingFactory_,\n IFluidLendingRewardsRateModel lendingRewardsRateModel_,\n IAllowanceTransfer permit2_,\n address rebalancer_,\n bool rewardsActive_,\n uint256 liquidityBalance_,\n uint256 liquidityExchangePrice_,\n uint256 tokenExchangePrice_\n );\n\n /// @notice transfers `amount_` of `token_` to liquidity. Only callable by liquidity contract.\n /// @dev this callback is used to optimize gas consumption (reducing necessary token transfers).\n function liquidityCallback(address token_, uint256 amount_, bytes calldata data_) external;\n\n /// @notice deposit `assets_` amount with Permit2 signature for underlying asset approval.\n /// reverts with `fToken__MinAmountOut()` if `minAmountOut_` of shares is not reached.\n /// `assets_` must at least be `minDeposit()` amount; reverts otherwise.\n /// @param assets_ amount of assets to deposit\n /// @param receiver_ receiver of minted fToken shares\n /// @param minAmountOut_ minimum accepted amount of shares minted\n /// @param permit_ Permit2 permit message\n /// @param signature_ packed signature of signing the EIP712 hash of `permit_`\n /// @return shares_ amount of minted shares\n function depositWithSignature(\n uint256 assets_,\n address receiver_,\n uint256 minAmountOut_,\n IAllowanceTransfer.PermitSingle calldata permit_,\n bytes calldata signature_\n ) external returns (uint256 shares_);\n\n /// @notice mint amount of `shares_` with Permit2 signature for underlying asset approval.\n /// Signature should approve a little bit more than expected assets amount (`previewMint()`) to avoid reverts.\n /// `shares_` must at least be `minMint()` amount; reverts otherwise.\n /// Note there might be tiny inaccuracies between requested `shares_` and actually received shares amount.\n /// Recommended to use `deposit()` over mint because it is more gas efficient and less likely to revert.\n /// @param shares_ amount of shares to mint\n /// @param receiver_ receiver of minted fToken shares\n /// @param maxAssets_ maximum accepted amount of assets used as input to mint `shares_`\n /// @param permit_ Permit2 permit message\n /// @param signature_ packed signature of signing the EIP712 hash of `permit_`\n /// @return assets_ deposited assets amount\n function mintWithSignature(\n uint256 shares_,\n address receiver_,\n uint256 maxAssets_,\n IAllowanceTransfer.PermitSingle calldata permit_,\n bytes calldata signature_\n ) external returns (uint256 assets_);\n}\n\ninterface IFTokenNativeUnderlying is IFToken {\n /// @notice address that is mapped to the chain native token at Liquidity\n function NATIVE_TOKEN_ADDRESS() external view returns (address);\n\n /// @notice deposits `msg.value` amount of native token for `receiver_`.\n /// `msg.value` must be at least `minDeposit()` amount; reverts otherwise.\n /// Recommended to use `depositNative()` with a `minAmountOut_` param instead to set acceptable limit.\n /// @return shares_ actually minted shares\n function depositNative(address receiver_) external payable returns (uint256 shares_);\n\n /// @notice same as {depositNative} but with an additional setting for minimum output amount.\n /// reverts with `fToken__MinAmountOut()` if `minAmountOut_` of shares is not reached\n function depositNative(address receiver_, uint256 minAmountOut_) external payable returns (uint256 shares_);\n\n /// @notice mints `shares_` for `receiver_`, paying with underlying native token.\n /// `shares_` must at least be `minMint()` amount; reverts otherwise.\n /// `shares_` set to type(uint256).max not supported.\n /// Note there might be tiny inaccuracies between requested `shares_` and actually received shares amount.\n /// Recommended to use `depositNative()` over mint because it is more gas efficient and less likely to revert.\n /// Recommended to use `mintNative()` with a `minAmountOut_` param instead to set acceptable limit.\n /// @return assets_ deposited assets amount\n function mintNative(uint256 shares_, address receiver_) external payable returns (uint256 assets_);\n\n /// @notice same as {mintNative} but with an additional setting for minimum output amount.\n /// reverts with `fToken__MaxAmount()` if `maxAssets_` of assets is surpassed to mint `shares_`.\n function mintNative(\n uint256 shares_,\n address receiver_,\n uint256 maxAssets_\n ) external payable returns (uint256 assets_);\n\n /// @notice withdraws `assets_` amount in native underlying to `receiver_`, burning shares of `owner_`.\n /// If `assets_` equals uint256.max then the whole fToken balance of `owner_` is withdrawn.This does not\n /// consider withdrawal limit at liquidity so best to check with `maxWithdraw()` before.\n /// Note there might be tiny inaccuracies between requested `assets_` and actually received assets amount.\n /// Recommended to use `withdrawNative()` with a `maxSharesBurn_` param instead to set acceptable limit.\n /// @return shares_ burned shares\n function withdrawNative(uint256 assets_, address receiver_, address owner_) external returns (uint256 shares_);\n\n /// @notice same as {withdrawNative} but with an additional setting for minimum output amount.\n /// reverts with `fToken__MaxAmount()` if `maxSharesBurn_` of shares burned is surpassed.\n function withdrawNative(\n uint256 assets_,\n address receiver_,\n address owner_,\n uint256 maxSharesBurn_\n ) external returns (uint256 shares_);\n\n /// @notice redeems `shares_` to native underlying to `receiver_`, burning shares of `owner_`.\n /// If `shares_` equals uint256.max then the whole balance of `owner_` is withdrawn.This does not\n /// consider withdrawal limit at liquidity so best to check with `maxRedeem()` before.\n /// Recommended to use `withdrawNative()` over redeem because it is more gas efficient and can set specific amount.\n /// Recommended to use `redeemNative()` with a `minAmountOut_` param instead to set acceptable limit.\n /// @return assets_ withdrawn assets amount\n function redeemNative(uint256 shares_, address receiver_, address owner_) external returns (uint256 assets_);\n\n /// @notice same as {redeemNative} but with an additional setting for minimum output amount.\n /// reverts with `fToken__MinAmountOut()` if `minAmountOut_` of assets is not reached.\n function redeemNative(\n uint256 shares_,\n address receiver_,\n address owner_,\n uint256 minAmountOut_\n ) external returns (uint256 assets_);\n\n /// @notice withdraw amount of `assets_` in native token with ERC-2612 permit signature for fToken approval.\n /// `owner_` signs ERC-2612 permit `signature_` to give allowance of fTokens to `msg.sender`.\n /// Note there might be tiny inaccuracies between requested `assets_` and actually received assets amount.\n /// allowance via signature should cover `previewWithdraw(assets_)` plus a little buffer to avoid revert.\n /// Inherent trust assumption that `msg.sender` will set `receiver_` and `minAmountOut_` as `owner_` intends\n /// (which is always the case when giving allowance to some spender).\n /// @param sharesToPermit_ shares amount to use for EIP2612 permit(). Should cover `previewWithdraw(assets_)` + small buffer.\n /// @param assets_ amount of assets to withdraw\n /// @param receiver_ receiver of withdrawn assets\n /// @param owner_ owner to withdraw from (must be signature signer)\n /// @param maxSharesBurn_ maximum accepted amount of shares burned\n /// @param deadline_ deadline for signature validity\n /// @param signature_ packed signature of signing the EIP712 hash for ERC-2612 permit\n /// @return shares_ burned shares amount\n function withdrawWithSignatureNative(\n uint256 sharesToPermit_,\n uint256 assets_,\n address receiver_,\n address owner_,\n uint256 maxSharesBurn_,\n uint256 deadline_,\n bytes calldata signature_\n ) external returns (uint256 shares_);\n\n /// @notice redeem amount of `shares_` as native token with ERC-2612 permit signature for fToken approval.\n /// `owner_` signs ERC-2612 permit `signature_` to give allowance of fTokens to `msg.sender`.\n /// Note there might be tiny inaccuracies between requested `shares_` to redeem and actually burned shares.\n /// allowance via signature must cover `shares_` plus a tiny buffer.\n /// Inherent trust assumption that `msg.sender` will set `receiver_` and `minAmountOut_` as `owner_` intends\n /// (which is always the case when giving allowance to some spender).\n /// Recommended to use `withdrawNative()` over redeem because it is more gas efficient and can set specific amount.\n /// @param shares_ amount of shares to redeem\n /// @param receiver_ receiver of withdrawn assets\n /// @param owner_ owner to withdraw from (must be signature signer)\n /// @param minAmountOut_ minimum accepted amount of assets withdrawn\n /// @param deadline_ deadline for signature validity\n /// @param signature_ packed signature of signing the EIP712 hash for ERC-2612 permit\n /// @return assets_ withdrawn assets amount\n function redeemWithSignatureNative(\n uint256 shares_,\n address receiver_,\n address owner_,\n uint256 minAmountOut_,\n uint256 deadline_,\n bytes calldata signature_\n ) external returns (uint256 assets_);\n}\n"
|
||
},
|
||
"contracts/protocols/lending/interfaces/iLendingFactory.sol": {
|
||
"content": "//SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\nimport { IFluidLiquidity } from \"../../../liquidity/interfaces/iLiquidity.sol\";\n\ninterface IFluidLendingFactoryAdmin {\n /// @notice reads if a certain `auth_` address is an allowed auth or not. Owner is auth by default.\n function isAuth(address auth_) external view returns (bool);\n\n /// @notice Sets an address as allowed auth or not. Only callable by owner.\n /// @param auth_ address to set auth value for\n /// @param allowed_ bool flag for whether address is allowed as auth or not\n function setAuth(address auth_, bool allowed_) external;\n\n /// @notice reads if a certain `deployer_` address is an allowed deployer or not. Owner is deployer by default.\n function isDeployer(address deployer_) external view returns (bool);\n\n /// @notice Sets an address as allowed deployer or not. Only callable by owner.\n /// @param deployer_ address to set deployer value for\n /// @param allowed_ bool flag for whether address is allowed as deployer or not\n function setDeployer(address deployer_, bool allowed_) external;\n\n /// @notice Sets the `creationCode_` bytecode for a certain `fTokenType_`. Only callable by auths.\n /// @param fTokenType_ the fToken Type used to refer the creation code\n /// @param creationCode_ contract creation code. can be set to bytes(0) to remove a previously available `fTokenType_`\n function setFTokenCreationCode(string memory fTokenType_, bytes calldata creationCode_) external;\n\n /// @notice creates token for `asset_` for a lending protocol with interest. Only callable by deployers.\n /// @param asset_ address of the asset\n /// @param fTokenType_ type of fToken:\n /// - if it's the native token, it should use `NativeUnderlying`\n /// - otherwise it should use `fToken`\n /// - could be more types available, check `fTokenTypes()`\n /// @param isNativeUnderlying_ flag to signal fToken type that uses native underlying at Liquidity\n /// @return token_ address of the created token\n function createToken(\n address asset_,\n string calldata fTokenType_,\n bool isNativeUnderlying_\n ) external returns (address token_);\n}\n\ninterface IFluidLendingFactory is IFluidLendingFactoryAdmin {\n /// @notice list of all created tokens\n function allTokens() external view returns (address[] memory);\n\n /// @notice list of all fToken types that can be deployed\n function fTokenTypes() external view returns (string[] memory);\n\n /// @notice returns the creation code for a certain `fTokenType_`\n function fTokenCreationCode(string memory fTokenType_) external view returns (bytes memory);\n\n /// @notice address of the Liquidity contract.\n function LIQUIDITY() external view returns (IFluidLiquidity);\n\n /// @notice computes deterministic token address for `asset_` for a lending protocol\n /// @param asset_ address of the asset\n /// @param fTokenType_ type of fToken:\n /// - if it's the native token, it should use `NativeUnderlying`\n /// - otherwise it should use `fToken`\n /// - could be more types available, check `fTokenTypes()`\n /// @return token_ detemrinistic address of the computed token\n function computeToken(address asset_, string calldata fTokenType_) external view returns (address token_);\n}\n"
|
||
},
|
||
"contracts/protocols/lending/interfaces/iLendingRewardsRateModel.sol": {
|
||
"content": "//SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\ninterface IFluidLendingRewardsRateModel {\n /// @notice Calculates the current rewards rate (APR)\n /// @param totalAssets_ amount of assets in the lending\n /// @return rate_ rewards rate percentage per year with 1e12 RATE_PRECISION, e.g. 1e12 = 1%, 1e14 = 100%\n /// @return ended_ flag to signal that rewards have ended (always 0 going forward)\n /// @return startTime_ start time of rewards to compare against last update timestamp\n function getRate(uint256 totalAssets_) external view returns (uint256 rate_, bool ended_, uint256 startTime_);\n\n /// @notice Returns config constants for rewards rate model\n function getConfig()\n external\n view\n returns (\n uint256 duration_,\n uint256 startTime_,\n uint256 endTime_,\n uint256 startTvl_,\n uint256 maxRate_,\n uint256 rewardAmount_,\n address initiator_\n );\n}\n"
|
||
},
|
||
"contracts/protocols/lending/interfaces/permit2/iAllowanceTransfer.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\n/// @title AllowanceTransfer\n/// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts\n/// @dev Requires user's token approval on the Permit2 contract\n/// from https://github.com/Uniswap/permit2/blob/main/src/interfaces/ISignatureTransfer.sol.\n/// Copyright (c) 2022 Uniswap Labs\ninterface IAllowanceTransfer {\n function DOMAIN_SEPARATOR() external view returns (bytes32);\n\n /// @notice Thrown when an allowance on a token has expired.\n /// @param deadline The timestamp at which the allowed amount is no longer valid\n error AllowanceExpired(uint256 deadline);\n\n /// @notice Thrown when an allowance on a token has been depleted.\n /// @param amount The maximum amount allowed\n error InsufficientAllowance(uint256 amount);\n\n /// @notice Thrown when too many nonces are invalidated.\n error ExcessiveInvalidation();\n\n /// @notice Emits an event when the owner successfully invalidates an ordered nonce.\n event NonceInvalidation(\n address indexed owner,\n address indexed token,\n address indexed spender,\n uint48 newNonce,\n uint48 oldNonce\n );\n\n /// @notice Emits an event when the owner successfully sets permissions on a token for the spender.\n event Approval(\n address indexed owner,\n address indexed token,\n address indexed spender,\n uint160 amount,\n uint48 expiration\n );\n\n /// @notice Emits an event when the owner successfully sets permissions using a permit signature on a token for the spender.\n event Permit(\n address indexed owner,\n address indexed token,\n address indexed spender,\n uint160 amount,\n uint48 expiration,\n uint48 nonce\n );\n\n /// @notice Emits an event when the owner sets the allowance back to 0 with the lockdown function.\n event Lockdown(address indexed owner, address token, address spender);\n\n /// @notice The permit data for a token\n struct PermitDetails {\n // ERC20 token address\n address token;\n // the maximum amount allowed to spend\n uint160 amount;\n // timestamp at which a spender's token allowances become invalid\n uint48 expiration;\n // an incrementing value indexed per owner,token,and spender for each signature\n uint48 nonce;\n }\n\n /// @notice The permit message signed for a single token allownce\n struct PermitSingle {\n // the permit data for a single token alownce\n PermitDetails details;\n // address permissioned on the allowed tokens\n address spender;\n // deadline on the permit signature\n uint256 sigDeadline;\n }\n\n /// @notice The permit message signed for multiple token allowances\n struct PermitBatch {\n // the permit data for multiple token allowances\n PermitDetails[] details;\n // address permissioned on the allowed tokens\n address spender;\n // deadline on the permit signature\n uint256 sigDeadline;\n }\n\n /// @notice The saved permissions\n /// @dev This info is saved per owner, per token, per spender and all signed over in the permit message\n /// @dev Setting amount to type(uint160).max sets an unlimited approval\n struct PackedAllowance {\n // amount allowed\n uint160 amount;\n // permission expiry\n uint48 expiration;\n // an incrementing value indexed per owner,token,and spender for each signature\n uint48 nonce;\n }\n\n /// @notice A token spender pair.\n struct TokenSpenderPair {\n // the token the spender is approved\n address token;\n // the spender address\n address spender;\n }\n\n /// @notice Details for a token transfer.\n struct AllowanceTransferDetails {\n // the owner of the token\n address from;\n // the recipient of the token\n address to;\n // the amount of the token\n uint160 amount;\n // the token to be transferred\n address token;\n }\n\n /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval.\n /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress]\n /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals.\n function allowance(\n address user,\n address token,\n address spender\n ) external view returns (uint160 amount, uint48 expiration, uint48 nonce);\n\n /// @notice Approves the spender to use up to amount of the specified token up until the expiration\n /// @param token The token to approve\n /// @param spender The spender address to approve\n /// @param amount The approved amount of the token\n /// @param expiration The timestamp at which the approval is no longer valid\n /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve\n /// @dev Setting amount to type(uint160).max sets an unlimited approval\n function approve(address token, address spender, uint160 amount, uint48 expiration) external;\n\n /// @notice Permit a spender to a given amount of the owners token via the owner's EIP-712 signature\n /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce\n /// @param owner The owner of the tokens being approved\n /// @param permitSingle Data signed over by the owner specifying the terms of approval\n /// @param signature The owner's signature over the permit data\n function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;\n\n /// @notice Permit a spender to the signed amounts of the owners tokens via the owner's EIP-712 signature\n /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce\n /// @param owner The owner of the tokens being approved\n /// @param permitBatch Data signed over by the owner specifying the terms of approval\n /// @param signature The owner's signature over the permit data\n function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external;\n\n /// @notice Transfer approved tokens from one address to another\n /// @param from The address to transfer from\n /// @param to The address of the recipient\n /// @param amount The amount of the token to transfer\n /// @param token The token address to transfer\n /// @dev Requires the from address to have approved at least the desired amount\n /// of tokens to msg.sender.\n function transferFrom(address from, address to, uint160 amount, address token) external;\n\n /// @notice Transfer approved tokens in a batch\n /// @param transferDetails Array of owners, recipients, amounts, and tokens for the transfers\n /// @dev Requires the from addresses to have approved at least the desired amount\n /// of tokens to msg.sender.\n function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external;\n\n /// @notice Enables performing a \"lockdown\" of the sender's Permit2 identity\n /// by batch revoking approvals\n /// @param approvals Array of approvals to revoke.\n function lockdown(TokenSpenderPair[] calldata approvals) external;\n\n /// @notice Invalidate nonces for a given (token, spender) pair\n /// @param token The token to invalidate nonces for\n /// @param spender The spender to invalidate nonces for\n /// @param newNonce The new nonce to set. Invalidates all nonces less than it.\n /// @dev Can't invalidate more than 2**16 nonces per transaction.\n function invalidateNonces(address token, address spender, uint48 newNonce) external;\n}\n"
|
||
},
|
||
"contracts/protocols/vault/error.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\ncontract Error {\n error FluidVaultError(uint256 errorId_);\n\n /// @notice used to simulate liquidation to find the maximum liquidatable amounts\n error FluidLiquidateResult(uint256 colLiquidated, uint256 debtLiquidated);\n}\n"
|
||
},
|
||
"contracts/protocols/vault/errorTypes.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nlibrary ErrorTypes {\n /***********************************|\n | Vault Factory | \n |__________________________________*/\n\n uint256 internal constant VaultFactory__InvalidOperation = 30001;\n uint256 internal constant VaultFactory__Unauthorized = 30002;\n uint256 internal constant VaultFactory__SameTokenNotAllowed = 30003;\n uint256 internal constant VaultFactory__InvalidParams = 30004;\n uint256 internal constant VaultFactory__InvalidVault = 30005;\n uint256 internal constant VaultFactory__InvalidVaultAddress = 30006;\n uint256 internal constant VaultFactory__OnlyDelegateCallAllowed = 30007;\n\n /***********************************|\n | VaultT1 | \n |__________________________________*/\n\n /// @notice thrown at reentrancy\n uint256 internal constant VaultT1__AlreadyEntered = 31001;\n\n /// @notice thrown when user sends deposit & borrow amount as 0\n uint256 internal constant VaultT1__InvalidOperateAmount = 31002;\n\n /// @notice thrown when msg.value is not in sync with native token deposit or payback\n uint256 internal constant VaultT1__InvalidMsgValueOperate = 31003;\n\n /// @notice thrown when msg.sender is not the owner of the vault\n uint256 internal constant VaultT1__NotAnOwner = 31004;\n\n /// @notice thrown when user's position does not exist. Sending the wrong index from the frontend\n uint256 internal constant VaultT1__TickIsEmpty = 31005;\n\n /// @notice thrown when the user's position is above CF and the user tries to make it more risky by trying to withdraw or borrow\n uint256 internal constant VaultT1__PositionAboveCF = 31006;\n\n /// @notice thrown when the top tick is not initialized. Happens if the vault is totally new or all the user's left\n uint256 internal constant VaultT1__TopTickDoesNotExist = 31007;\n\n /// @notice thrown when msg.value in liquidate is not in sync payback\n uint256 internal constant VaultT1__InvalidMsgValueLiquidate = 31008;\n\n /// @notice thrown when slippage is more on liquidation than what the liquidator sent\n uint256 internal constant VaultT1__ExcessSlippageLiquidation = 31009;\n\n /// @notice thrown when msg.sender is not the rebalancer/reserve contract\n uint256 internal constant VaultT1__NotRebalancer = 31010;\n\n /// @notice thrown when NFT of one vault interacts with the NFT of other vault\n uint256 internal constant VaultT1__NftNotOfThisVault = 31011;\n\n /// @notice thrown when the token is not initialized on the liquidity contract\n uint256 internal constant VaultT1__TokenNotInitialized = 31012;\n\n /// @notice thrown when admin updates fallback if a non-auth calls vault\n uint256 internal constant VaultT1__NotAnAuth = 31013;\n\n /// @notice thrown in operate when user tries to witdhraw more collateral than deposited\n uint256 internal constant VaultT1__ExcessCollateralWithdrawal = 31014;\n\n /// @notice thrown in operate when user tries to payback more debt than borrowed\n uint256 internal constant VaultT1__ExcessDebtPayback = 31015;\n\n /// @notice thrown when user try to withdrawal more than operate's withdrawal limit\n uint256 internal constant VaultT1__WithdrawMoreThanOperateLimit = 31016;\n\n /// @notice thrown when caller of liquidityCallback is not Liquidity\n uint256 internal constant VaultT1__InvalidLiquidityCallbackAddress = 31017;\n\n /// @notice thrown when reentrancy is not already on\n uint256 internal constant VaultT1__NotEntered = 31018;\n\n /// @notice thrown when someone directly calls secondary implementation contract\n uint256 internal constant VaultT1__OnlyDelegateCallAllowed = 31019;\n\n /// @notice thrown when the safeTransferFrom for a token amount failed\n uint256 internal constant VaultT1__TransferFromFailed = 31020;\n\n /// @notice thrown when exchange price overflows while updating on storage\n uint256 internal constant VaultT1__ExchangePriceOverFlow = 31021;\n\n /// @notice thrown when debt to liquidate amt is sent wrong\n uint256 internal constant VaultT1__InvalidLiquidationAmt = 31022;\n\n /// @notice thrown when user debt or collateral goes above 2**128 or below -2**128\n uint256 internal constant VaultT1__UserCollateralDebtExceed = 31023;\n\n /// @notice thrown if on liquidation branch debt becomes lower than 100\n uint256 internal constant VaultT1__BranchDebtTooLow = 31024;\n\n /// @notice thrown when tick's debt is less than 10000\n uint256 internal constant VaultT1__TickDebtTooLow = 31025;\n\n /// @notice thrown when the received new liquidity exchange price is of unexpected value (< than the old one)\n uint256 internal constant VaultT1__LiquidityExchangePriceUnexpected = 31026;\n\n /// @notice thrown when user's debt is less than 10000\n uint256 internal constant VaultT1__UserDebtTooLow = 31027;\n\n /// @notice thrown when on only payback and only deposit the ratio of position increases\n uint256 internal constant VaultT1__InvalidPaybackOrDeposit = 31028;\n\n /// @notice thrown when liquidation just happens of a single partial\n uint256 internal constant VaultT1__InvalidLiquidation = 31029;\n\n /***********************************|\n | ERC721 | \n |__________________________________*/\n\n uint256 internal constant ERC721__InvalidParams = 32001;\n uint256 internal constant ERC721__Unauthorized = 32002;\n uint256 internal constant ERC721__InvalidOperation = 32003;\n uint256 internal constant ERC721__UnsafeRecipient = 32004;\n uint256 internal constant ERC721__OutOfBoundsIndex = 32005;\n\n /***********************************|\n | Vault Admin | \n |__________________________________*/\n\n /// @notice thrown when admin tries to setup invalid value which are crossing limits\n uint256 internal constant VaultT1Admin__ValueAboveLimit = 33001;\n\n /// @notice when someone directly calls admin implementation contract\n uint256 internal constant VaultT1Admin__OnlyDelegateCallAllowed = 33002;\n\n /// @notice thrown when auth sends NFT ID as 0 while collecting dust debt\n uint256 internal constant VaultT1Admin__NftIdShouldBeNonZero = 33003;\n\n /// @notice thrown when trying to collect dust debt of NFT which is not of this vault\n uint256 internal constant VaultT1Admin__NftNotOfThisVault = 33004;\n\n /// @notice thrown when dust debt of NFT is 0, meaning nothing to collect\n uint256 internal constant VaultT1Admin__DustDebtIsZero = 33005;\n\n /// @notice thrown when final debt after liquidation is not 0, meaning position 100% liquidated\n uint256 internal constant VaultT1Admin__FinalDebtShouldBeZero = 33006;\n\n /// @notice thrown when NFT is not liquidated state\n uint256 internal constant VaultT1Admin__NftNotLiquidated = 33007;\n\n /// @notice thrown when total absorbed dust debt is 0\n uint256 internal constant VaultT1Admin__AbsorbedDustDebtIsZero = 33008;\n\n /// @notice thrown when address is set as 0\n uint256 internal constant VaultT1Admin__AddressZeroNotAllowed = 33009;\n\n /***********************************|\n | Vault Rewards | \n |__________________________________*/\n\n uint256 internal constant VaultRewards__Unauthorized = 34001;\n uint256 internal constant VaultRewards__AddressZero = 34002;\n uint256 internal constant VaultRewards__InvalidParams = 34003;\n uint256 internal constant VaultRewards__NewMagnifierSameAsOldMagnifier = 34004;\n uint256 internal constant VaultRewards__NotTheInitiator = 34005;\n uint256 internal constant VaultRewards__AlreadyStarted = 34006;\n uint256 internal constant VaultRewards__RewardsNotStartedOrEnded = 34007;\n}\n"
|
||
},
|
||
"contracts/protocols/vault/factory/deploymentLogics/vaultT1Logic.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { SSTORE2 } from \"solmate/src/utils/SSTORE2.sol\";\n\nimport { ErrorTypes } from \"../../errorTypes.sol\";\nimport { Error } from \"../../error.sol\";\nimport { IFluidVaultFactory } from \"../../interfaces/iVaultFactory.sol\";\n\nimport { LiquiditySlotsLink } from \"../../../../libraries/liquiditySlotsLink.sol\";\n\nimport { IFluidVaultT1 } from \"../../interfaces/iVaultT1.sol\";\nimport { FluidVaultT1 } from \"../../vaultT1/coreModule/main.sol\";\n\ninterface IERC20 {\n function decimals() external view returns (uint8);\n}\n\ncontract FluidVaultT1DeploymentLogic is Error {\n address internal constant NATIVE_TOKEN = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;\n\n /// @notice SSTORE2 pointer for the VaultT1 creation code. Stored externally to reduce factory bytecode\n address public immutable VAULT_T1_CREATIONCODE_ADDRESS;\n\n /// @notice address of liquidity contract\n address public immutable LIQUIDITY;\n\n /// @notice address of Admin implementation\n address public immutable ADMIN_IMPLEMENTATION;\n\n /// @notice address of Secondary implementation\n address public immutable SECONDARY_IMPLEMENTATION;\n\n /// @notice address of this contract\n address public immutable ADDRESS_THIS;\n\n /// @notice Emitted when a new vaultT1 is deployed.\n /// @param vault The address of the newly deployed vault.\n /// @param vaultId The id of the newly deployed vault.\n /// @param supplyToken The address of the supply token.\n /// @param borrowToken The address of the borrow token.\n event VaultT1Deployed(\n address indexed vault,\n uint256 vaultId,\n address indexed supplyToken,\n address indexed borrowToken\n );\n\n constructor(address liquidity_, address vaultAdminImplementation_, address vaultSecondaryImplementation_) {\n LIQUIDITY = liquidity_;\n ADMIN_IMPLEMENTATION = vaultAdminImplementation_;\n SECONDARY_IMPLEMENTATION = vaultSecondaryImplementation_;\n VAULT_T1_CREATIONCODE_ADDRESS = SSTORE2.write(type(FluidVaultT1).creationCode);\n ADDRESS_THIS = address(this);\n }\n\n /// @dev Calculates the liquidity vault slots for the given supply token, borrow token, and vault (`vault_`).\n /// @param constants_ Constants struct as used in Vault T1\n /// @param vault_ The address of the vault.\n /// @return liquidityVaultSlots_ Returns the calculated liquidity vault slots set in the `IFluidVaultT1.ConstantViews` struct.\n function _calculateLiquidityVaultSlots(\n IFluidVaultT1.ConstantViews memory constants_,\n address vault_\n ) private pure returns (IFluidVaultT1.ConstantViews memory) {\n constants_.liquiditySupplyExchangePriceSlot = LiquiditySlotsLink.calculateMappingStorageSlot(\n LiquiditySlotsLink.LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT,\n constants_.supplyToken\n );\n constants_.liquidityBorrowExchangePriceSlot = LiquiditySlotsLink.calculateMappingStorageSlot(\n LiquiditySlotsLink.LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT,\n constants_.borrowToken\n );\n constants_.liquidityUserSupplySlot = LiquiditySlotsLink.calculateDoubleMappingStorageSlot(\n LiquiditySlotsLink.LIQUIDITY_USER_SUPPLY_DOUBLE_MAPPING_SLOT,\n vault_,\n constants_.supplyToken\n );\n constants_.liquidityUserBorrowSlot = LiquiditySlotsLink.calculateDoubleMappingStorageSlot(\n LiquiditySlotsLink.LIQUIDITY_USER_BORROW_DOUBLE_MAPPING_SLOT,\n vault_,\n constants_.borrowToken\n );\n return constants_;\n }\n\n /// @notice Computes vaultT1 bytecode for the given supply token (`supplyToken_`) and borrow token (`borrowToken_`).\n /// This will be called by the VaultFactory via .delegateCall\n /// @param supplyToken_ The address of the supply token.\n /// @param borrowToken_ The address of the borrow token.\n /// @return vaultCreationBytecode_ Returns the bytecode of the new vault to deploy.\n function vaultT1(\n address supplyToken_,\n address borrowToken_\n ) external returns (bytes memory vaultCreationBytecode_) {\n if (address(this) == ADDRESS_THIS) revert FluidVaultError(ErrorTypes.VaultFactory__OnlyDelegateCallAllowed);\n\n if (supplyToken_ == borrowToken_) revert FluidVaultError(ErrorTypes.VaultFactory__SameTokenNotAllowed);\n\n IFluidVaultT1.ConstantViews memory constants_;\n constants_.liquidity = LIQUIDITY;\n constants_.factory = address(this);\n constants_.adminImplementation = ADMIN_IMPLEMENTATION;\n constants_.secondaryImplementation = SECONDARY_IMPLEMENTATION;\n constants_.supplyToken = supplyToken_;\n constants_.supplyDecimals = supplyToken_ != NATIVE_TOKEN ? IERC20(supplyToken_).decimals() : 18;\n constants_.borrowToken = borrowToken_;\n constants_.borrowDecimals = borrowToken_ != NATIVE_TOKEN ? IERC20(borrowToken_).decimals() : 18;\n constants_.vaultId = IFluidVaultFactory(address(this)).totalVaults();\n\n address vault_ = IFluidVaultFactory(address(this)).getVaultAddress(constants_.vaultId);\n\n constants_ = _calculateLiquidityVaultSlots(constants_, vault_);\n\n vaultCreationBytecode_ = abi.encodePacked(SSTORE2.read(VAULT_T1_CREATIONCODE_ADDRESS), abi.encode(constants_));\n\n emit VaultT1Deployed(vault_, constants_.vaultId, supplyToken_, borrowToken_);\n\n return vaultCreationBytecode_;\n }\n}\n"
|
||
},
|
||
"contracts/protocols/vault/interfaces/iVaultFactory.sol": {
|
||
"content": "//SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\nimport { IERC721Enumerable } from \"@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol\";\n\ninterface IFluidVaultFactory is IERC721Enumerable {\n /// @notice Minting an NFT Vault for the user\n function mint(uint256 vaultId_, address user_) external returns (uint256 tokenId_);\n\n /// @notice returns owner of Vault which is also an NFT\n function ownerOf(uint256 tokenId) external view returns (address owner);\n\n /// @notice Global auth is auth for all vaults\n function isGlobalAuth(address auth_) external view returns (bool);\n\n /// @notice Vault auth is auth for a specific vault\n function isVaultAuth(address auth_, address vault_) external view returns (bool);\n\n /// @notice Total vaults deployed.\n function totalVaults() external view returns (uint256);\n\n /// @notice Compute vaultAddress\n function getVaultAddress(uint256 vaultId) external view returns (address);\n\n /// @notice read uint256 `result_` for a storage `slot_` key\n function readFromStorage(bytes32 slot_) external view returns (uint256 result_);\n}\n"
|
||
},
|
||
"contracts/protocols/vault/interfaces/iVaultT1.sol": {
|
||
"content": "//SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\ninterface IFluidVaultT1 {\n /// @notice returns the vault id\n function VAULT_ID() external view returns (uint256);\n\n /// @notice reads uint256 data `result_` from storage at a bytes32 storage `slot_` key.\n function readFromStorage(bytes32 slot_) external view returns (uint256 result_);\n\n struct ConstantViews {\n address liquidity;\n address factory;\n address adminImplementation;\n address secondaryImplementation;\n address supplyToken;\n address borrowToken;\n uint8 supplyDecimals;\n uint8 borrowDecimals;\n uint vaultId;\n bytes32 liquiditySupplyExchangePriceSlot;\n bytes32 liquidityBorrowExchangePriceSlot;\n bytes32 liquidityUserSupplySlot;\n bytes32 liquidityUserBorrowSlot;\n }\n\n /// @notice returns all Vault constants\n function constantsView() external view returns (ConstantViews memory constantsView_);\n\n /// @notice fetches the latest user position after a liquidation\n function fetchLatestPosition(\n int256 positionTick_,\n uint256 positionTickId_,\n uint256 positionRawDebt_,\n uint256 tickData_\n )\n external\n view\n returns (\n int256, // tick\n uint256, // raw debt\n uint256, // raw collateral\n uint256, // branchID_\n uint256 // branchData_\n );\n\n /// @notice calculates the updated vault exchange prices\n function updateExchangePrices(\n uint256 vaultVariables2_\n )\n external\n view\n returns (\n uint256 liqSupplyExPrice_,\n uint256 liqBorrowExPrice_,\n uint256 vaultSupplyExPrice_,\n uint256 vaultBorrowExPrice_\n );\n\n /// @notice calculates the updated vault exchange prices and writes them to storage\n function updateExchangePricesOnStorage()\n external\n returns (\n uint256 liqSupplyExPrice_,\n uint256 liqBorrowExPrice_,\n uint256 vaultSupplyExPrice_,\n uint256 vaultBorrowExPrice_\n );\n\n /// @notice returns the liquidity contract address\n function LIQUIDITY() external view returns (address);\n\n function operate(\n uint256 nftId_, // if 0 then new position\n int256 newCol_, // if negative then withdraw\n int256 newDebt_, // if negative then payback\n address to_ // address at which the borrow & withdraw amount should go to. If address(0) then it'll go to msg.sender\n )\n external\n payable\n returns (\n uint256, // nftId_\n int256, // final supply amount. if - then withdraw\n int256 // final borrow amount. if - then payback\n );\n \n function liquidate(\n uint256 debtAmt_,\n uint256 colPerUnitDebt_, // min collateral needed per unit of debt in 1e18\n address to_,\n bool absorb_\n ) external payable returns (uint actualDebtAmt_, uint actualColAmt_);\n\n function absorb() external;\n\n function rebalance() external payable returns (int supplyAmt_, int borrowAmt_);\n\n error FluidLiquidateResult(uint256 colLiquidated, uint256 debtLiquidated);\n}\n"
|
||
},
|
||
"contracts/protocols/vault/rewards/events.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nabstract contract Events {\n /// @notice Emitted when magnifier is updated\n event LogUpdateMagnifier(address indexed vault, uint256 newMagnifier);\n\n /// @notice Emitted when rewards are started\n event LogRewardsStarted(uint256 startTime, uint256 endTime);\n}\n"
|
||
},
|
||
"contracts/protocols/vault/rewards/main.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { FluidVaultT1Admin } from \"../vaultT1/adminModule/main.sol\";\nimport { IFluidVaultT1 } from \"../interfaces/iVaultT1.sol\";\nimport { IFluidReserveContract } from \"../../../reserve/interfaces/iReserveContract.sol\";\nimport { LiquiditySlotsLink } from \"../../../libraries/liquiditySlotsLink.sol\";\nimport { Events } from \"./events.sol\";\nimport { Variables } from \"./variables.sol\";\nimport { ErrorTypes } from \"../errorTypes.sol\";\nimport { Error } from \"../error.sol\";\nimport { IFluidLiquidity } from \"../../../liquidity/interfaces/iLiquidity.sol\";\n\n/// @title VaultRewards\n/// @notice This contract is designed to adjust the supply rate magnifier for a vault based on the current collateral supply & supply rate.\n/// The adjustment aims to dynamically scale the rewards given to lenders as the TVL in the vault changes.\n///\n/// The magnifier is adjusted based on a regular most used reward type where rewardRate = totalRewardsAnnually / totalSupply.\n/// Reward rate is applied by adjusting the supply magnifier on vault.\n/// Adjustments are made via the rebalance function, which is restricted to be called by designated rebalancers only.\ncontract FluidVaultRewards is Variables, Events, Error {\n /// @dev Validates that an address is not the zero address\n modifier validAddress(address value_) {\n if (value_ == address(0)) {\n revert FluidVaultError(ErrorTypes.VaultRewards__AddressZero);\n }\n _;\n }\n\n /// @dev Validates that an address is a rebalancer (taken from reserve contract)\n modifier onlyRebalancer() {\n if (!RESERVE_CONTRACT.isRebalancer(msg.sender)) {\n revert FluidVaultError(ErrorTypes.VaultRewards__Unauthorized);\n }\n _;\n }\n\n /// @notice Constructs the FluidVaultRewards contract.\n /// @param reserveContract_ The address of the reserve contract where rebalancers are defined.\n /// @param vault_ The vault to which this contract will apply new magnifier parameter.\n /// @param liquidity_ Fluid liquidity address\n /// @param rewardsAmt_ Amounts of rewards to distribute\n /// @param duration_ rewards duration\n /// @param initiator_ address that can start rewards with `start()`\n /// @param collateralToken_ vault collateral token address\n constructor(\n IFluidReserveContract reserveContract_,\n IFluidVaultT1 vault_,\n IFluidLiquidity liquidity_,\n uint256 rewardsAmt_,\n uint256 duration_,\n address initiator_,\n address collateralToken_\n ) validAddress(address(reserveContract_)) validAddress(address(liquidity_)) validAddress(address(vault_)) validAddress(initiator_) validAddress(address(collateralToken_)){\n if (rewardsAmt_ == 0 || duration_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultRewards__InvalidParams);\n }\n RESERVE_CONTRACT = reserveContract_;\n VAULT = vault_;\n REWARDS_AMOUNT = rewardsAmt_;\n REWARDS_AMOUNT_PER_YEAR = rewardsAmt_ * SECONDS_PER_YEAR / duration_;\n DURATION = duration_;\n INITIATOR = initiator_;\n LIQUIDITY = liquidity_;\n VAULT_COLLATERAL_TOKEN = collateralToken_;\n\n LIQUIDITY_TOTAL_AMOUNTS_COLLATERAL_TOKEN_SLOT = LiquiditySlotsLink.calculateMappingStorageSlot(\n LiquiditySlotsLink.LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT,\n collateralToken_\n );\n LIQUIDITY_EXCHANGE_PRICE_COLLATERAL_TOKEN_SLOT = LiquiditySlotsLink.calculateMappingStorageSlot(\n LiquiditySlotsLink.LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT,\n collateralToken_\n );\n }\n\n /// @notice Rebalances the supply rate magnifier based on the current collateral supply.\n /// Can only be called by an authorized rebalancer.\n function rebalance() external onlyRebalancer {\n (uint256 newMagnifier_, bool ended_) = calculateMagnifier();\n if (ended_) {\n ended = true;\n }\n if (newMagnifier_ == currentMagnifier()) {\n revert FluidVaultError(ErrorTypes.VaultRewards__NewMagnifierSameAsOldMagnifier);\n }\n\n FluidVaultT1Admin(address(VAULT)).updateSupplyRateMagnifier(newMagnifier_);\n emit LogUpdateMagnifier(address(VAULT), newMagnifier_);\n }\n\n /// @notice Calculates the new supply rate magnifier based on the current collateral supply (`vaultTVL()`).\n /// @return magnifier_ The calculated magnifier value.\n function calculateMagnifier() public view returns (uint256 magnifier_, bool ended_) {\n uint256 currentTVL_ = vaultTVL();\n uint256 startTime_ = uint256(startTime);\n uint256 endTime_ = uint256(endTime);\n\n if (startTime_ == 0 || endTime_ == 0 || ended) {\n revert FluidVaultError(ErrorTypes.VaultRewards__RewardsNotStartedOrEnded);\n }\n\n if (block.timestamp > endTime_) {\n return (FOUR_DECIMALS, true);\n }\n\n uint supplyRate_ = getSupplyRate();\n uint rewardsRate_ = (REWARDS_AMOUNT_PER_YEAR * FOUR_DECIMALS) / currentTVL_;\n\n magnifier_ = FOUR_DECIMALS + (supplyRate_ == 0 ? rewardsRate_ : (rewardsRate_ / supplyRate_));\n if (magnifier_ > X16) {\n magnifier_ = X16;\n }\n }\n\n /// @notice returns the currently configured supply magnifier at the `VAULT`.\n function currentMagnifier() public view returns (uint256) {\n // read supply rate magnifier from Vault `vaultVariables2` located in storage slot 1, first 16 bits\n return VAULT.readFromStorage(bytes32(uint256(1))) & X16;\n }\n\n /// @notice returns the current total value locked as collateral (TVL) in the `VAULT`.\n function vaultTVL() public view returns (uint256 tvl_) {\n // read total supply raw in vault from storage slot 0 `vaultVariables`, 64 bits 82-145\n tvl_ = (VAULT.readFromStorage(bytes32(0)) >> 82) & 0xFFFFFFFFFFFFFFFF;\n\n // Converting bignumber into normal number\n tvl_ = (tvl_ >> 8) << (tvl_ & 0xFF);\n\n // get updated supply exchange price, which takes slot 1 `vaultVariables2` as input param\n (, , uint256 vaultSupplyExPrice_, ) = VAULT.updateExchangePrices(VAULT.readFromStorage(bytes32(uint256(1))));\n\n // converting raw total supply into normal amount\n tvl_ = (tvl_ * vaultSupplyExPrice_) / 1e12;\n }\n\n function getSupplyRate() public view returns (uint supplyRate_) {\n uint256 exchangePriceAndConfig_ = LIQUIDITY.readFromStorage(LIQUIDITY_EXCHANGE_PRICE_COLLATERAL_TOKEN_SLOT);\n uint256 totalAmounts_ = LIQUIDITY.readFromStorage(LIQUIDITY_TOTAL_AMOUNTS_COLLATERAL_TOKEN_SLOT);\n\n uint borrowRate_ = exchangePriceAndConfig_ & X16;\n uint fee_ = (exchangePriceAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14;\n uint supplyExchangePrice_ = ((exchangePriceAndConfig_ >>\n LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) & X64);\n uint borrowExchangePrice_ = ((exchangePriceAndConfig_ >>\n LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) & X64);\n\n // Extract supply raw interest\n uint256 supplyWithInterest_ = totalAmounts_ & X64;\n supplyWithInterest_ =\n (supplyWithInterest_ >> DEFAULT_EXPONENT_SIZE) <<\n (supplyWithInterest_ & DEFAULT_EXPONENT_MASK);\n\n // Extract borrow raw interest\n uint256 borrowWithInterest_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) &\n X64;\n borrowWithInterest_ =\n (borrowWithInterest_ >> DEFAULT_EXPONENT_SIZE) <<\n (borrowWithInterest_ & DEFAULT_EXPONENT_MASK);\n\n if (supplyWithInterest_ > 0) {\n // use old exchange prices for supply rate to be at same level as borrow rate from storage.\n // Note the rate here can be a tiny bit with higher precision because we use borrowWithInterest_ / supplyWithInterest_\n // which has higher precision than the utilization used from storage in LiquidityCalcs\n supplyWithInterest_ = (supplyWithInterest_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION; // normalized from raw\n borrowWithInterest_ = (borrowWithInterest_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION; // normalized from raw\n\n supplyRate_ =\n (borrowRate_ * (FOUR_DECIMALS - fee_) * borrowWithInterest_) /\n (supplyWithInterest_ * FOUR_DECIMALS);\n }\n }\n\n function start() external {\n if (msg.sender != INITIATOR) {\n revert FluidVaultError(ErrorTypes.VaultRewards__NotTheInitiator);\n }\n if (startTime > 0 || endTime > 0) {\n revert FluidVaultError(ErrorTypes.VaultRewards__AlreadyStarted);\n }\n startTime = uint96(block.timestamp);\n endTime = uint96(block.timestamp + DURATION);\n\n emit LogRewardsStarted(startTime, endTime);\n }\n}\n"
|
||
},
|
||
"contracts/protocols/vault/rewards/variables.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IFluidReserveContract } from \"../../../reserve/interfaces/iReserveContract.sol\";\nimport { IFluidVaultT1 } from \"../interfaces/iVaultT1.sol\";\nimport { IFluidLiquidity } from \"../../../liquidity/interfaces/iLiquidity.sol\";\n\nabstract contract Constants {\n IFluidLiquidity public immutable LIQUIDITY;\n IFluidReserveContract public immutable RESERVE_CONTRACT;\n IFluidVaultT1 public immutable VAULT;\n uint256 public immutable REWARDS_AMOUNT;\n uint256 public immutable REWARDS_AMOUNT_PER_YEAR;\n uint256 public immutable DURATION;\n address public immutable INITIATOR;\n address public immutable VAULT_COLLATERAL_TOKEN;\n\n bytes32 internal immutable LIQUIDITY_TOTAL_AMOUNTS_COLLATERAL_TOKEN_SLOT;\n bytes32 internal immutable LIQUIDITY_EXCHANGE_PRICE_COLLATERAL_TOKEN_SLOT;\n uint256 internal constant FOUR_DECIMALS = 10000;\n uint256 internal constant SECONDS_PER_YEAR = 365 days;\n uint256 internal constant DEFAULT_EXPONENT_SIZE = 8;\n uint256 internal constant DEFAULT_EXPONENT_MASK = 0xff;\n uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12;\n uint256 internal constant X14 = 0x3fff;\n uint256 internal constant X16 = 0xffff;\n uint256 internal constant X64 = 0xffffffffffffffff;\n}\n\nabstract contract Variables is Constants {\n bool public ended; // when rewards are ended\n uint96 public startTime;\n uint96 public endTime;\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/adminModule/events.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\ncontract Events {\n /// @notice emitted when the supply rate magnifier config is updated\n event LogUpdateSupplyRateMagnifier(uint supplyRateMagnifier_);\n\n /// @notice emitted when the borrow rate magnifier config is updated\n event LogUpdateBorrowRateMagnifier(uint borrowRateMagnifier_);\n\n /// @notice emitted when the collateral factor config is updated\n event LogUpdateCollateralFactor(uint collateralFactor_);\n\n /// @notice emitted when the liquidation threshold config is updated\n event LogUpdateLiquidationThreshold(uint liquidationThreshold_);\n\n /// @notice emitted when the liquidation max limit config is updated\n event LogUpdateLiquidationMaxLimit(uint liquidationMaxLimit_);\n\n /// @notice emitted when the withdrawal gap config is updated\n event LogUpdateWithdrawGap(uint withdrawGap_);\n\n /// @notice emitted when the liquidation penalty config is updated\n event LogUpdateLiquidationPenalty(uint liquidationPenalty_);\n\n /// @notice emitted when the borrow fee config is updated\n event LogUpdateBorrowFee(uint borrowFee_);\n\n /// @notice emitted when the core setting configs are updated\n event LogUpdateCoreSettings(\n uint supplyRateMagnifier_,\n uint borrowRateMagnifier_,\n uint collateralFactor_,\n uint liquidationThreshold_,\n uint liquidationMaxLimit_,\n uint withdrawGap_,\n uint liquidationPenalty_,\n uint borrowFee_\n );\n\n /// @notice emitted when the oracle is updated\n event LogUpdateOracle(address indexed newOracle_);\n\n /// @notice emitted when the allowed rebalancer is updated\n event LogUpdateRebalancer(address indexed newRebalancer_);\n\n /// @notice emitted when funds are rescued\n event LogRescueFunds(address indexed token_);\n\n /// @notice emitted when dust debt is absorbed for `nftIds_`\n event LogAbsorbDustDebt(uint256[] nftIds_, uint256 absorbedDustDebt_);\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/adminModule/main.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IERC20 } from \"@openzeppelin/contracts/token/ERC20/IERC20.sol\";\nimport { SafeERC20 } from \"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol\";\nimport { Address } from \"@openzeppelin/contracts/utils/Address.sol\";\n\nimport { Variables } from \"../common/variables.sol\";\nimport { Events } from \"./events.sol\";\nimport { ErrorTypes } from \"../../errorTypes.sol\";\nimport { Error } from \"../../error.sol\";\nimport { IFluidVaultT1 } from \"../../interfaces/iVaultT1.sol\";\nimport { BigMathMinified } from \"../../../../libraries/bigMathMinified.sol\";\nimport { TickMath } from \"../../../../libraries/tickMath.sol\";\n\n/// @notice Fluid Vault protocol Admin Module contract.\n/// Implements admin related methods to set configs such as liquidation params, rates\n/// oracle address etc.\n/// Methods are limited to be called via delegateCall only. Vault CoreModule (\"VaultT1\" contract)\n/// is expected to call the methods implemented here after checking the msg.sender is authorized.\n/// All methods update the exchange prices in storage before changing configs.\ncontract FluidVaultT1Admin is Variables, Events, Error {\n uint private constant X8 = 0xff;\n uint private constant X10 = 0x3ff;\n uint private constant X16 = 0xffff;\n uint private constant X19 = 0x7ffff;\n uint private constant X24 = 0xffffff;\n uint internal constant X64 = 0xffffffffffffffff;\n uint private constant X96 = 0xffffffffffffffffffffffff;\n address private constant NATIVE_TOKEN = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;\n\n address private immutable addressThis;\n\n constructor() {\n addressThis = address(this);\n }\n\n modifier _verifyCaller() {\n if (address(this) == addressThis) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__OnlyDelegateCallAllowed);\n }\n _;\n }\n\n /// @dev updates exchange price on storage, called on all admin methods in combination with _verifyCaller modifier so\n /// only called by authorized delegatecall\n modifier _updateExchangePrice() {\n IFluidVaultT1(address(this)).updateExchangePricesOnStorage();\n _;\n }\n\n function _checkLiquidationMaxLimitAndPenalty(uint liquidationMaxLimit_, uint liquidationPenalty_) private pure {\n // liquidation max limit with penalty should not go above 99.7%\n // As liquidation with penalty can happen from liquidation Threshold to max limit\n // If it goes above 100% than that means liquidator is getting more collateral than user's available\n if ((liquidationMaxLimit_ + liquidationPenalty_) > 9970) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n }\n }\n\n /// @notice updates the supply rate magnifier to `supplyRateMagnifier_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateSupplyRateMagnifier(uint supplyRateMagnifier_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateSupplyRateMagnifier(supplyRateMagnifier_);\n\n if (supplyRateMagnifier_ > X16) revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2 & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0000) |\n supplyRateMagnifier_;\n }\n\n /// @notice updates the borrow rate magnifier to `borrowRateMagnifier_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateBorrowRateMagnifier(uint borrowRateMagnifier_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateBorrowRateMagnifier(borrowRateMagnifier_);\n\n if (borrowRateMagnifier_ > X16) revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2 & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff0000ffff) |\n (borrowRateMagnifier_ << 16);\n }\n\n /// @notice updates the collateral factor to `collateralFactor_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateCollateralFactor(uint collateralFactor_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateCollateralFactor(collateralFactor_);\n\n uint vaultVariables2_ = vaultVariables2;\n uint liquidationThreshold_ = ((vaultVariables2_ >> 42) & X10);\n\n collateralFactor_ = collateralFactor_ / 10;\n\n if (collateralFactor_ >= liquidationThreshold_)\n revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2_ & 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffc00ffffffff) |\n (collateralFactor_ << 32);\n }\n\n /// @notice updates the liquidation threshold to `liquidationThreshold_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateLiquidationThreshold(uint liquidationThreshold_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateLiquidationThreshold(liquidationThreshold_);\n\n uint vaultVariables2_ = vaultVariables2;\n uint collateralFactor_ = ((vaultVariables2_ >> 32) & X10);\n uint liquidationMaxLimit_ = ((vaultVariables2_ >> 52) & X10);\n\n liquidationThreshold_ = liquidationThreshold_ / 10;\n\n if ((collateralFactor_ >= liquidationThreshold_) || (liquidationThreshold_ >= liquidationMaxLimit_))\n revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2_ & 0xfffffffffffffffffffffffffffffffffffffffffffffffffff003ffffffffff) |\n (liquidationThreshold_ << 42);\n }\n\n /// @notice updates the liquidation max limit to `liquidationMaxLimit_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateLiquidationMaxLimit(uint liquidationMaxLimit_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateLiquidationMaxLimit(liquidationMaxLimit_);\n\n uint vaultVariables2_ = vaultVariables2;\n uint liquidationThreshold_ = ((vaultVariables2_ >> 42) & X10);\n uint liquidationPenalty_ = ((vaultVariables2_ >> 72) & X10);\n\n // both are in 1e2 decimals (1e2 = 1%)\n _checkLiquidationMaxLimitAndPenalty(liquidationMaxLimit_, liquidationPenalty_);\n\n liquidationMaxLimit_ = liquidationMaxLimit_ / 10;\n\n if (liquidationThreshold_ >= liquidationMaxLimit_)\n revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2_ & 0xffffffffffffffffffffffffffffffffffffffffffffffffc00fffffffffffff) |\n (liquidationMaxLimit_ << 52);\n }\n\n /// @notice updates the withdrawal gap to `withdrawGap_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateWithdrawGap(uint withdrawGap_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateWithdrawGap(withdrawGap_);\n\n withdrawGap_ = withdrawGap_ / 10;\n\n // withdrawGap must not be > 100%\n if (withdrawGap_ > 1000) revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2 & 0xffffffffffffffffffffffffffffffffffffffffffffff003fffffffffffffff) |\n (withdrawGap_ << 62);\n }\n\n /// @notice updates the liquidation penalty to `liquidationPenalty_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateLiquidationPenalty(uint liquidationPenalty_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateLiquidationPenalty(liquidationPenalty_);\n\n uint vaultVariables2_ = vaultVariables2;\n uint liquidationMaxLimit_ = ((vaultVariables2_ >> 52) & X10);\n\n // Converting liquidationMaxLimit_ in 1e2 decimals (1e2 = 1%)\n _checkLiquidationMaxLimitAndPenalty((liquidationMaxLimit_ * 10), liquidationPenalty_);\n\n if (liquidationPenalty_ > X10) revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2_ & 0xfffffffffffffffffffffffffffffffffffffffffffc00ffffffffffffffffff) |\n (liquidationPenalty_ << 72);\n }\n\n /// @notice updates the borrow fee to `borrowFee_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateBorrowFee(uint borrowFee_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateBorrowFee(borrowFee_);\n\n if (borrowFee_ > X10) revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2 & 0xfffffffffffffffffffffffffffffffffffffffff003ffffffffffffffffffff) |\n (borrowFee_ << 82);\n }\n\n /// @notice updates the all Vault core settings according to input params.\n /// All input values are expected in 1e2 (1% = 100, 100% = 10_000).\n function updateCoreSettings(\n uint256 supplyRateMagnifier_,\n uint256 borrowRateMagnifier_,\n uint256 collateralFactor_,\n uint256 liquidationThreshold_,\n uint256 liquidationMaxLimit_,\n uint256 withdrawGap_,\n uint256 liquidationPenalty_,\n uint256 borrowFee_\n ) public _updateExchangePrice _verifyCaller {\n // emitting the event at the start as then we are updating numbers to store in a more optimized way\n emit LogUpdateCoreSettings(\n supplyRateMagnifier_,\n borrowRateMagnifier_,\n collateralFactor_,\n liquidationThreshold_,\n liquidationMaxLimit_,\n withdrawGap_,\n liquidationPenalty_,\n borrowFee_\n );\n\n _checkLiquidationMaxLimitAndPenalty(liquidationMaxLimit_, liquidationPenalty_);\n\n collateralFactor_ = collateralFactor_ / 10;\n liquidationThreshold_ = liquidationThreshold_ / 10;\n liquidationMaxLimit_ = liquidationMaxLimit_ / 10;\n withdrawGap_ = withdrawGap_ / 10;\n\n if (\n (supplyRateMagnifier_ > X16) ||\n (borrowRateMagnifier_ > X16) ||\n (collateralFactor_ >= liquidationThreshold_) ||\n (liquidationThreshold_ >= liquidationMaxLimit_) ||\n (withdrawGap_ > X10) ||\n (liquidationPenalty_ > X10) ||\n (borrowFee_ > X10)\n ) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n }\n\n vaultVariables2 =\n (vaultVariables2 & 0xfffffffffffffffffffffffffffffffffffffffff00000000000000000000000) |\n supplyRateMagnifier_ |\n (borrowRateMagnifier_ << 16) |\n (collateralFactor_ << 32) |\n (liquidationThreshold_ << 42) |\n (liquidationMaxLimit_ << 52) |\n (withdrawGap_ << 62) |\n (liquidationPenalty_ << 72) |\n (borrowFee_ << 82);\n }\n\n /// @notice updates the Vault oracle to `newOracle_`. Must implement the FluidOracle interface.\n function updateOracle(address newOracle_) public _updateExchangePrice _verifyCaller {\n if (newOracle_ == address(0)) revert FluidVaultError(ErrorTypes.VaultT1Admin__AddressZeroNotAllowed);\n\n // Removing current oracle by masking only first 96 bits then inserting new oracle as bits\n vaultVariables2 = (vaultVariables2 & X96) | (uint256(uint160(newOracle_)) << 96);\n\n emit LogUpdateOracle(newOracle_);\n }\n\n /// @notice updates the allowed rebalancer to `newRebalancer_`.\n function updateRebalancer(address newRebalancer_) public _updateExchangePrice _verifyCaller {\n if (newRebalancer_ == address(0)) revert FluidVaultError(ErrorTypes.VaultT1Admin__AddressZeroNotAllowed);\n\n rebalancer = newRebalancer_;\n\n emit LogUpdateRebalancer(newRebalancer_);\n }\n\n /// @notice sends any potentially stuck funds to Liquidity contract.\n /// @dev this contract never holds any funds as all operations send / receive funds from user <-> Liquidity.\n function rescueFunds(address token_) external _verifyCaller {\n if (token_ == NATIVE_TOKEN) {\n Address.sendValue(payable(IFluidVaultT1(address(this)).LIQUIDITY()), address(this).balance);\n } else {\n SafeERC20.safeTransfer(\n IERC20(token_),\n IFluidVaultT1(address(this)).LIQUIDITY(),\n IERC20(token_).balanceOf(address(this))\n );\n }\n\n emit LogRescueFunds(token_);\n }\n\n /// @notice absorbs accumulated dust debt\n /// @dev in decades if a lot of positions are 100% liquidated (aka absorbed) then dust debt can mount up\n /// which is basically sort of an extra revenue for the protocol.\n //\n // this function might never come in use that's why adding it in admin module\n function absorbDustDebt(uint[] memory nftIds_) public _verifyCaller {\n uint nftId_;\n uint posData_;\n int posTick_;\n uint tickId_;\n uint posCol_;\n uint posDebt_;\n uint posDustDebt_;\n uint tickData_;\n\n uint absorbedDustDebt_ = absorbedDustDebt;\n\n for (uint i = 0; i < nftIds_.length; ) {\n nftId_ = nftIds_[i];\n if (nftId_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__NftIdShouldBeNonZero);\n }\n\n // user's position data\n posData_ = positionData[nftId_];\n\n if (posData_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__NftNotOfThisVault);\n }\n\n posCol_ = (posData_ >> 45) & X64;\n // Converting big number into normal number\n posCol_ = (posCol_ >> 8) << (posCol_ & X8);\n\n posDustDebt_ = (posData_ >> 109) & X64;\n // Converting big number into normal number\n posDustDebt_ = (posDustDebt_ >> 8) << (posDustDebt_ & X8);\n\n if (posDustDebt_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__DustDebtIsZero);\n }\n\n // borrow position (has collateral & debt)\n posTick_ = posData_ & 2 == 2 ? int((posData_ >> 2) & X19) : -int((posData_ >> 2) & X19);\n tickId_ = (posData_ >> 21) & X24;\n\n posDebt_ = (TickMath.getRatioAtTick(int24(posTick_)) * posCol_) >> 96;\n\n // Tick data from user's tick\n tickData_ = tickData[posTick_];\n\n // Checking if tick is liquidated OR if the total IDs of tick is greater than user's tick ID\n if (((tickData_ & 1) == 1) || (((tickData_ >> 1) & X24) > tickId_)) {\n // User got liquidated\n (, posDebt_, , , ) = IFluidVaultT1(address(this)).fetchLatestPosition(\n posTick_,\n tickId_,\n posDebt_,\n tickData_\n );\n if (posDebt_ > 0) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__FinalDebtShouldBeZero);\n }\n // absorbing user's debt as it's 100% or almost 100% liquidated\n absorbedDustDebt_ = absorbedDustDebt_ + posDustDebt_;\n // making position as supply only\n positionData[nftId_] = 1;\n } else {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__NftNotLiquidated);\n }\n\n unchecked {\n i++;\n }\n }\n\n if (absorbedDustDebt_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__AbsorbedDustDebtIsZero);\n }\n\n uint vaultVariables_ = vaultVariables;\n uint totalBorrow_ = (vaultVariables_ >> 146) & X64;\n // Converting big number into normal number\n totalBorrow_ = (totalBorrow_ >> 8) << (totalBorrow_ & X8);\n // note: by default dust debt is not added into total borrow but on 100% liquidation (aka absorb) dust debt equivalent\n // is removed from total borrow so adding it back again here\n totalBorrow_ = totalBorrow_ + absorbedDustDebt_;\n totalBorrow_ = BigMathMinified.toBigNumber(totalBorrow_, 56, 8, BigMathMinified.ROUND_UP);\n\n // adding absorbed dust debt to total borrow so it will get included in the next rebalancing.\n // there is some fuzziness here as when the position got fully liquidated (aka absorbed) the exchange price was different\n // than what it'll be now. The fuzziness which will be extremely small so we can ignore it\n // updating on storage\n vaultVariables =\n (vaultVariables_ & 0xfffffffffffc0000000000000003ffffffffffffffffffffffffffffffffffff) |\n (totalBorrow_ << 146);\n\n // updating on storage\n absorbedDustDebt = 0;\n\n emit LogAbsorbDustDebt(nftIds_, absorbedDustDebt_);\n }\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/common/variables.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\ncontract Variables {\n /***********************************|\n | Storage Variables |\n |__________________________________*/\n\n /// note: in all variables. For tick >= 0 are represented with bit as 1, tick < 0 are represented with bit as 0\n /// note: read all the variables through storageRead.sol\n\n /// note: vaultVariables contains vault variables which need regular updates through transactions\n /// First 1 bit => 0 => re-entrancy. If 0 then allow transaction to go, else throw.\n /// Next 1 bit => 1 => Is the current active branch liquidated? If true then check the branch's minima tick before creating a new position\n /// If the new tick is greater than minima tick then initialize a new branch, make that as current branch & do proper linking\n /// Next 1 bit => 2 => sign of topmost tick (0 -> negative; 1 -> positive)\n /// Next 19 bits => 3-21 => absolute value of topmost tick\n /// Next 30 bits => 22-51 => current branch ID\n /// Next 30 bits => 52-81 => total branch ID\n /// Next 64 bits => 82-145 => Total supply\n /// Next 64 bits => 146-209 => Total borrow\n /// Next 32 bits => 210-241 => Total positions\n uint256 internal vaultVariables;\n\n /// note: vaultVariables2 contains variables which do not update on every transaction. So mainly admin/auth set amount\n /// First 16 bits => 0-15 => supply rate magnifier; 10000 = 1x (Here 16 bits should be more than enough)\n /// Next 16 bits => 16-31 => borrow rate magnifier; 10000 = 1x (Here 16 bits should be more than enough)\n /// Next 10 bits => 32-41 => collateral factor. 800 = 0.8 = 80% (max precision of 0.1%)\n /// Next 10 bits => 42-51 => liquidation Threshold. 900 = 0.9 = 90% (max precision of 0.1%)\n /// Next 10 bits => 52-61 => liquidation Max Limit. 950 = 0.95 = 95% (max precision of 0.1%) (above this 100% liquidation can happen)\n /// Next 10 bits => 62-71 => withdraw gap. 100 = 0.1 = 10%. (max precision of 0.1%) (max 7 bits can also suffice for the requirement here of 0.1% to 10%). Needed to save some limits on withdrawals so liquidate can work seamlessly.\n /// Next 10 bits => 72-81 => liquidation penalty. 100 = 0.01 = 1%. (max precision of 0.01%) (max liquidation penantly can be 10.23%). Applies when tick is in between liquidation Threshold & liquidation Max Limit.\n /// Next 10 bits => 82-91 => borrow fee. 100 = 0.01 = 1%. (max precision of 0.01%) (max borrow fee can be 10.23%). Fees on borrow.\n /// Next 4 bits => 92-95 => empty\n /// Next 160 bits => 96-255 => Oracle address\n uint256 internal vaultVariables2;\n\n /// note: stores absorbed liquidity\n /// First 128 bits raw debt amount\n /// last 128 bits raw col amount\n uint256 internal absorbedLiquidity;\n\n /// position index => position data uint\n /// if the entire variable is 0 (meaning not initialized) at the start that means no position at all\n /// First 1 bit => 0 => position type (0 => borrow position; 1 => supply position)\n /// Next 1 bit => 1 => sign of user's tick (0 => negative; 1 => positive)\n /// Next 19 bits => 2-20 => absolute value of user's tick\n /// Next 24 bits => 21-44 => user's tick's id\n /// Below we are storing user's collateral & not debt, because the position can also be only collateral with no tick but it can never be only debt\n /// Next 64 bits => 45-108 => user's supply amount. Debt will be calculated through supply & ratio.\n /// Next 64 bits => 109-172 => user's dust debt amount. User's net debt = total debt - dust amount. Total debt is calculated through supply & ratio\n /// User won't pay any extra interest on dust debt & hence we will not show it as a debt on UI. For user's there's no dust.\n mapping(uint256 => uint256) internal positionData;\n\n /// Tick has debt only keeps data of non liquidated positions. liquidated tick's data stays in branch itself\n /// tick parent => uint (represents bool for 256 children)\n /// parent of (i)th tick:-\n /// if (i>=0) (i / 256);\n /// else ((i + 1) / 256) - 1\n /// first bit of the variable is the smallest tick & last bit is the biggest tick of that slot\n mapping(int256 => uint256) internal tickHasDebt;\n\n /// mapping tickId => tickData\n /// Tick related data. Total debt & other things\n /// First bit => 0 => If 1 then liquidated else not liquidated\n /// Next 24 bits => 1-24 => Total IDs. ID should start from 1.\n /// If not liquidated:\n /// Next 64 bits => 25-88 => raw debt\n /// If liquidated\n /// The below 3 things are of last ID. This is to be updated when user creates a new position\n /// Next 1 bit => 25 => Is 100% liquidated? If this is 1 meaning it was above max tick when it got liquidated (100% liquidated)\n /// Next 30 bits => 26-55 => branch ID where this tick got liquidated\n /// Next 50 bits => 56-105 => debt factor 50 bits (35 bits coefficient | 15 bits expansion)\n mapping(int256 => uint256) internal tickData;\n\n /// tick id => previous tick id liquidation data. ID starts from 1\n /// One tick ID contains 3 IDs of 80 bits in it, holding liquidation data of previously active but liquidated ticks\n /// 81 bits data below\n /// #### First 85 bits ####\n /// 1st bit => 0 => Is 100% liquidated? If this is 1 meaning it was above max tick when it got liquidated\n /// Next 30 bits => 1-30 => branch ID where this tick got liquidated\n /// Next 50 bits => 31-80 => debt factor 50 bits (35 bits coefficient | 15 bits expansion)\n /// #### Second 85 bits ####\n /// 85th bit => 85 => Is 100% liquidated? If this is 1 meaning it was above max tick when it got liquidated\n /// Next 30 bits => 86-115 => branch ID where this tick got liquidated\n /// Next 50 bits => 116-165 => debt factor 50 bits (35 bits coefficient | 15 bits expansion)\n /// #### Third 85 bits ####\n /// 170th bit => 170 => Is 100% liquidated? If this is 1 meaning it was above max tick when it got liquidated\n /// Next 30 bits => 171-200 => branch ID where this tick got liquidated\n /// Next 50 bits => 201-250 => debt factor 50 bits (35 bits coefficient | 15 bits expansion)\n mapping(int256 => mapping(uint256 => uint256)) internal tickId;\n\n /// mapping branchId => branchData\n /// First 2 bits => 0-1 => if 0 then not liquidated, if 1 then liquidated, if 2 then merged, if 3 then closed\n /// merged means the branch is merged into it's base branch\n /// closed means all the users are 100% liquidated\n /// Next 1 bit => 2 => minima tick sign of this branch. Will only be there if any liquidation happened.\n /// Next 19 bits => 3-21 => minima tick of this branch. Will only be there if any liquidation happened.\n /// Next 30 bits => 22-51 => Partials of minima tick of branch this is connected to. 0 if master branch.\n /// Next 64 bits => 52-115 Debt liquidity at this branch. Similar to last's top tick data. Remaining debt will move here from tickData after first liquidation\n /// If not merged\n /// Next 50 bits => 116-165 => Debt factor or of this branch. (35 bits coefficient | 15 bits expansion)\n /// If merged\n /// Next 50 bits => 116-165 => Connection/adjustment debt factor of this branch with the next branch.\n /// If closed\n /// Next 50 bits => 116-165 => Debt factor as 0. As all the user's positions are now fully gone\n /// following values are present always again (merged / not merged / closed)\n /// Next 30 bits => 166-195 => Branch's ID with which this branch is connected. If 0 then that means this is the master branch\n /// Next 1 bit => 196 => sign of minima tick of branch this is connected to. 0 if master branch.\n /// Next 19 bits => 197-215 => minima tick of branch this is connected to. 0 if master branch.\n mapping(uint256 => uint256) internal branchData;\n\n /// Exchange prices are in 1e12\n /// First 64 bits => 0-63 => Liquidity's collateral token supply exchange price\n /// First 64 bits => 64-127 => Liquidity's debt token borrow exchange price\n /// First 64 bits => 128-191 => Vault's collateral token supply exchange price\n /// First 64 bits => 192-255 => Vault's debt token borrow exchange price\n uint256 internal rates;\n\n /// address of rebalancer\n address internal rebalancer;\n\n uint256 internal absorbedDustDebt;\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/coreModule/constantVariables.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IFluidVaultFactory } from \"../../interfaces/iVaultFactory.sol\";\nimport { IFluidLiquidity } from \"../../../../liquidity/interfaces/iLiquidity.sol\";\nimport { StorageRead } from \"../../../../libraries/storageRead.sol\";\n\nimport { Structs } from \"./structs.sol\";\n\ninterface TokenInterface {\n function decimals() external view returns (uint8);\n}\n\ncontract ConstantVariables is StorageRead, Structs {\n /***********************************|\n | Constant Variables |\n |__________________________________*/\n\n address internal constant NATIVE_TOKEN = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;\n /// @dev collateral token address\n address internal immutable SUPPLY_TOKEN;\n /// @dev borrow token address\n address internal immutable BORROW_TOKEN;\n\n /// @dev Token decimals. For example wETH is 18 decimals\n uint8 internal immutable SUPPLY_DECIMALS;\n /// @dev Token decimals. For example USDC is 6 decimals\n uint8 internal immutable BORROW_DECIMALS;\n\n /// @dev VaultT1 AdminModule implemenation address\n address internal immutable ADMIN_IMPLEMENTATION;\n\n /// @dev VaultT1 Secondary implemenation (main2.sol) address\n address internal immutable SECONDARY_IMPLEMENTATION;\n\n /// @dev liquidity proxy contract address\n IFluidLiquidity public immutable LIQUIDITY;\n\n /// @dev vault factory contract address\n IFluidVaultFactory public immutable VAULT_FACTORY;\n\n uint public immutable VAULT_ID;\n\n uint internal constant X8 = 0xff;\n uint internal constant X10 = 0x3ff;\n uint internal constant X16 = 0xffff;\n uint internal constant X19 = 0x7ffff;\n uint internal constant X20 = 0xfffff;\n uint internal constant X24 = 0xffffff;\n uint internal constant X25 = 0x1ffffff;\n uint internal constant X30 = 0x3fffffff;\n uint internal constant X35 = 0x7ffffffff;\n uint internal constant X50 = 0x3ffffffffffff;\n uint internal constant X64 = 0xffffffffffffffff;\n uint internal constant X96 = 0xffffffffffffffffffffffff;\n uint internal constant X128 = 0xffffffffffffffffffffffffffffffff;\n\n uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12;\n\n /// @dev slot ids in Liquidity contract. Helps in low gas fetch from liquidity contract by skipping delegate call\n bytes32 internal immutable LIQUIDITY_SUPPLY_EXCHANGE_PRICE_SLOT;\n bytes32 internal immutable LIQUIDITY_BORROW_EXCHANGE_PRICE_SLOT;\n bytes32 internal immutable LIQUIDITY_USER_SUPPLY_SLOT;\n bytes32 internal immutable LIQUIDITY_USER_BORROW_SLOT;\n\n /// @notice returns all Vault constants\n function constantsView() external view returns (ConstantViews memory constantsView_) {\n constantsView_.liquidity = address(LIQUIDITY);\n constantsView_.factory = address(VAULT_FACTORY);\n constantsView_.adminImplementation = ADMIN_IMPLEMENTATION;\n constantsView_.secondaryImplementation = SECONDARY_IMPLEMENTATION;\n constantsView_.supplyToken = SUPPLY_TOKEN;\n constantsView_.borrowToken = BORROW_TOKEN;\n constantsView_.supplyDecimals = SUPPLY_DECIMALS;\n constantsView_.borrowDecimals = BORROW_DECIMALS;\n constantsView_.vaultId = VAULT_ID;\n constantsView_.liquiditySupplyExchangePriceSlot = LIQUIDITY_SUPPLY_EXCHANGE_PRICE_SLOT;\n constantsView_.liquidityBorrowExchangePriceSlot = LIQUIDITY_BORROW_EXCHANGE_PRICE_SLOT;\n constantsView_.liquidityUserSupplySlot = LIQUIDITY_USER_SUPPLY_SLOT;\n constantsView_.liquidityUserBorrowSlot = LIQUIDITY_USER_BORROW_SLOT;\n }\n\n constructor(ConstantViews memory constants_) {\n LIQUIDITY = IFluidLiquidity(constants_.liquidity);\n VAULT_FACTORY = IFluidVaultFactory(constants_.factory);\n VAULT_ID = constants_.vaultId;\n\n SUPPLY_TOKEN = constants_.supplyToken;\n BORROW_TOKEN = constants_.borrowToken;\n SUPPLY_DECIMALS = constants_.supplyDecimals;\n BORROW_DECIMALS = constants_.borrowDecimals;\n\n // @dev those slots are calculated in the deploymentLogics / VaultFactory\n LIQUIDITY_SUPPLY_EXCHANGE_PRICE_SLOT = constants_.liquiditySupplyExchangePriceSlot;\n LIQUIDITY_BORROW_EXCHANGE_PRICE_SLOT = constants_.liquidityBorrowExchangePriceSlot;\n LIQUIDITY_USER_SUPPLY_SLOT = constants_.liquidityUserSupplySlot;\n LIQUIDITY_USER_BORROW_SLOT = constants_.liquidityUserBorrowSlot;\n\n ADMIN_IMPLEMENTATION = constants_.adminImplementation;\n SECONDARY_IMPLEMENTATION = constants_.secondaryImplementation;\n }\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/coreModule/events.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\ncontract Events {\n /// @notice emitted when an operate() method is executed that changes collateral (`colAmt_`) / debt (debtAmt_`)\n /// amount for a `user_` position with `nftId_`. Receiver of any funds is the address `to_`.\n event LogOperate(address user_, uint256 nftId_, int256 colAmt_, int256 debtAmt_, address to_);\n\n /// @notice emitted when the exchange prices are updated in storage.\n event LogUpdateExchangePrice(uint256 supplyExPrice_, uint256 borrowExPrice_);\n\n /// @notice emitted when a liquidation has been executed.\n event LogLiquidate(address liquidator_, uint256 colAmt_, uint256 debtAmt_, address to_);\n\n /// @notice emitted when `absorb()` was executed to absorb bad debt.\n event LogAbsorb(uint colAbsorbedRaw_, uint debtAbsorbedRaw_);\n\n /// @notice emitted when a `rebalance()` has been executed, balancing out total supply / borrow between Vault\n /// and Fluid Liquidity pools.\n /// if `colAmt_` is positive then profit, meaning withdrawn from vault and sent to rebalancer address.\n /// if `colAmt_` is negative then loss, meaning transfer from rebalancer address to vault and deposit.\n /// if `debtAmt_` is positive then profit, meaning borrow from vault and sent to rebalancer address.\n /// if `debtAmt_` is negative then loss, meaning transfer from rebalancer address to vault and payback.\n event LogRebalance(int colAmt_, int debtAmt_);\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/coreModule/helpers.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { Variables } from \"../common/variables.sol\";\nimport { ConstantVariables } from \"./constantVariables.sol\";\nimport { Events } from \"./events.sol\";\nimport { TickMath } from \"../../../../libraries/tickMath.sol\";\nimport { BigMathMinified } from \"../../../../libraries/bigMathMinified.sol\";\nimport { BigMathVault } from \"../../../../libraries/bigMathVault.sol\";\nimport { LiquidityCalcs } from \"../../../../libraries/liquidityCalcs.sol\";\n\nimport { ErrorTypes } from \"../../errorTypes.sol\";\nimport { Error } from \"../../error.sol\";\n\n/// @dev Fluid vault protocol helper methods. Mostly used for `operate()` and `liquidate()` methods of CoreModule.\nabstract contract Helpers is Variables, ConstantVariables, Events, Error {\n using BigMathMinified for uint256;\n using BigMathVault for uint256;\n\n /// @notice Calculates new vault exchange prices. Does not update values in storage.\n /// @param vaultVariables2_ exactly same as vaultVariables2 from storage\n /// @return liqSupplyExPrice_ latest liquidity's supply token supply exchange price\n /// @return liqBorrowExPrice_ latest liquidity's borrow token borrow exchange price\n /// @return vaultSupplyExPrice_ latest vault's supply token exchange price\n /// @return vaultBorrowExPrice_ latest vault's borrow token exchange price\n function updateExchangePrices(\n uint256 vaultVariables2_\n )\n public\n view\n returns (\n uint256 liqSupplyExPrice_,\n uint256 liqBorrowExPrice_,\n uint256 vaultSupplyExPrice_,\n uint256 vaultBorrowExPrice_\n )\n {\n // Fetching last stored rates\n uint rates_ = rates;\n\n (liqSupplyExPrice_, ) = LiquidityCalcs.calcExchangePrices(\n LIQUIDITY.readFromStorage(LIQUIDITY_SUPPLY_EXCHANGE_PRICE_SLOT)\n );\n (, liqBorrowExPrice_) = LiquidityCalcs.calcExchangePrices(\n LIQUIDITY.readFromStorage(LIQUIDITY_BORROW_EXCHANGE_PRICE_SLOT)\n );\n\n uint256 oldLiqSupplyExPrice_ = (rates_ & X64);\n uint256 oldLiqBorrowExPrice_ = ((rates_ >> 64) & X64);\n if (liqSupplyExPrice_ < oldLiqSupplyExPrice_ || liqBorrowExPrice_ < oldLiqBorrowExPrice_) {\n // new liquidity exchange price is < than the old one. liquidity exchange price should only ever increase.\n // If not, something went wrong and avoid proceeding with unknown outcome.\n revert FluidVaultError(ErrorTypes.VaultT1__LiquidityExchangePriceUnexpected);\n }\n\n // liquidity Exchange Prices always increases in next block. Hence substraction with old will never be negative\n // uint64 * 1e18 is the max the number that could be\n unchecked {\n // Calculating increase in supply exchange price w.r.t last stored liquidity's exchange price\n // vaultSupplyExPrice_ => supplyIncreaseInPercent_\n vaultSupplyExPrice_ = ((((liqSupplyExPrice_ * 1e18) / oldLiqSupplyExPrice_) - 1e18) *\n (vaultVariables2_ & X16)) / 10000; // supply rate magnifier\n\n // Calculating increase in borrow exchange price w.r.t last stored liquidity's exchange price\n // vaultBorrowExPrice_ => borrowIncreaseInPercent_\n vaultBorrowExPrice_ = ((((liqBorrowExPrice_ * 1e18) / oldLiqBorrowExPrice_) - 1e18) *\n ((vaultVariables2_ >> 16) & X16)) / 10000; // borrow rate magnifier\n\n // It's extremely hard the exchange prices to overflow even in 100 years but if it does it's not an\n // issue here as we are not updating on storage\n // (rates_ >> 128) & X64) -> last stored vault's supply token exchange price\n vaultSupplyExPrice_ = (((rates_ >> 128) & X64) * (1e18 + vaultSupplyExPrice_)) / 1e18;\n // (rates_ >> 192) -> last stored vault's borrow token exchange price (no need to mask with & X64 as it is anyway max 64 bits)\n vaultBorrowExPrice_ = ((rates_ >> 192) * (1e18 + vaultBorrowExPrice_)) / 1e18;\n }\n }\n\n /// note admin module is also calling this function self call\n /// @dev updating exchange price on storage. Only need to update on storage when changing supply or borrow magnifier\n function updateExchangePricesOnStorage()\n public\n returns (\n uint256 liqSupplyExPrice_,\n uint256 liqBorrowExPrice_,\n uint256 vaultSupplyExPrice_,\n uint256 vaultBorrowExPrice_\n )\n {\n (liqSupplyExPrice_, liqBorrowExPrice_, vaultSupplyExPrice_, vaultBorrowExPrice_) = updateExchangePrices(\n vaultVariables2\n );\n\n if (\n liqSupplyExPrice_ > X64 || liqBorrowExPrice_ > X64 || vaultSupplyExPrice_ > X64 || vaultBorrowExPrice_ > X64\n ) {\n revert FluidVaultError(ErrorTypes.VaultT1__ExchangePriceOverFlow);\n }\n\n // Updating in storage\n rates =\n liqSupplyExPrice_ |\n (liqBorrowExPrice_ << 64) |\n (vaultSupplyExPrice_ << 128) |\n (vaultBorrowExPrice_ << 192);\n\n emit LogUpdateExchangePrice(vaultSupplyExPrice_, vaultBorrowExPrice_);\n }\n\n /// @dev fetches new user's position after liquidation. The new liquidated position's debt is decreased by 0.01%\n /// to make sure that branch's liquidity never becomes 0 as if it would have gotten 0 then there will be multiple cases that we would need to tackle.\n /// @param positionTick_ position's tick when it was last updated through operate\n /// @param positionTickId_ position's tick Id. This stores the debt factor and branch to make the first connection\n /// @param positionRawDebt_ position's raw debt when it was last updated through operate\n /// @param tickData_ position's tick's tickData just for minor comparison to know if data is moved to tick Id or is still in tick data\n /// @return final tick position after all the liquidation\n /// @return final debt of position after all the liquidation\n /// @return positionRawCol_ final collateral of position after all the liquidation\n /// @return branchId_ final branch's ID where the position is at currently\n /// @return branchData_ final branch's data where the position is at currently\n function fetchLatestPosition(\n int256 positionTick_,\n uint256 positionTickId_,\n uint256 positionRawDebt_,\n uint256 tickData_\n )\n public\n view\n returns (\n int256, // positionTick_\n uint256, // positionRawDebt_\n uint256 positionRawCol_,\n uint256 branchId_,\n uint256 branchData_\n )\n {\n uint256 initialPositionRawDebt_ = positionRawDebt_;\n uint256 connectionFactor_;\n bool isFullyLiquidated_;\n\n // Checking if tick's total ID = user's tick ID\n if (((tickData_ >> 1) & X24) == positionTickId_) {\n // fetching from tick data itself\n isFullyLiquidated_ = ((tickData_ >> 25) & 1) == 1;\n branchId_ = (tickData_ >> 26) & X30;\n connectionFactor_ = (tickData_ >> 56) & X50;\n } else {\n {\n uint256 tickLiquidationData_;\n unchecked {\n // Fetching tick's liquidation data. One variable contains data of 3 IDs. Tick Id mapping is starting from 1.\n tickLiquidationData_ =\n tickId[positionTick_][(positionTickId_ + 2) / 3] >>\n (((positionTickId_ + 2) % 3) * 85);\n }\n\n isFullyLiquidated_ = (tickLiquidationData_ & 1) == 1;\n branchId_ = (tickLiquidationData_ >> 1) & X30;\n connectionFactor_ = (tickLiquidationData_ >> 31) & X50;\n }\n }\n\n // data of branch\n branchData_ = branchData[branchId_];\n\n if (isFullyLiquidated_) {\n positionTick_ = type(int).min;\n positionRawDebt_ = 0;\n } else {\n // Below information about connection debt factor\n // If branch is merged, Connection debt factor is used to multiply in order to get perfect liquidation of user\n // For example: Considering user was at the top.\n // In first branch, the user liquidated to debt factor 0.5 and then branch got merged (branching starting from 1)\n // In second branch, it got liquidated to 0.4 but when the above branch merged the debt factor on this branch was 0.6\n // Meaning on 1st branch, user got liquidated by 50% & on 2nd by 33.33%. So a total of 66.6%.\n // What we will set a connection factor will be 0.6/0.5 = 1.2\n // So now to get user's position, this is what we'll do:\n // finalDebt = (0.4 / (1 * 1.2)) * debtBeforeLiquidation\n // 0.4 is current active branch's minima debt factor\n // 1 is debt factor from where user started\n // 1.2 is connection factor which we found out through 0.6 / 0.5\n while ((branchData_ & 3) == 2) {\n // If true then the branch is merged\n\n // userTickDebtFactor * connectionDebtFactor *... connectionDebtFactor aka adjustmentDebtFactor\n connectionFactor_ = connectionFactor_.mulBigNumber(((branchData_ >> 116) & X50));\n if (connectionFactor_ == BigMathVault.MAX_MASK_DEBT_FACTOR) break; // user ~100% liquidated\n // Note we don't need updated branch data in case of 100% liquidated so saving gas for fetching it\n\n // Fetching new branch data\n branchId_ = (branchData_ >> 166) & X30; // Link to base branch of current branch\n branchData_ = branchData[branchId_];\n }\n // When the while loop breaks meaning the branch now has minima Debt Factor or is a closed branch;\n\n if (((branchData_ & 3) == 3) || (connectionFactor_ == BigMathVault.MAX_MASK_DEBT_FACTOR)) {\n // Branch got closed (or user liquidated ~100%). Hence make the user's position 0\n // Rare cases to get into this situation\n // Branch can get close often but once closed it's tricky that some user might come iterating through there\n // If a user comes then that user will be very mini user like some cents probably\n positionTick_ = type(int).min;\n positionRawDebt_ = 0;\n } else {\n // If branch is not merged, the main branch it's connected to then it'll have minima debt factor\n\n // position debt = debt * base branch minimaDebtFactor / connectionFactor\n positionRawDebt_ = positionRawDebt_.mulDivNormal(\n (branchData_ >> 116) & X50, // minimaDebtFactor\n connectionFactor_\n );\n\n unchecked {\n // Reducing user's liquidity by 0.01% if user got liquidated.\n // As this will make sure that the branch always have some debt even if all liquidated user left\n // This saves a lot more logics & consideration on Operate function\n // if we don't do this then we have to add logics related to closing the branch and factor connections accordingly.\n if (positionRawDebt_ > (initialPositionRawDebt_ / 100)) {\n positionRawDebt_ = (positionRawDebt_ * 9999) / 10000;\n } else {\n // if user debt reduced by more than 99% in liquidation then making user as fully liquidated\n positionRawDebt_ = 0;\n }\n }\n\n {\n if (positionRawDebt_ > 0) {\n // positionTick_ -> read minima tick of branch\n unchecked {\n positionTick_ = branchData_ & 4 == 4\n ? int((branchData_ >> 3) & X19)\n : -int((branchData_ >> 3) & X19);\n }\n // Calculating user's collateral\n uint256 ratioAtTick_ = TickMath.getRatioAtTick(int24(positionTick_));\n uint256 ratioOneLess_;\n unchecked {\n ratioOneLess_ = (ratioAtTick_ * 10000) / 10015;\n }\n // formula below for better readability:\n // length = ratioAtTick_ - ratioOneLess_\n // ratio = ratioOneLess_ + (length * positionPartials_) / X30\n // positionRawCol_ = (positionRawDebt_ * (1 << 96)) / ratio_\n positionRawCol_ =\n (positionRawDebt_ * TickMath.ZERO_TICK_SCALED_RATIO) /\n (ratioOneLess_ + ((ratioAtTick_ - ratioOneLess_) * ((branchData_ >> 22) & X30)) / X30);\n } else {\n positionTick_ = type(int).min;\n }\n }\n }\n }\n return (positionTick_, positionRawDebt_, positionRawCol_, branchId_, branchData_);\n }\n\n /// @dev sets `tick_` as having debt or no debt in storage `tickHasDebt` depending on `addOrRemove_`\n /// @param tick_ tick to add or remove from tickHasDebt\n /// @param addOrRemove_ if true then add else remove\n function _updateTickHasDebt(int tick_, bool addOrRemove_) internal {\n // Positive mapID_ starts from 0 & above and negative starts below 0.\n // tick 0 to 255 will have mapId_ as 0 while tick -256 to -1 will have mapId_ as -1.\n unchecked {\n int mapId_ = tick_ < 0 ? ((tick_ + 1) / 256) - 1 : tick_ / 256;\n\n // in case of removing:\n // (tick == 255) tickHasDebt[mapId_] - 1 << 255\n // (tick == 0) tickHasDebt[mapId_] - 1 << 0\n // (tick == -1) tickHasDebt[mapId_] - 1 << 255\n // (tick == -256) tickHasDebt[mapId_] - 1 << 0\n // in case of adding:\n // (tick == 255) tickHasDebt[mapId_] - 1 << 255\n // (tick == 0) tickHasDebt[mapId_] - 1 << 0\n // (tick == -1) tickHasDebt[mapId_] - 1 << 255\n // (tick == -256) tickHasDebt[mapId_] - 1 << 0\n uint position_ = uint(tick_ - (mapId_ * 256));\n\n tickHasDebt[mapId_] = addOrRemove_\n ? tickHasDebt[mapId_] | (1 << position_)\n : tickHasDebt[mapId_] & ~(1 << position_);\n }\n }\n\n /// @dev gets next perfect top tick (tick which is not liquidated)\n /// @param topTick_ current top tick which will no longer be top tick\n /// @return nextTick_ next top tick which will become the new top tick\n function _fetchNextTopTick(int topTick_) internal view returns (int nextTick_) {\n int mapId_;\n uint tickHasDebt_;\n\n unchecked {\n mapId_ = topTick_ < 0 ? ((topTick_ + 1) / 256) - 1 : topTick_ / 256;\n uint bitsToRemove_ = uint(-topTick_ + (mapId_ * 256 + 256));\n // Removing current top tick from tickHasDebt\n tickHasDebt_ = (tickHasDebt[mapId_] << bitsToRemove_) >> bitsToRemove_;\n\n // For last user remaining in vault there could be a lot of iterations in the while loop.\n // Chances of this to happen is extremely low (like ~0%)\n while (true) {\n if (tickHasDebt_ > 0) {\n nextTick_ = mapId_ * 256 + int(tickHasDebt_.mostSignificantBit()) - 1;\n break;\n }\n\n // Reducing mapId_ by 1 in every loop; if it reaches to -129 then no filled tick exist, meaning it's the last tick\n if (--mapId_ == -129) {\n nextTick_ = type(int).min;\n break;\n }\n\n tickHasDebt_ = tickHasDebt[mapId_];\n }\n }\n }\n\n /// @dev adding debt to a particular tick\n /// @param totalColRaw_ total raw collateral of position\n /// @param netDebtRaw_ net raw debt (total debt - dust debt)\n /// @return tick_ tick where the debt is being added\n /// @return tickId_ tick current id\n /// @return userRawDebt_ user's total raw debt\n /// @return rawDust_ dust debt used for adjustment\n function _addDebtToTickWrite(\n uint256 totalColRaw_,\n uint256 netDebtRaw_ // debtRaw - dust\n ) internal returns (int256 tick_, uint256 tickId_, uint256 userRawDebt_, uint256 rawDust_) {\n if (netDebtRaw_ < 10000) {\n // thrown if user's debt is too low\n revert FluidVaultError(ErrorTypes.VaultT1__UserDebtTooLow);\n }\n // tick_ & ratio_ returned from library is round down. Hence increasing it by 1 and increasing ratio by 1 tick.\n uint ratio_ = (netDebtRaw_ * TickMath.ZERO_TICK_SCALED_RATIO) / totalColRaw_;\n (tick_, ratio_) = TickMath.getTickAtRatio(ratio_);\n unchecked {\n ++tick_;\n ratio_ = (ratio_ * 10015) / 10000;\n }\n userRawDebt_ = (ratio_ * totalColRaw_) >> 96;\n rawDust_ = userRawDebt_ - netDebtRaw_;\n\n // Current state of tick\n uint256 tickData_ = tickData[tick_];\n tickId_ = (tickData_ >> 1) & X24;\n\n uint tickNewDebt_;\n if (tickId_ > 0 && tickData_ & 1 == 0) {\n // Current debt in the tick\n uint256 tickExistingRawDebt_ = (tickData_ >> 25) & X64;\n tickExistingRawDebt_ = (tickExistingRawDebt_ >> 8) << (tickExistingRawDebt_ & X8);\n\n // Tick's already initialized and not liquidated. Hence simply add the debt\n tickNewDebt_ = tickExistingRawDebt_ + userRawDebt_;\n if (tickExistingRawDebt_ == 0) {\n // Adding tick into tickHasDebt\n _updateTickHasDebt(tick_, true);\n }\n } else {\n // Liquidation happened or tick getting initialized for the very first time.\n if (tickId_ > 0) {\n // Meaning a liquidation happened. Hence move the data to tickID\n unchecked {\n uint tickMap_ = (tickId_ + 2) / 3;\n // Adding 2 in ID so we can get right mapping ID. For example for ID 1, 2 & 3 mapping should be 1 and so on..\n // For example shift for id 1 should be 0, for id 2 should be 85, for id 3 it should be 170 and so on..\n tickId[tick_][tickMap_] =\n tickId[tick_][tickMap_] |\n ((tickData_ >> 25) << (((tickId_ + 2) % 3) * 85));\n }\n }\n // Increasing total ID by one\n unchecked {\n ++tickId_;\n }\n tickNewDebt_ = userRawDebt_;\n\n // Adding tick into tickHasDebt\n _updateTickHasDebt(tick_, true);\n }\n if (tickNewDebt_ < 10000) {\n // thrown if tick's debt/liquidity is too low\n revert FluidVaultError(ErrorTypes.VaultT1__TickDebtTooLow);\n }\n tickData[tick_] = (tickId_ << 1) | (tickNewDebt_.toBigNumber(56, 8, BigMathMinified.ROUND_DOWN) << 25);\n }\n\n /// @dev sets new top tick. If it comes to this function then that means current top tick is perfect tick.\n /// if next top tick is liquidated then unitializes the current non liquidated branch and make the liquidated branch as current branch\n /// @param topTick_ current top tick\n /// @param vaultVariables_ vaultVariables of storage but with newer updates\n /// @return newVaultVariables_ newVaultVariables_ updated vault variable internally to this function\n /// @return newTopTick_ new top tick\n function _setNewTopTick(\n int topTick_,\n uint vaultVariables_\n ) internal returns (uint newVaultVariables_, int newTopTick_) {\n // This function considers that the current top tick was not liquidated\n // Overall flow of function:\n // if new top tick liquidated (aka base branch's minima tick) -> Close the current branch and make base branch as current branch\n // if new top tick not liquidated -> update things in current branch.\n // if new top tick is not liquidated and same tick exist in base branch then tick is considered as not liquidated.\n\n uint branchId_ = (vaultVariables_ >> 22) & X30; // branch id of current branch\n\n uint256 branchData_ = branchData[branchId_];\n int256 baseBranchMinimaTick_;\n if ((branchData_ >> 196) & 1 == 1) {\n baseBranchMinimaTick_ = int((branchData_ >> 197) & X19);\n } else {\n unchecked {\n baseBranchMinimaTick_ = -int((branchData_ >> 197) & X19);\n }\n if (baseBranchMinimaTick_ == 0) {\n // meaning the current branch is the master branch\n baseBranchMinimaTick_ = type(int).min;\n }\n }\n\n // Returns type(int).min if no top tick exist\n int nextTopTickNotLiquidated_ = _fetchNextTopTick(topTick_);\n\n newTopTick_ = baseBranchMinimaTick_ > nextTopTickNotLiquidated_\n ? baseBranchMinimaTick_\n : nextTopTickNotLiquidated_;\n\n if (newTopTick_ == type(int).min) {\n // if this happens that means this was the last user of the vault :(\n vaultVariables_ = vaultVariables_ & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc00001;\n } else if (newTopTick_ == nextTopTickNotLiquidated_) {\n // New top tick exist in current non liquidated branch\n if (newTopTick_ < 0) {\n unchecked {\n vaultVariables_ =\n (vaultVariables_ & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc00001) |\n (uint(-newTopTick_) << 3);\n }\n } else {\n vaultVariables_ =\n (vaultVariables_ & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc00001) |\n 4 | // setting top tick as positive\n (uint(newTopTick_) << 3);\n }\n } else {\n // if this happens that means base branch exists & is the next top tick\n // Remove current non liquidated branch as active.\n // Not deleting here as it's going to get initialize again whenever a new top tick comes\n branchData[branchId_] = 0;\n // Inserting liquidated branch's minima tick\n unchecked {\n vaultVariables_ =\n (vaultVariables_ & 0xfffffffffffffffffffffffffffffffffffffffffffc00000000000000000001) |\n 2 | // Setting top tick as liquidated\n (((branchData_ >> 196) & X20) << 2) | // new current top tick = base branch minima tick\n (((branchData_ >> 166) & X30) << 22) | // new current branch id = base branch id\n ((branchId_ - 1) << 52); // reduce total branch id by 1\n }\n }\n\n newVaultVariables_ = vaultVariables_;\n }\n\n constructor(ConstantViews memory constants_) ConstantVariables(constants_) {}\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/coreModule/main.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IFluidOracle } from \"../../../../oracle/fluidOracle.sol\";\n\nimport { TickMath } from \"../../../../libraries/tickMath.sol\";\nimport { BigMathMinified } from \"../../../../libraries/bigMathMinified.sol\";\nimport { BigMathVault } from \"../../../../libraries/bigMathVault.sol\";\nimport { LiquidityCalcs } from \"../../../../libraries/liquidityCalcs.sol\";\nimport { SafeTransfer } from \"../../../../libraries/safeTransfer.sol\";\n\nimport { Helpers } from \"./helpers.sol\";\nimport { LiquiditySlotsLink } from \"../../../../libraries/liquiditySlotsLink.sol\";\n\nimport { ErrorTypes } from \"../../errorTypes.sol\";\n\n/// @notice Fluid \"VaultT1\" (Vault Type 1). Fluid vault protocol main contract.\n/// Fluid Vault protocol is a borrow / lending protocol, allowing users to create collateral / borrow positions.\n/// All funds are deposited into / borrowed from Fluid Liquidity layer.\n/// Positions are represented through NFTs minted by the VaultFactory.\n/// Deployed by \"VaultFactory\" and linked together with VaultT1 AdminModule `ADMIN_IMPLEMENTATION` and\n/// FluidVaultT1Secondary (main2.sol) `SECONDARY_IMPLEMENTATION`.\n/// AdminModule & FluidVaultT1Secondary methods are delegateCalled, if the msg.sender has the required authorization.\n/// This contract links to an Oracle, which is used to assess collateral / debt value. Oracles implement the\n/// \"FluidOracle\" base contract and return the price in 1e27 precision.\n/// @dev For view methods / accessing data, use the \"VaultResolver\" periphery contract.\ncontract FluidVaultT1 is Helpers {\n using BigMathMinified for uint256;\n using BigMathVault for uint256;\n\n /// @dev Single function which handles supply, withdraw, borrow & payback\n /// @param nftId_ NFT ID for interaction. If 0 then create new NFT/position.\n /// @param newCol_ new collateral. If positive then deposit, if negative then withdraw, if 0 then do nohing\n /// @param newDebt_ new debt. If positive then borrow, if negative then payback, if 0 then do nohing\n /// @param to_ address where withdraw or borrow should go. If address(0) then msg.sender\n /// @return nftId_ if 0 then this returns the newly created NFT Id else returns the same NFT ID\n /// @return newCol_ final supply amount. Mainly if max withdraw using type(int).min then this is useful to get perfect amount else remain same as newCol_\n /// @return newDebt_ final borrow amount. Mainly if max payback using type(int).min then this is useful to get perfect amount else remain same as newDebt_\n function operate(\n uint256 nftId_, // if 0 then new position\n int256 newCol_, // if negative then withdraw\n int256 newDebt_, // if negative then payback\n address to_ // address at which the borrow & withdraw amount should go to. If address(0) then it'll go to msg.sender\n )\n public\n payable\n returns (\n uint256, // nftId_\n int256, // final supply amount. if - then withdraw\n int256 // final borrow amount. if - then payback\n )\n {\n uint256 vaultVariables_ = vaultVariables;\n // re-entrancy check\n if (vaultVariables_ & 1 == 0) {\n // Updating on storage\n vaultVariables = vaultVariables_ | 1;\n } else {\n revert FluidVaultError(ErrorTypes.VaultT1__AlreadyEntered);\n }\n\n if (\n (newCol_ == 0 && newDebt_ == 0) ||\n // withdrawal or deposit cannot be too small\n ((newCol_ != 0) && (newCol_ > -10000 && newCol_ < 10000)) ||\n // borrow or payback cannot be too small\n ((newDebt_ != 0) && (newDebt_ > -10000 && newDebt_ < 10000))\n ) {\n revert FluidVaultError(ErrorTypes.VaultT1__InvalidOperateAmount);\n }\n\n // Check msg.value aligns with input amounts if supply or borrow token is native token.\n // Note that it's not possible for a vault to have both supply token and borrow token as native token.\n if (SUPPLY_TOKEN == NATIVE_TOKEN && newCol_ > 0) {\n if (uint(newCol_) != msg.value) {\n revert FluidVaultError(ErrorTypes.VaultT1__InvalidMsgValueOperate);\n }\n } else if (msg.value > 0) {\n if (!(BORROW_TOKEN == NATIVE_TOKEN && newDebt_ < 0)) {\n // msg.value sent along for withdraw, borrow, or non-native token operations\n revert FluidVaultError(ErrorTypes.VaultT1__InvalidMsgValueOperate);\n }\n }\n\n OperateMemoryVars memory o_;\n // Temporary variables used as helpers at many places\n uint256 temp_;\n uint256 temp2_;\n int256 temp3_;\n\n o_.vaultVariables2 = vaultVariables2;\n\n temp_ = (vaultVariables_ >> 2) & X20;\n unchecked {\n o_.topTick = (temp_ == 0) ? type(int).min : ((temp_ & 1) == 1)\n ? int((temp_ >> 1) & X19)\n : -int((temp_ >> 1) & X19);\n }\n\n {\n // Fetching user's position\n if (nftId_ == 0) {\n // creating new position.\n o_.tick = type(int).min;\n // minting new NFT vault for user.\n nftId_ = VAULT_FACTORY.mint(VAULT_ID, msg.sender);\n // Adding 1 in total positions. Total positions cannot exceed 32bits as NFT minting checks for that\n unchecked {\n vaultVariables_ = vaultVariables_ + (1 << 210);\n }\n } else {\n // Updating existing position\n\n // checking owner only in case of withdraw or borrow\n if ((newCol_ < 0 || newDebt_ > 0) && (VAULT_FACTORY.ownerOf(nftId_) != msg.sender)) {\n revert FluidVaultError(ErrorTypes.VaultT1__NotAnOwner);\n }\n\n // temp_ => user's position data\n temp_ = positionData[nftId_];\n\n if (temp_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1__NftNotOfThisVault);\n }\n // temp2_ => user's supply amount\n temp2_ = (temp_ >> 45) & X64;\n // Converting big number into normal number\n o_.colRaw = (temp2_ >> 8) << (temp2_ & X8);\n // temp2_ => user's dust debt amount\n temp2_ = (temp_ >> 109) & X64;\n // Converting big number into normal number\n o_.dustDebtRaw = (temp2_ >> 8) << (temp2_ & X8);\n\n // 1 is supply & 0 is borrow\n if (temp_ & 1 == 1) {\n // only supply position (has no debt)\n o_.tick = type(int).min;\n } else {\n // borrow position (has collateral & debt)\n unchecked {\n o_.tick = temp_ & 2 == 2 ? int((temp_ >> 2) & X19) : -int((temp_ >> 2) & X19);\n }\n o_.tickId = (temp_ >> 21) & X24;\n }\n }\n }\n\n // Get latest updated Position's debt & supply (if position is with debt -> not new / supply position)\n if (o_.tick > type(int).min) {\n // if entering this if statement then temp_ here will always be user's position data\n // extracting collateral exponent\n temp_ = (temp_ >> 45) & X8;\n // if exponent is > 0 then rounding up the collateral just for calculating debt\n unchecked {\n temp_ = temp_ == 0 ? (o_.colRaw + 1) : o_.colRaw + (1 << temp_);\n }\n // fetch current debt\n o_.debtRaw = ((TickMath.getRatioAtTick(int24(o_.tick)) * temp_) >> 96) + 1;\n\n // Tick data from user's tick\n temp_ = tickData[o_.tick];\n\n // Checking if tick is liquidated (first bit 1) OR if the total IDs of tick is greater than user's tick ID\n if (((temp_ & 1) == 1) || (((temp_ >> 1) & X24) > o_.tickId)) {\n // User got liquidated\n (\n // returns the position of the user if the user got liquidated.\n o_.tick,\n o_.debtRaw,\n o_.colRaw,\n temp2_, // final branchId from liquidation where position exist right now\n o_.branchData\n ) = fetchLatestPosition(o_.tick, o_.tickId, o_.debtRaw, temp_);\n\n if (o_.debtRaw > o_.dustDebtRaw) {\n // temp_ => branch's Debt\n temp_ = (o_.branchData >> 52) & X64;\n temp_ = (temp_ >> 8) << (temp_ & X8);\n\n // o_.debtRaw should always be < branch's Debt (temp_).\n // Taking margin (0.01%) in fetchLatestPosition to make sure it's always less\n temp_ -= o_.debtRaw;\n if (temp_ < 100) {\n // explicitly making sure that branch debt/liquidity doesn't get super low.\n temp_ = 100;\n }\n // Inserting updated branch's debt\n branchData[temp2_] =\n (o_.branchData & 0xfffffffffffffffffffffffffffffffffff0000000000000000fffffffffffff) |\n (temp_.toBigNumber(56, 8, BigMathMinified.ROUND_UP) << 52);\n\n unchecked {\n // Converted positionRawDebt_ in net position debt\n o_.debtRaw -= o_.dustDebtRaw;\n }\n } else {\n // Liquidated 100% or almost 100%\n // absorbing dust debt\n absorbedDustDebt = absorbedDustDebt + o_.dustDebtRaw - o_.debtRaw;\n o_.debtRaw = 0;\n o_.colRaw = 0;\n }\n } else {\n // User didn't got liquidated\n // Removing user's debt from tick data\n // temp2_ => debt in tick\n temp2_ = (temp_ >> 25) & X64;\n // below require can fail when a user liquidity is extremely low (talking about way less than even $1)\n // adding require meaning this vault user won't be able to interact unless someone makes the liquidity in tick as non 0.\n // reason of adding is the tick has already removed from everywhere. Can removing it again break something? Better to simply remove that case entirely\n if (temp2_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1__TickIsEmpty);\n }\n // Converting big number into normal number\n temp2_ = (temp2_ >> 8) << (temp2_ & X8);\n // debtInTick (temp2_) < debtToRemove (o_.debtRaw) that means minor precision error. Hence make the debtInTick as 0.\n // The precision error can be caused with Bigmath library limiting the precision to 2**56.\n unchecked {\n temp2_ = o_.debtRaw < temp2_ ? temp2_ - o_.debtRaw : 0;\n }\n\n if (temp2_ < 10000) {\n temp2_ = 0;\n // if debt becomes 0 then remove from tick has debt\n\n if (o_.tick == o_.topTick) {\n // if tick is top tick then current top tick is perfect tick -> fetch & set new top tick\n\n // Updating new top tick in vaultVariables_ and topTick_\n (vaultVariables_, o_.topTick) = _setNewTopTick(o_.topTick, vaultVariables_);\n }\n\n // Removing from tickHasDebt\n _updateTickHasDebt(o_.tick, false);\n }\n\n tickData[o_.tick] = (temp_ & X25) | (temp2_.toBigNumber(56, 8, BigMathMinified.ROUND_DOWN) << 25);\n\n // Converted positionRawDebt_ in net position debt\n o_.debtRaw -= o_.dustDebtRaw;\n }\n o_.dustDebtRaw = 0;\n }\n\n // Setting the current tick into old tick as the position tick is going to change now.\n o_.oldTick = o_.tick;\n o_.oldColRaw = o_.colRaw;\n o_.oldNetDebtRaw = o_.debtRaw;\n\n {\n (o_.liquidityExPrice, , o_.supplyExPrice, o_.borrowExPrice) = updateExchangePrices(o_.vaultVariables2);\n\n {\n // supply or withdraw\n if (newCol_ > 0) {\n // supply new col, rounding down\n o_.colRaw += (uint256(newCol_) * EXCHANGE_PRICES_PRECISION) / o_.supplyExPrice;\n // final user's collateral should not be above 2**128 bits\n if (o_.colRaw > X128) {\n revert FluidVaultError(ErrorTypes.VaultT1__UserCollateralDebtExceed);\n }\n } else if (newCol_ < 0) {\n // if withdraw equals type(int).min then max withdraw\n if (newCol_ > type(int128).min) {\n // partial withdraw, rounding up removing extra wei from collateral\n temp3_ = ((newCol_ * int(EXCHANGE_PRICES_PRECISION)) / int256(o_.supplyExPrice)) - 1;\n unchecked {\n if (uint256(-temp3_) > o_.colRaw) {\n revert FluidVaultError(ErrorTypes.VaultT1__ExcessCollateralWithdrawal);\n }\n o_.colRaw -= uint256(-temp3_);\n }\n } else if (newCol_ == type(int).min) {\n // max withdraw, rounding up:\n // adding +1 to negative withdrawAmount newCol_ for safe rounding (reducing withdraw)\n newCol_ = -(int256((o_.colRaw * o_.supplyExPrice) / EXCHANGE_PRICES_PRECISION)) + 1;\n o_.colRaw = 0;\n } else {\n revert FluidVaultError(ErrorTypes.VaultT1__UserCollateralDebtExceed);\n }\n }\n }\n {\n // borrow or payback\n if (newDebt_ > 0) {\n // borrow new debt, rounding up adding extra wei in debt\n temp_ = ((uint(newDebt_) * EXCHANGE_PRICES_PRECISION) / o_.borrowExPrice) + 1;\n // if borrow fee is 0 then it'll become temp_ + 0.\n // Only adding fee in o_.debtRaw and not in newDebt_ as newDebt_ is debt that needs to be borrowed from Liquidity\n // as we have added fee in debtRaw hence it will get added in user's position & vault's total borrow.\n // It can be collected with rebalance function.\n o_.debtRaw += temp_ + (temp_ * ((o_.vaultVariables2 >> 82) & X10)) / 10000;\n // final user's debt should not be above 2**128 bits\n if (o_.debtRaw > X128) {\n revert FluidVaultError(ErrorTypes.VaultT1__UserCollateralDebtExceed);\n }\n } else if (newDebt_ < 0) {\n // if payback equals type(int).min then max payback\n if (newDebt_ > type(int128).min) {\n // partial payback.\n // temp3_ => newDebt_ in raw terms, safe rounding up negative amount to rounding reduce payback\n temp3_ = (newDebt_ * int256(EXCHANGE_PRICES_PRECISION)) / int256(o_.borrowExPrice) + 1;\n unchecked {\n temp3_ = -temp3_;\n if (uint256(temp3_) > o_.debtRaw) {\n revert FluidVaultError(ErrorTypes.VaultT1__ExcessDebtPayback);\n }\n o_.debtRaw -= uint256(temp3_);\n }\n } else if (newDebt_ == type(int).min) {\n // max payback, rounding up amount that will be transferred in to pay back full debt:\n // subtracting -1 of negative debtAmount newDebt_ for safe rounding (increasing payback)\n newDebt_ = -(int256((o_.debtRaw * o_.borrowExPrice) / EXCHANGE_PRICES_PRECISION)) - 1;\n o_.debtRaw = 0;\n } else {\n revert FluidVaultError(ErrorTypes.VaultT1__UserCollateralDebtExceed);\n }\n }\n }\n }\n\n // if position has no collateral or debt and user sends type(int).min for withdraw and payback then this results in 0\n // there's is no issue if it stays 0 but better to throw here to avoid checking for potential issues if there could be\n if (newCol_ == 0 && newDebt_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1__InvalidOperateAmount);\n }\n\n // Assign new tick\n if (o_.debtRaw > 0) {\n // updating tickHasDebt in the below function if required\n // o_.debtRaw here is updated to new debt raw incl. dust debt (not net debt)\n unchecked {\n (o_.tick, o_.tickId, o_.debtRaw, o_.dustDebtRaw) = _addDebtToTickWrite(\n o_.colRaw,\n ((o_.debtRaw * 1000000001) / 1000000000) + 1\n );\n }\n\n if (newDebt_ < 0) {\n // anyone can payback debt of any position\n // hence, explicitly checking the debt should decrease\n if ((o_.debtRaw - o_.dustDebtRaw) > o_.oldNetDebtRaw) {\n revert FluidVaultError(ErrorTypes.VaultT1__InvalidPaybackOrDeposit);\n }\n }\n if ((newCol_ > 0) && (newDebt_ == 0)) {\n // anyone can deposit collateral in any position\n // Hence, explicitly checking that new ratio should be less than old ratio\n if (\n (((o_.debtRaw - o_.dustDebtRaw) * TickMath.ZERO_TICK_SCALED_RATIO) / o_.colRaw) >\n ((o_.oldNetDebtRaw * TickMath.ZERO_TICK_SCALED_RATIO) / o_.oldColRaw)\n ) {\n revert FluidVaultError(ErrorTypes.VaultT1__InvalidPaybackOrDeposit);\n }\n }\n\n if (o_.tick >= o_.topTick) {\n // Updating topTick in storage\n // temp_ => tick to insert in vault variables\n unchecked {\n temp_ = o_.tick < 0 ? uint(-o_.tick) << 1 : (uint(o_.tick) << 1) | 1;\n }\n if (vaultVariables_ & 2 == 0) {\n // Current branch not liquidated. Hence, just update top tick\n vaultVariables_ =\n (vaultVariables_ & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc00000) |\n (temp_ << 2);\n } else {\n // Current branch liquidated\n // Initialize a new branch\n // temp2_ => totalBranchId_\n unchecked {\n temp2_ = ((vaultVariables_ >> 52) & X30) + 1; // would take 34 years to overflow if a new branch is created every second\n }\n // Connecting new active branch with current active branch which is now base branch\n // Current top tick is now base branch's minima tick\n branchData[temp2_] =\n (((vaultVariables_ >> 22) & X30) << 166) | // current branch id set as base branch id\n (((vaultVariables_ >> 2) & X20) << 196); // current top tick set as base branch minima tick\n // Updating new vault variables in memory with new branch\n vaultVariables_ =\n (vaultVariables_ & 0xfffffffffffffffffffffffffffffffffffffffffffc00000000000000000000) |\n (temp_ << 2) | // new top tick\n (temp2_ << 22) | // new branch id\n (temp2_ << 52); // total branch ids\n }\n }\n } else {\n // debtRaw_ remains 0 in this situation\n // This kind of position will not have any tick. Meaning it'll be a supply position.\n o_.tick = type(int).min;\n }\n\n {\n if (newCol_ < 0 || newDebt_ > 0) {\n // withdraw or borrow\n if (to_ == address(0)) {\n to_ = msg.sender;\n }\n\n // if debt is greater than 0 & transaction includes borrow or withdraw (incl. combinations such as deposit + borrow etc.)\n // -> check collateral factor\n if (o_.debtRaw > 0) {\n // Oracle returns price at 100% ratio.\n // converting oracle 160 bits into oracle address\n // temp_ => debt price w.r.t to col in 1e27\n temp_ = IFluidOracle(address(uint160(o_.vaultVariables2 >> 96))).getExchangeRate();\n // Note if price would come back as 0 `getTickAtRatio` will fail\n\n // Converting price in terms of raw amounts\n temp_ = (temp_ * o_.supplyExPrice) / o_.borrowExPrice;\n\n // temp2_ => ratio at CF. CF is in 3 decimals. 900 = 90%\n temp2_ = ((temp_ * ((o_.vaultVariables2 >> 32) & X10)) / 1000);\n\n // Price from oracle is in 1e27 decimals. Converting it into (1 << 96) decimals\n temp2_ = (temp2_ < 1e45)\n ? ((temp2_ * TickMath.ZERO_TICK_SCALED_RATIO) / 1e27)\n : (temp2_ / 1e27) * TickMath.ZERO_TICK_SCALED_RATIO;\n\n // temp3_ => tickAtCF_\n (temp3_, ) = TickMath.getTickAtRatio(temp2_);\n if (o_.tick > temp3_) {\n unchecked {\n // calc for net debt can be unchecked as o_.dustDebtRaw can not be > o_.debtRaw:\n // o_.dustDebtRaw is the result of o_.debtRaw - x where x > 0 see _addDebtToTickWrite()\n if (\n o_.oldTick <= o_.tick ||\n (o_.debtRaw - o_.dustDebtRaw) > (((o_.oldNetDebtRaw * 1000000001) / 1000000000) + 1)\n ) {\n // Above CF, user should only be allowed to reduce ratio either by paying debt or by depositing more collateral\n // Not comparing collateral as user can potentially use safe/deleverage to reduce tick & debt.\n // On use of safe/deleverage, collateral will decrease but debt will decrease as well making the overall position safer.\n revert FluidVaultError(ErrorTypes.VaultT1__PositionAboveCF);\n }\n }\n }\n }\n }\n }\n\n {\n // Updating user's new position on storage\n // temp_ => tick to insert as user position tick\n if (o_.tick > type(int).min) {\n unchecked {\n temp_ = o_.tick < 0 ? (uint(-o_.tick) << 1) : ((uint(o_.tick) << 1) | 1);\n }\n } else {\n // if positionTick_ = type(int).min OR positionRawDebt_ == 0 then that means it's only supply position\n // (for case of positionRawDebt_ == 0, tick is set to type(int).min further up)\n temp_ = 0;\n }\n\n positionData[nftId_] =\n ((temp_ == 0) ? 1 : 0) | // setting if supply only position (1) or not (first bit)\n (temp_ << 1) |\n (o_.tickId << 21) |\n (o_.colRaw.toBigNumber(56, 8, BigMathMinified.ROUND_DOWN) << 45) |\n // dust debt is rounded down because user debt = debt - dustDebt. rounding up would mean we reduce user debt\n (o_.dustDebtRaw.toBigNumber(56, 8, BigMathMinified.ROUND_DOWN) << 109);\n }\n\n // Withdrawal gap to make sure there's always liquidity for liquidation\n // For example if withdrawal allowance is 15% on liquidity then we can limit operate's withdrawal allowance to 10%\n // this will allow liquidate function to get extra 5% buffer for potential liquidations.\n if (newCol_ < 0) {\n // extracting withdrawal gap which is in 0.1% precision.\n temp_ = (o_.vaultVariables2 >> 62) & X10;\n if (temp_ > 0) {\n // fetching user's supply slot data\n o_.userSupplyLiquidityData = LIQUIDITY.readFromStorage(LIQUIDITY_USER_SUPPLY_SLOT);\n\n // converting current user's supply from big number to normal\n temp2_ = (o_.userSupplyLiquidityData >> LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64;\n temp2_ = (temp2_ >> 8) << (temp2_ & X8);\n\n // fetching liquidity's withdrawal limit\n temp3_ = int(LiquidityCalcs.calcWithdrawalLimitBeforeOperate(o_.userSupplyLiquidityData, temp2_));\n\n // max the number could go is vault's supply * 1000. Overflowing is almost impossible.\n unchecked {\n // (liquidityUserSupply - withdrawalGap - liquidityWithdrawaLimit) should be less than user's withdrawal\n if (\n (temp3_ > 0) &&\n (((int(temp2_ * (1000 - temp_)) / 1000)) - temp3_) <\n (((-newCol_) * int(EXCHANGE_PRICES_PRECISION)) / int(o_.liquidityExPrice))\n ) {\n revert FluidVaultError(ErrorTypes.VaultT1__WithdrawMoreThanOperateLimit);\n }\n }\n }\n }\n\n {\n // execute actions at Liquidity: deposit & payback is first and then withdraw & borrow\n if (newCol_ > 0) {\n // deposit\n LIQUIDITY.operate{ value: SUPPLY_TOKEN == NATIVE_TOKEN ? msg.value : 0 }(\n SUPPLY_TOKEN,\n newCol_,\n 0,\n address(0),\n address(0),\n abi.encode(msg.sender)\n );\n }\n if (newDebt_ < 0) {\n if (BORROW_TOKEN == NATIVE_TOKEN) {\n unchecked {\n temp_ = uint(-newDebt_);\n if (msg.value > temp_) {\n SafeTransfer.safeTransferNative(msg.sender, msg.value - temp_);\n } else if (msg.value < temp_) {\n revert FluidVaultError(ErrorTypes.VaultT1__InvalidMsgValueOperate);\n }\n }\n } else {\n temp_ = 0;\n }\n // payback\n LIQUIDITY.operate{ value: temp_ }(\n BORROW_TOKEN,\n 0,\n newDebt_,\n address(0),\n address(0),\n abi.encode(msg.sender)\n );\n }\n if (newCol_ < 0) {\n // withdraw\n LIQUIDITY.operate(SUPPLY_TOKEN, newCol_, 0, to_, address(0), new bytes(0));\n }\n if (newDebt_ > 0) {\n // borrow\n LIQUIDITY.operate(BORROW_TOKEN, 0, newDebt_, address(0), to_, new bytes(0));\n }\n }\n\n {\n // Updating vault variables on storage\n\n // Calculating new total collateral & total debt.\n temp_ = (vaultVariables_ >> 82) & X64;\n temp_ = ((temp_ >> 8) << (temp_ & X8)) + o_.colRaw - o_.oldColRaw;\n temp2_ = (vaultVariables_ >> 146) & X64;\n temp2_ = ((temp2_ >> 8) << (temp2_ & X8)) + (o_.debtRaw - o_.dustDebtRaw) - o_.oldNetDebtRaw;\n // Updating vault variables on storage. This will also reentrancy 0 back again\n // Converting total supply & total borrow in 64 bits (56 | 8) bignumber\n vaultVariables =\n (vaultVariables_ & 0xfffffffffffc00000000000000000000000000000003ffffffffffffffffffff) |\n (temp_.toBigNumber(56, 8, BigMathMinified.ROUND_DOWN) << 82) | // total supply\n (temp2_.toBigNumber(56, 8, BigMathMinified.ROUND_UP) << 146); // total borrow\n }\n\n emit LogOperate(msg.sender, nftId_, newCol_, newDebt_, to_);\n\n return (nftId_, newCol_, newDebt_);\n }\n\n /// @dev allows to liquidate all bad debt of all users at once. Liquidator can also liquidate partially any amount they want.\n /// @param debtAmt_ total debt to liquidate (aka debt token to swap into collateral token)\n /// @param colPerUnitDebt_ minimum collateral token per unit of debt in 1e18 decimals\n /// @param to_ address at which collateral token should go to.\n /// If dead address (0x000000000000000000000000000000000000dEaD) then reverts with custom error \"FluidLiquidateResult\"\n /// returning the actual collateral and actual debt liquidated. Useful to find max liquidatable amounts via try / catch.\n /// @param absorb_ if true then liquidate from absorbed first\n /// @return actualDebtAmt_ if liquidator sends debtAmt_ more than debt remaining to liquidate then actualDebtAmt_ changes from debtAmt_ else remains same\n /// @return actualColAmt_ total liquidated collateral which liquidator will get\n function liquidate(\n uint256 debtAmt_,\n uint256 colPerUnitDebt_, // min collateral needed per unit of debt in 1e18\n address to_,\n bool absorb_\n ) public payable returns (uint actualDebtAmt_, uint actualColAmt_) {\n LiquidateMemoryVars memory memoryVars_;\n\n uint vaultVariables_ = vaultVariables;\n\n // ############# turning re-entrancy bit on #############\n if (vaultVariables_ & 1 == 0) {\n // Updating on storage\n vaultVariables = vaultVariables_ | 1;\n } else {\n revert FluidVaultError(ErrorTypes.VaultT1__AlreadyEntered);\n }\n\n if (debtAmt_ < 10000 || debtAmt_ > X128) {\n revert FluidVaultError(ErrorTypes.VaultT1__InvalidLiquidationAmt);\n }\n\n if (BORROW_TOKEN == NATIVE_TOKEN) {\n if ((msg.value != debtAmt_) && (to_ != 0x000000000000000000000000000000000000dEaD)) {\n revert FluidVaultError(ErrorTypes.VaultT1__InvalidMsgValueLiquidate);\n }\n } else if (msg.value > 0) {\n revert FluidVaultError(ErrorTypes.VaultT1__InvalidMsgValueLiquidate);\n }\n\n memoryVars_.vaultVariables2 = vaultVariables2;\n\n if (((vaultVariables_ >> 2) & X20) == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1__TopTickDoesNotExist);\n }\n\n // Below are exchange prices of vaults\n (, , memoryVars_.supplyExPrice, memoryVars_.borrowExPrice) = updateExchangePrices(memoryVars_.vaultVariables2);\n\n CurrentLiquidity memory currentData_;\n BranchData memory branch_;\n // Temporary holder variables, used many times for different small things\n uint temp_;\n uint temp2_;\n\n {\n // ############# Setting current branch in memory #############\n\n // Updating branch related data\n branch_.id = (vaultVariables_ >> 22) & X30;\n branch_.data = branchData[branch_.id];\n branch_.debtFactor = (branch_.data >> 116) & X50;\n if (branch_.debtFactor == 0) {\n // Initializing branch debt factor. 35 | 15 bit number. Where full 35 bits and 15th bit is occupied.\n // Making the total number as (2**35 - 1) << 2**14.\n // note: initial debt factor can be any number.\n branch_.debtFactor = ((X35 << 15) | (1 << 14));\n }\n // fetching base branch's minima tick. if 0 that means it's a master branch\n temp_ = (branch_.data >> 196) & X20;\n if (temp_ > 0) {\n unchecked {\n branch_.minimaTick = (temp_ & 1) == 1 ? int256((temp_ >> 1) & X19) : -int256((temp_ >> 1) & X19);\n }\n } else {\n branch_.minimaTick = type(int).min;\n }\n }\n\n // extracting top tick as top tick will be the current tick\n unchecked {\n currentData_.tick = (vaultVariables_ & 4) == 4\n ? int256((vaultVariables_ >> 3) & X19)\n : -int256((vaultVariables_ >> 3) & X19);\n }\n // setting up status if top tick is liquidated or not\n currentData_.tickStatus = vaultVariables_ & 2 == 0 ? 1 : 2;\n // Tick info is mainly used as a place holder to store temporary tick related data\n // (it can be current or ref using same memory variable)\n TickData memory tickInfo_;\n tickInfo_.tick = currentData_.tick;\n\n {\n // ############# Oracle related stuff #############\n // Col price w.r.t debt. For example: 1 ETH = 1000 DAI\n // temp_ -> debtPerCol\n temp_ = IFluidOracle(address(uint160(memoryVars_.vaultVariables2 >> 96))).getExchangeRate(); // Price in 27 decimals\n // temp_ -> debtPerCol Converting in terms of raw amount\n temp_ = (temp_ * memoryVars_.supplyExPrice) / memoryVars_.borrowExPrice;\n // temp2_ -> Raw colPerDebt_ in 27 decimals\n temp2_ = 1e54 / temp_;\n\n // Liquidation penalty in 4 decimals (1e2 = 1%) (max: 10.23%) -> (vaultVariables2_ >> 72) & X10\n currentData_.colPerDebt = (temp2_ * (10000 + ((memoryVars_.vaultVariables2 >> 72) & X10))) / 10000;\n\n // get liquidiation tick (tick at liquidation threshold ratio)\n // Liquidation threshold in 3 decimals (900 = 90%) -> (vaultVariables2_ >> 42) & X10\n // Dividing by 1e27 to convert temp_ into normal number\n temp_ = (temp_ < 1e45)\n ? ((temp_ * TickMath.ZERO_TICK_SCALED_RATIO) / 1e27)\n : ((temp_ / 1e27) * TickMath.ZERO_TICK_SCALED_RATIO);\n // temp2_ -> liquidationRatio_\n temp2_ = (temp_ * ((memoryVars_.vaultVariables2 >> 42) & X10)) / 1000;\n (memoryVars_.liquidationTick, ) = TickMath.getTickAtRatio(temp2_);\n\n // get liquidiation max limit tick (tick at liquidation max limit ratio)\n // Max limit in 3 decimals (900 = 90%) -> (vaultVariables2_ >> 52) & X10\n // temp2_ -> maxRatio_\n temp2_ = (temp_ * ((memoryVars_.vaultVariables2 >> 52) & X10)) / 1000;\n (memoryVars_.maxTick, ) = TickMath.getTickAtRatio(temp2_);\n }\n\n currentData_.debtRemaining = (debtAmt_ * EXCHANGE_PRICES_PRECISION) / memoryVars_.borrowExPrice;\n\n if (absorb_) {\n temp_ = absorbedLiquidity;\n // temp2_ -> absorbed col\n temp2_ = (temp_ >> 128) & X128;\n // temp_ -> absorbed debt\n temp_ = temp_ & X128;\n\n if (temp_ > currentData_.debtRemaining) {\n // Removing collateral in equal proportion as debt\n currentData_.totalColLiq = ((temp2_ * currentData_.debtRemaining) / temp_);\n temp2_ -= currentData_.totalColLiq;\n // Removing debt\n currentData_.totalDebtLiq = currentData_.debtRemaining;\n unchecked {\n temp_ -= currentData_.debtRemaining;\n }\n currentData_.debtRemaining = 0;\n\n // updating on storage\n absorbedLiquidity = temp_ | (temp2_ << 128);\n } else {\n // updating on storage\n absorbedLiquidity = 0;\n unchecked {\n currentData_.debtRemaining -= temp_;\n }\n currentData_.totalDebtLiq = temp_;\n currentData_.totalColLiq = temp2_;\n }\n }\n\n if (\n currentData_.tick > memoryVars_.liquidationTick && // current tick > liquidation tick\n currentData_.tick <= memoryVars_.maxTick // current tick <= max tick\n ) {\n if (currentData_.debtRemaining > 0) {\n // Stores liquidated debt & collateral in each loop\n uint debtLiquidated_;\n uint colLiquidated_;\n uint debtFactor_ = BigMathVault.TWO_POWER_64;\n\n TickHasDebt memory tickHasDebt_;\n unchecked {\n tickHasDebt_.mapId = (currentData_.tick < 0)\n ? (((currentData_.tick + 1) / 256) - 1)\n : (currentData_.tick / 256);\n }\n\n tickInfo_.ratio = TickMath.getRatioAtTick(tickInfo_.tick);\n\n if (currentData_.tickStatus == 1) {\n // top tick is not liquidated. Hence it's a perfect tick.\n currentData_.ratio = tickInfo_.ratio;\n // if current tick in liquidation is a perfect tick then it is also the next tick that has debt.\n tickHasDebt_.nextTick = currentData_.tick;\n } else {\n // top tick is liquidated. Hence it has partials.\n // next tick that has debt liquidity will have to be fetched from tickHasDebt\n unchecked {\n tickInfo_.ratioOneLess = (tickInfo_.ratio * 10000) / 10015;\n tickInfo_.length = tickInfo_.ratio - tickInfo_.ratioOneLess;\n tickInfo_.partials = (branch_.data >> 22) & X30;\n currentData_.ratio = tickInfo_.ratioOneLess + ((tickInfo_.length * tickInfo_.partials) / X30);\n\n if ((memoryVars_.liquidationTick + 1) == tickInfo_.tick && (tickInfo_.partials == 1)) {\n if (to_ == 0x000000000000000000000000000000000000dEaD) {\n // revert with liquidated amounts if to_ address is the dead address.\n // this can be used in a resolver to find the max liquidatable amounts.\n revert FluidLiquidateResult(0, 0);\n }\n revert FluidVaultError(ErrorTypes.VaultT1__InvalidLiquidation);\n }\n }\n }\n\n while (true) {\n if (currentData_.tickStatus == 1) {\n // not liquidated -> Getting the debt from tick data itself\n temp2_ = tickData[currentData_.tick];\n // temp_ => tick debt\n temp_ = (temp2_ >> 25) & X64;\n // Converting big number into normal number\n temp_ = (temp_ >> 8) << (temp_ & X8);\n // Updating tickData on storage with removing debt & adding connection to branch\n tickData[currentData_.tick] =\n 1 | // set tick as liquidated\n (temp2_ & 0x1fffffe) | // set same total tick ids\n (branch_.id << 26) | // branch id where this tick got liquidated\n (branch_.debtFactor << 56);\n } else {\n // already liquidated -> Get the debt from branch data in big number\n // temp_ => tick debt\n temp_ = (branch_.data >> 52) & X64;\n // Converting big number into normal number\n temp_ = (temp_ >> 8) << (temp_ & X8);\n // Branch is getting updated over the end\n }\n\n // Adding new debt into active debt for liquidation\n currentData_.debt += temp_;\n\n // Adding new col into active col for liquidation\n // Ratio is in 2**96 decimals hence multiplying debt with 2**96 to get proper collateral\n currentData_.col += (temp_ * TickMath.ZERO_TICK_SCALED_RATIO) / currentData_.ratio;\n\n if (\n (tickHasDebt_.nextTick == currentData_.tick && currentData_.tickStatus == 1) ||\n tickHasDebt_.tickHasDebt == 0\n ) {\n // Fetching next perfect tick with liquidity\n // tickHasDebt_.tickHasDebt == 0 will only happen in the first while loop\n // in the very first perfect tick liquidation it'll be 0\n if (tickHasDebt_.tickHasDebt == 0) {\n tickHasDebt_.tickHasDebt = tickHasDebt[tickHasDebt_.mapId];\n }\n\n // in 1st loop tickStatus can be 2. Meaning not a perfect current tick\n if (currentData_.tickStatus == 1) {\n unchecked {\n tickHasDebt_.bitsToRemove = uint(-currentData_.tick + (tickHasDebt_.mapId * 256 + 256));\n }\n // Removing current top tick from tickHasDebt\n tickHasDebt_.tickHasDebt =\n (tickHasDebt_.tickHasDebt << tickHasDebt_.bitsToRemove) >>\n tickHasDebt_.bitsToRemove;\n // Updating in storage if tickHasDebt becomes 0.\n if (tickHasDebt_.tickHasDebt == 0) {\n tickHasDebt[tickHasDebt_.mapId] = 0;\n }\n }\n\n // For last user remaining in vault there could be a lot of while loop.\n // Chances of this to happen is extremely low (like ~0%)\n while (true) {\n if (tickHasDebt_.tickHasDebt > 0) {\n unchecked {\n tickHasDebt_.nextTick =\n tickHasDebt_.mapId *\n 256 +\n int(tickHasDebt_.tickHasDebt.mostSignificantBit()) -\n 1;\n }\n break;\n }\n\n // tickHasDebt_.tickHasDebt == 0. Checking if minimum tick of this mapID is less than liquidationTick_\n // if true that means now the next tick is not needed as liquidation gets over minimum at liquidationTick_\n unchecked {\n if ((tickHasDebt_.mapId * 256) < memoryVars_.liquidationTick) {\n tickHasDebt_.nextTick = type(int).min;\n break;\n }\n\n // Fetching next tick has debt by decreasing tickHasDebt_.mapId first\n tickHasDebt_.tickHasDebt = tickHasDebt[--tickHasDebt_.mapId];\n }\n }\n }\n\n // Fetching refTick. refTick is the biggest tick of these 3:\n // 1. Next tick with liquidity (from tickHasDebt)\n // 2. Minima tick of current branch\n // 3. Liquidation threshold tick\n {\n // Setting currentData_.refTick & currentData_.refTickStatus\n if (\n branch_.minimaTick > tickHasDebt_.nextTick &&\n branch_.minimaTick > memoryVars_.liquidationTick\n ) {\n // next tick will be of base branch (merge)\n currentData_.refTick = branch_.minimaTick;\n currentData_.refTickStatus = 2;\n } else if (tickHasDebt_.nextTick > memoryVars_.liquidationTick) {\n // next tick will be next tick from perfect tick\n currentData_.refTick = tickHasDebt_.nextTick;\n currentData_.refTickStatus = 1;\n } else {\n // next tick is threshold tick\n currentData_.refTick = memoryVars_.liquidationTick;\n currentData_.refTickStatus = 3; // leads to end of liquidation loop\n }\n }\n\n // using tickInfo variable again for ref tick as we don't have the need for it any more\n tickInfo_.ratio = TickMath.getRatioAtTick(int24(currentData_.refTick));\n if (currentData_.refTickStatus == 2) {\n // merge current branch with base branch\n unchecked {\n tickInfo_.ratioOneLess = (tickInfo_.ratio * 10000) / 10015;\n tickInfo_.length = tickInfo_.ratio - tickInfo_.ratioOneLess;\n // Fetching base branch data to get the base branch's partial\n branch_.baseBranchData = branchData[((branch_.data >> 166) & X30)];\n tickInfo_.partials = (branch_.baseBranchData >> 22) & X30;\n tickInfo_.currentRatio =\n tickInfo_.ratioOneLess +\n ((tickInfo_.length * tickInfo_.partials) / X30);\n currentData_.refRatio = tickInfo_.currentRatio;\n }\n } else {\n // refTickStatus can only be 1 (next tick from perfect tick) or 3 (liquidation threshold tick)\n tickInfo_.currentRatio = tickInfo_.ratio;\n currentData_.refRatio = tickInfo_.ratio;\n tickInfo_.partials = X30;\n }\n\n // Formula: (debt_ - x) / (col_ - (x * colPerDebt_)) = ratioEnd_\n // x = ((ratioEnd_ * col) - debt_) / ((colPerDebt_ * ratioEnd_) - 1)\n // x is debtToLiquidate_\n // col_ = debt_ / ratioStart_ -> (currentData_.debt / currentData_.ratio)\n // ratioEnd_ is currentData_.refRatio\n //\n // Calculation results of numerator & denominator is always negative\n // which will cancel out to give positive output in the end so we can safely cast to uint.\n // for nominator:\n // ratioStart can only be >= ratioEnd so first part can only be reducing currentData_.debt leading to\n // currentData_.debt reduced - currentData_.debt original * 1e27 -> can only be a negative number\n // for denominator:\n // currentData_.colPerDebt and currentData_.refRatio are inversely proportional to each other.\n // the maximum value they can ever be is ~9.97e26 which is the 0.3% away from 100% because liquidation\n // threshold + liquidation penalty can never be > 99.7%. This can also be verified by going back from\n // min / max ratio values further up where we fetch oracle price etc.\n // as optimization we can inverse nominator and denominator subtraction to directly get a positive number.\n\n debtLiquidated_ =\n // nominator\n ((currentData_.debt - (currentData_.refRatio * currentData_.debt) / currentData_.ratio) *\n 1e27) /\n // denominator\n (1e27 - ((currentData_.colPerDebt * currentData_.refRatio) / TickMath.ZERO_TICK_SCALED_RATIO));\n\n colLiquidated_ = (debtLiquidated_ * currentData_.colPerDebt) / 1e27;\n\n if (currentData_.debt == debtLiquidated_) {\n debtLiquidated_ -= 1;\n }\n\n if (debtLiquidated_ >= currentData_.debtRemaining || currentData_.refTickStatus == 3) {\n // End of liquidation as full amount to liquidate or liquidation threshold tick has been reached;\n\n // Updating tickHasDebt on storage.\n tickHasDebt[tickHasDebt_.mapId] = tickHasDebt_.tickHasDebt;\n\n if (debtLiquidated_ >= currentData_.debtRemaining) {\n // Liquidation ended between currentTick & refTick.\n // Not all of liquidatable debt is actually liquidated -> recalculate\n debtLiquidated_ = currentData_.debtRemaining;\n colLiquidated_ = (debtLiquidated_ * currentData_.colPerDebt) / 1e27;\n // Liquidating to debt. temp_ => final ratio after liquidation\n // liquidatable debt - debtLiquidated / liquidatable col - colLiquidated\n temp_ =\n ((currentData_.debt - debtLiquidated_) * TickMath.ZERO_TICK_SCALED_RATIO) /\n (currentData_.col - colLiquidated_);\n // Fetching tick of where liquidation ended\n (tickInfo_.tick, tickInfo_.ratioOneLess) = TickMath.getTickAtRatio(temp_);\n // Increasing tick by 1 as final ratio will probably be a partial\n unchecked {\n ++tickInfo_.tick;\n tickInfo_.ratio = (tickInfo_.ratioOneLess * 10015) / 10000;\n tickInfo_.length = tickInfo_.ratio - tickInfo_.ratioOneLess;\n tickInfo_.partials = ((temp_ - tickInfo_.ratioOneLess) * X30) / tickInfo_.length;\n\n // Taking edge cases where partial comes as 0 or X30 meaning perfect tick.\n // Hence, increasing or reducing it by 1 as liquidation tick cannot be perfect tick.\n tickInfo_.partials = tickInfo_.partials == 0 ? 1 : tickInfo_.partials >= X30\n ? X30 - 1\n : tickInfo_.partials;\n }\n } else {\n // End in liquidation threshold.\n // finalRatio_ = currentData_.refRatio;\n // Increasing liquidation threshold tick by 1 partial. With 1 partial it'll reach to the next tick.\n // Ratio change will be negligible. Doing this as liquidation threshold tick can also be a perfect non-liquidated tick.\n unchecked {\n tickInfo_.tick = currentData_.refTick + 1;\n }\n // Making partial as 1 so it doesn't stay perfect tick\n tickInfo_.partials = 1;\n // length is not needed as only partials are written to storage\n }\n\n // debtFactor = debtFactor * (liquidatableDebt - debtLiquidated) / liquidatableDebt\n // -> debtFactor * leftOverDebt / liquidatableDebt\n debtFactor_ = (debtFactor_ * (currentData_.debt - debtLiquidated_)) / currentData_.debt;\n currentData_.totalDebtLiq += debtLiquidated_;\n currentData_.debt -= debtLiquidated_; // currentData_.debt => leftOverDebt after debtLiquidated_\n currentData_.totalColLiq += colLiquidated_;\n currentData_.col -= colLiquidated_; // currentData_.col => leftOverCol after colLiquidated_\n\n // Updating branch's debt factor & write to storage as liquidation is over\n branch_.debtFactor = branch_.debtFactor.mulDivBigNumber(debtFactor_);\n\n if (currentData_.debt < 100) {\n // this can happen when someone tries to create a dust tick\n revert FluidVaultError(ErrorTypes.VaultT1__BranchDebtTooLow);\n }\n\n unchecked {\n // Tick to insert\n temp2_ = tickInfo_.tick < 0\n ? (uint(-tickInfo_.tick) << 1)\n : ((uint(tickInfo_.tick) << 1) | 1);\n }\n\n // Updating Branch data with debt factor, debt, partials, minima tick & assigning is liquidated\n branchData[branch_.id] =\n ((branch_.data >> 166) << 166) |\n 1 | // set as liquidated\n (temp2_ << 2) | // minima tick of branch\n (tickInfo_.partials << 22) |\n (currentData_.debt.toBigNumber(56, 8, BigMathMinified.ROUND_UP) << 52) | // branch debt\n (branch_.debtFactor << 116);\n\n // Updating vault variables with current branch & tick\n vaultVariables_ =\n ((vaultVariables_ >> 52) << 52) |\n 2 | // set as liquidated\n (temp2_ << 2) | // top tick\n (branch_.id << 22);\n break;\n }\n\n unchecked {\n // debtLiquidated_ >= currentData_.debtRemaining leads to loop break in if statement above\n // so this can be unchecked\n currentData_.debtRemaining -= debtLiquidated_;\n }\n\n // debtFactor = debtFactor * (liquidatableDebt - debtLiquidated) / liquidatableDebt\n // -> debtFactor * leftOverDebt / liquidatableDebt\n debtFactor_ = (debtFactor_ * (currentData_.debt - debtLiquidated_)) / currentData_.debt;\n currentData_.totalDebtLiq += debtLiquidated_;\n currentData_.debt -= debtLiquidated_;\n currentData_.totalColLiq += colLiquidated_;\n currentData_.col -= colLiquidated_;\n\n // updating branch's debt factor\n branch_.debtFactor = branch_.debtFactor.mulDivBigNumber(debtFactor_);\n // Setting debt factor as 1 << 64 again\n debtFactor_ = BigMathVault.TWO_POWER_64;\n\n if (currentData_.refTickStatus == 2) {\n // ref tick is base branch's minima hence merging current branch to base branch\n // and making base branch as current branch.\n\n // read base branch related data\n temp_ = (branch_.data >> 166) & X30; // temp_ -> base branch id\n temp2_ = branch_.baseBranchData;\n {\n uint newBranchDebtFactor_ = (temp2_ >> 116) & X50;\n\n // connectionFactor_ = baseBranchDebtFactor / currentBranchDebtFactor\n uint connectionFactor_ = newBranchDebtFactor_.divBigNumber(branch_.debtFactor);\n // Updating current branch in storage\n branchData[branch_.id] =\n ((branch_.data >> 166) << 166) | // deleting debt / partials / minima tick\n 2 | // setting as merged\n (connectionFactor_ << 116); // set new connectionFactor\n\n // Storing base branch in memory\n // Updating branch ID to base branch ID\n branch_.id = temp_;\n // Updating branch data with base branch data\n branch_.data = temp2_;\n // Remove next branch connection from base branch\n branch_.debtFactor = newBranchDebtFactor_;\n // temp_ => minima tick of base branch\n temp_ = (temp2_ >> 196) & X20;\n if (temp_ > 0) {\n unchecked {\n branch_.minimaTick = (temp_ & 1) == 1\n ? int256((temp_ >> 1) & X19)\n : -int256((temp_ >> 1) & X19);\n }\n } else {\n branch_.minimaTick = type(int).min;\n }\n }\n }\n\n // Making refTick as currentTick\n currentData_.tick = currentData_.refTick;\n currentData_.tickStatus = currentData_.refTickStatus;\n currentData_.ratio = currentData_.refRatio;\n }\n }\n }\n\n // calculating net token amounts using exchange price\n actualDebtAmt_ = (currentData_.totalDebtLiq * memoryVars_.borrowExPrice) / EXCHANGE_PRICES_PRECISION;\n actualColAmt_ = (currentData_.totalColLiq * memoryVars_.supplyExPrice) / EXCHANGE_PRICES_PRECISION;\n\n // Chances of this to happen are in few wei\n if (actualDebtAmt_ > debtAmt_) {\n // calc new actualColAmt_ via ratio.\n actualColAmt_ = actualColAmt_ * (debtAmt_ / actualDebtAmt_);\n actualDebtAmt_ = debtAmt_;\n }\n\n if (((actualColAmt_ * 1e18) / actualDebtAmt_) < colPerUnitDebt_) {\n revert FluidVaultError(ErrorTypes.VaultT1__ExcessSlippageLiquidation);\n }\n\n if (to_ == 0x000000000000000000000000000000000000dEaD) {\n // revert with liquidated amounts if to_ address is the dead address.\n // this can be used in a resolver to find the max liquidatable amounts.\n revert FluidLiquidateResult(actualColAmt_, actualDebtAmt_);\n }\n\n // payback at Liquidity\n if (BORROW_TOKEN == NATIVE_TOKEN) {\n temp_ = actualDebtAmt_;\n if (actualDebtAmt_ < msg.value) {\n unchecked {\n // subtraction can be unchecked because of if check above\n SafeTransfer.safeTransferNative(msg.sender, msg.value - actualDebtAmt_);\n }\n }\n // else if actualDebtAmt_ > msg.value not possible as actualDebtAmt_ can maximally be debtAmt_ and\n // msg.value == debtAmt_ is checked in the beginning of function.\n } else {\n temp_ = 0;\n }\n unchecked {\n // payback at liquidity\n LIQUIDITY.operate{ value: temp_ }(\n BORROW_TOKEN,\n 0,\n -int(actualDebtAmt_),\n address(0),\n address(0),\n abi.encode(msg.sender)\n );\n // withdraw at liquidity\n LIQUIDITY.operate(SUPPLY_TOKEN, -int(actualColAmt_), 0, to_, address(0), new bytes(0));\n }\n\n // Calculating new total collateral & total debt.\n // temp_ -> total supply\n temp_ = (vaultVariables_ >> 82) & X64;\n temp_ = ((temp_ >> 8) << (temp_ & X8)) - currentData_.totalColLiq;\n // temp2_ -> total borrow\n temp2_ = (vaultVariables_ >> 146) & X64;\n temp2_ = ((temp2_ >> 8) << (temp2_ & X8)) - currentData_.totalDebtLiq;\n // Updating vault variables on storage\n // Converting total supply & total borrow in 64 bits (56 | 8) bignumber\n vaultVariables =\n (vaultVariables_ & 0xfffffffffffc00000000000000000000000000000003ffffffffffffffffffff) |\n (temp_.toBigNumber(56, 8, BigMathMinified.ROUND_DOWN) << 82) | // total supply\n (temp2_.toBigNumber(56, 8, BigMathMinified.ROUND_UP) << 146); // total borrow\n\n emit LogLiquidate(msg.sender, actualColAmt_, actualDebtAmt_, to_);\n }\n\n /// @dev absorb function absorbs the bad debt if the bad debt is above max limit. The main use of it is\n /// if the bad debt didn't got liquidated in time maybe due to sudden price drop or bad debt was extremely small to liquidate\n /// and the bad debt goes above 100% ratio then there's no incentive for anyone to liquidate now\n /// hence absorb functions absorbs that bad debt to allow newer bad debt to liquidate seamlessly\n /// if absorbing were to happen after this it's on governance on how to deal with it\n /// although it can still be removed through liquidate via liquidator if the price goes back up and liquidation becomes beneficial\n /// upon absorbed user position gets 100% liquidated.\n function absorb() public {\n _spell(SECONDARY_IMPLEMENTATION, msg.data);\n }\n\n /// @dev Checks total supply of vault's in Liquidity Layer & Vault contract and rebalance it accordingly\n /// if vault supply is more than Liquidity Layer then deposit difference through reserve/rebalance contract\n /// if vault supply is less than Liquidity Layer then withdraw difference to reserve/rebalance contract\n /// if vault borrow is more than Liquidity Layer then borrow difference to reserve/rebalance contract\n /// if vault borrow is less than Liquidity Layer then payback difference through reserve/rebalance contract\n function rebalance() external payable returns (int supplyAmt_, int borrowAmt_) {\n (supplyAmt_, borrowAmt_) = abi.decode(_spell(SECONDARY_IMPLEMENTATION, msg.data), (int, int));\n }\n\n /// @dev liquidity callback for cheaper token transfers in case of deposit or payback.\n /// only callable by Liquidity during an operation.\n function liquidityCallback(address token_, uint amount_, bytes calldata data_) external {\n if (msg.sender != address(LIQUIDITY))\n revert FluidVaultError(ErrorTypes.VaultT1__InvalidLiquidityCallbackAddress);\n if (vaultVariables & 1 == 0) revert FluidVaultError(ErrorTypes.VaultT1__NotEntered);\n\n SafeTransfer.safeTransferFrom(token_, abi.decode(data_, (address)), address(LIQUIDITY), amount_);\n }\n\n constructor(ConstantViews memory constants_) Helpers(constants_) {\n // Note that vaults are deployed by VaultFactory so we somewhat trust the values being passed in\n\n // Setting branch in vault.\n vaultVariables = (vaultVariables) | (1 << 22) | (1 << 52);\n\n uint liqSupplyExchangePrice_ = (LIQUIDITY.readFromStorage(LIQUIDITY_SUPPLY_EXCHANGE_PRICE_SLOT) >>\n LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) & X64;\n uint liqBorrowExchangePrice_ = (LIQUIDITY.readFromStorage(LIQUIDITY_BORROW_EXCHANGE_PRICE_SLOT) >>\n LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) & X64;\n\n if (\n liqSupplyExchangePrice_ < EXCHANGE_PRICES_PRECISION || liqBorrowExchangePrice_ < EXCHANGE_PRICES_PRECISION\n ) {\n revert FluidVaultError(ErrorTypes.VaultT1__TokenNotInitialized);\n }\n // Updating initial rates in storage\n rates =\n liqSupplyExchangePrice_ |\n (liqBorrowExchangePrice_ << 64) |\n (EXCHANGE_PRICES_PRECISION << 128) |\n (EXCHANGE_PRICES_PRECISION << 192);\n }\n\n fallback() external {\n if (!(VAULT_FACTORY.isGlobalAuth(msg.sender) || VAULT_FACTORY.isVaultAuth(msg.sender, address(this)))) {\n revert FluidVaultError(ErrorTypes.VaultT1__NotAnAuth);\n }\n\n // Delegate the current call to `implementation`.\n // This does not return to its internall call site, it will return directly to the external caller.\n // solhint-disable-next-line no-inline-assembly\n _spell(ADMIN_IMPLEMENTATION, msg.data);\n }\n\n function _spell(address target_, bytes memory data_) private returns (bytes memory response_) {\n assembly {\n let succeeded := delegatecall(gas(), target_, add(data_, 0x20), mload(data_), 0, 0)\n let size := returndatasize()\n\n response_ := mload(0x40)\n mstore(0x40, add(response_, and(add(add(size, 0x20), 0x1f), not(0x1f))))\n mstore(response_, size)\n returndatacopy(add(response_, 0x20), 0, size)\n\n switch iszero(succeeded)\n case 1 {\n // throw if delegatecall failed\n returndatacopy(0x00, 0x00, size)\n revert(0x00, size)\n }\n }\n }\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/coreModule/main2.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { Variables } from \"../common/variables.sol\";\nimport { IFluidOracle } from \"../../../../oracle/fluidOracle.sol\";\nimport { TickMath } from \"../../../../libraries/tickMath.sol\";\nimport { BigMathMinified } from \"../../../../libraries/bigMathMinified.sol\";\nimport { Error } from \"../../error.sol\";\nimport { ErrorTypes } from \"../../errorTypes.sol\";\nimport { IFluidVaultT1 } from \"../../interfaces/iVaultT1.sol\";\nimport { Structs } from \"./structs.sol\";\nimport { Events } from \"./events.sol\";\nimport { LiquiditySlotsLink } from \"../../../../libraries/liquiditySlotsLink.sol\";\nimport { LiquidityCalcs } from \"../../../../libraries/liquidityCalcs.sol\";\nimport { IFluidLiquidity } from \"../../../../liquidity/interfaces/iLiquidity.sol\";\nimport { SafeTransfer } from \"../../../../libraries/safeTransfer.sol\";\n\n/// @notice Fluid Vault protocol secondary methods contract.\n/// Implements `absorb()` and `rebalance()` methods, extracted from main contract due to contract size limits.\n/// Methods are limited to be called via delegateCall only (as done by Vault CoreModule \"VaultT1\" contract).\ncontract FluidVaultT1Secondary is Variables, Error, Structs, Events {\n using BigMathMinified for uint;\n\n address internal constant NATIVE_TOKEN = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;\n\n // 30 bits (used for partials mainly)\n uint internal constant X8 = 0xff;\n uint internal constant X10 = 0x3ff;\n uint internal constant X16 = 0xffff;\n uint internal constant X19 = 0x7ffff;\n uint internal constant X20 = 0xfffff;\n uint internal constant X24 = 0xffffff;\n uint internal constant X25 = 0x1ffffff;\n uint internal constant X30 = 0x3fffffff;\n uint internal constant X35 = 0x7ffffffff;\n uint internal constant X50 = 0x3ffffffffffff;\n uint internal constant X64 = 0xffffffffffffffff;\n uint internal constant X96 = 0xffffffffffffffffffffffff;\n uint internal constant X128 = 0xffffffffffffffffffffffffffffffff;\n\n address private immutable addressThis;\n\n constructor() {\n addressThis = address(this);\n }\n\n modifier _verifyCaller() {\n if (address(this) == addressThis) {\n revert FluidVaultError(ErrorTypes.VaultT1__OnlyDelegateCallAllowed);\n }\n _;\n }\n\n /// @dev absorb function absorbs the bad debt if the bad debt is above max limit. The main use of it is\n /// if the bad debt didn't got liquidated in time maybe due to sudden price drop or bad debt was extremely small to liquidate\n /// and the bad debt goes above 100% ratio then there's no incentive for anyone to liquidate now\n /// hence absorb functions absorbs that bad debt to allow newer bad debt to liquidate seamlessly.\n /// if absorbing were to happen after this it's on governance on how to deal with it\n /// although it can still be removed through liquidate via liquidator if the price goes back up and liquidation becomes beneficial\n /// upon absorbed user position gets 100% liquidated.\n function absorb() public _verifyCaller {\n uint256 vaultVariables_ = vaultVariables;\n\n // ############# turning re-entrancy bit on #############\n if (vaultVariables_ & 1 == 0) {\n // Updating on storage\n vaultVariables = vaultVariables_ | 1;\n } else {\n revert FluidVaultError(ErrorTypes.VaultT1__AlreadyEntered);\n }\n\n AbsorbMemoryVariables memory a_;\n\n // Temporary holder variables, used many times for different small few liner things\n uint temp_;\n uint temp2_;\n\n int maxTick_;\n\n {\n a_.vaultVariables2 = vaultVariables2;\n\n // temp_ -> top tick\n temp_ = ((vaultVariables_ >> 2) & X20);\n if (temp_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1__TopTickDoesNotExist);\n }\n\n // Below are exchange prices of vaults\n (, , a_.supplyExPrice, a_.borrowExPrice) = IFluidVaultT1(address(this)).updateExchangePrices(a_.vaultVariables2);\n\n {\n // Col price w.r.t debt. For example: 1 ETH = 1000 DAI\n // temp2_ -> debtPerCol\n temp2_ = IFluidOracle(address(uint160(a_.vaultVariables2 >> 96))).getExchangeRate(); // Price in 27 decimals\n // Converting in terms of raw amount\n temp2_ = (temp2_ * a_.supplyExPrice) / a_.borrowExPrice;\n\n temp2_ = (temp2_ < 1e45)\n ? (temp2_ * TickMath.ZERO_TICK_SCALED_RATIO) / 1e27\n : ((temp2_ / 1e27) * TickMath.ZERO_TICK_SCALED_RATIO);\n\n // Max threshold in 3 decimals (900 = 90%) -> (vaultVariables2 >> 52) & X10\n // temp2_ -> maxRatio_\n temp2_ = (temp2_ * ((a_.vaultVariables2 >> 52) & X10)) / 1000;\n (maxTick_, ) = TickMath.getTickAtRatio(temp2_);\n }\n }\n\n TickHasDebt memory tickHasDebt_;\n\n {\n // liquidating ticks above max ratio\n\n // increasing startingTick_ by 1 so the current tick comes into looping equation\n a_.startingTick = (temp_ & 1) == 1 ? (int(temp_ >> 1) + 1) : (-int(temp_ >> 1) + 1);\n\n tickHasDebt_.mapId = a_.startingTick < 0 ? ((a_.startingTick + 1) / 256) - 1 : a_.startingTick / 256;\n\n tickHasDebt_.tickHasDebt = tickHasDebt[tickHasDebt_.mapId];\n\n {\n // For last user remaining in vault there could be a lot of while loop.\n // Chances of this to happen is extremely low (like ~0%)\n tickHasDebt_.nextTick = TickMath.MAX_TICK;\n while (true) {\n if (tickHasDebt_.tickHasDebt > 0) {\n a_.mostSigBit = tickHasDebt_.tickHasDebt.mostSignificantBit();\n tickHasDebt_.nextTick = tickHasDebt_.mapId * 256 + int(a_.mostSigBit) - 1;\n\n while (tickHasDebt_.nextTick > maxTick_) {\n // storing tickData into temp_\n temp_ = tickData[tickHasDebt_.nextTick];\n // temp2_ -> tick's debt\n temp2_ = (temp_ >> 25) & X64;\n // converting big number into normal number\n temp2_ = (temp2_ >> 8) << (temp2_ & X8);\n // Absorbing tick's debt & collateral\n a_.debtAbsorbed += temp2_;\n // calculating collateral from debt & ratio and adding to a_.colAbsorbed\n a_.colAbsorbed += ((temp2_ * TickMath.ZERO_TICK_SCALED_RATIO) /\n TickMath.getRatioAtTick(int24(tickHasDebt_.nextTick)));\n // Update tick data on storage. Making tick as 100% liquidated\n tickData[tickHasDebt_.nextTick] = 1 | (temp_ & 0x1fffffe) | (1 << 25); // set as 100% liquidated\n\n // temp_ = bits to remove\n temp_ = 257 - a_.mostSigBit;\n tickHasDebt_.tickHasDebt = (tickHasDebt_.tickHasDebt << temp_) >> temp_;\n if (tickHasDebt_.tickHasDebt == 0) break;\n\n a_.mostSigBit = tickHasDebt_.tickHasDebt.mostSignificantBit();\n tickHasDebt_.nextTick = tickHasDebt_.mapId * 256 + int(a_.mostSigBit) - 1;\n }\n // updating tickHasDebt on storage\n tickHasDebt[tickHasDebt_.mapId] = tickHasDebt_.tickHasDebt;\n }\n\n // tickHasDebt_.tickHasDebt == 0 from here.\n\n if (tickHasDebt_.nextTick <= maxTick_) {\n break;\n }\n\n if (tickHasDebt_.mapId < -129) {\n tickHasDebt_.nextTick = type(int).min;\n break;\n }\n\n // Fetching next tickHasDebt by decreasing tickHasDebt_.mapId first\n tickHasDebt_.tickHasDebt = tickHasDebt[--tickHasDebt_.mapId];\n }\n }\n }\n\n // After the above loop we will get nextTick stored in tickHasDebt_ which we will use to compare & set things in the end\n\n {\n TickData memory tickInfo_;\n BranchData memory branch_;\n // if this remains 0 that means create a new branch over the end\n uint newBranchId_;\n\n {\n // Liquidate branches in a loop and store the end branch\n branch_.id = (vaultVariables_ >> 22) & X30;\n branch_.data = branchData[branch_.id];\n // Checking if current branch is liquidated\n if ((vaultVariables_ & 2) == 0) {\n // current branch is not liquidated hence it can be used as a new branch if needed\n newBranchId_ = branch_.id;\n\n // Checking the base branch minima tick. temp_ = base branch minima tick\n temp_ = (branch_.data >> 196) & X20;\n if (temp_ > 0) {\n // Setting the base branch as current liquidatable branch\n branch_.id = (branch_.data >> 166) & X30;\n branch_.data = branchData[branch_.id];\n branch_.minimaTick = (temp_ & 1) == 1 ? int(temp_ >> 1) : -int(temp_ >> 1);\n } else {\n // the current branch is base branch, hence need to setup a new base branch\n branch_.id = 0;\n branch_.data = 0;\n branch_.minimaTick = type(int).min;\n }\n } else {\n // current branch is liquidated\n temp_ = (branch_.data >> 2) & X20;\n branch_.minimaTick = (temp_ & 1) == 1 ? int(temp_ >> 1) : -int(temp_ >> 1);\n }\n while (branch_.minimaTick > maxTick_) {\n // Check base branch, if exists then check if minima tick is above max tick then liquidate it.\n tickInfo_.ratio = TickMath.getRatioAtTick(int24(branch_.minimaTick));\n tickInfo_.ratioOneLess = (tickInfo_.ratio * 10000) / 10015;\n tickInfo_.length = tickInfo_.ratio - tickInfo_.ratioOneLess;\n\n // partials\n tickInfo_.partials = (branch_.data >> 22) & X30;\n\n tickInfo_.currentRatio = tickInfo_.ratioOneLess + ((tickInfo_.length * tickInfo_.partials) / X30);\n\n // debt in branch\n temp2_ = (branch_.data >> 52) & X64;\n // converting big number into normal number\n temp2_ = (temp2_ >> 8) << (temp2_ & X8);\n // Absorbing branch's debt & collateral\n a_.debtAbsorbed += temp2_;\n // calculating branch's collateral usign debt & ratio and adding it to a_.colAbsorbed\n a_.colAbsorbed += (temp2_ * TickMath.ZERO_TICK_SCALED_RATIO) / tickInfo_.currentRatio;\n\n // Closing branch\n branchData[branch_.id] = branch_.data | 3;\n\n // Setting new branch\n temp_ = (branch_.data >> 196) & X20; // temp_ -> minima tick of connected branch\n if (temp_ > 0) {\n // Setting the base branch as current liquidatable branch\n branch_.id = (branch_.data >> 166) & X30;\n branch_.data = branchData[branch_.id];\n branch_.minimaTick = (temp_ & 1) == 1 ? int(temp_ >> 1) : -int(temp_ >> 1);\n } else {\n // the current branch is base branch, hence need to setup a new base branch\n branch_.id = 0;\n branch_.data = 0;\n branch_.minimaTick = type(int).min;\n }\n }\n }\n\n if (tickHasDebt_.nextTick >= branch_.minimaTick) {\n // new top tick is not liquidated\n // temp2_ = tick to insert\n if (tickHasDebt_.nextTick > type(int).min) {\n temp2_ = tickHasDebt_.nextTick < 0\n ? (uint(-tickHasDebt_.nextTick) << 1)\n : ((uint(tickHasDebt_.nextTick) << 1) | 1);\n } else {\n temp2_ = 0;\n }\n if (newBranchId_ == 0) {\n // initializing a new branch\n // newBranchId_ = total current branches + 1\n unchecked {\n newBranchId_ = ((vaultVariables_ >> 52) & X30) + 1;\n }\n vaultVariables_ =\n ((vaultVariables_ >> 82) << 82) |\n (temp2_ << 2) |\n (newBranchId_ << 22) |\n (newBranchId_ << 52);\n } else {\n // using already initialized non liquidated branch\n vaultVariables_ = ((vaultVariables_ >> 22) << 22) | (temp2_ << 2);\n }\n\n if (branch_.minimaTick > type(int).min) {\n temp2_ = branch_.minimaTick < 0\n ? (uint(-branch_.minimaTick) << 1)\n : ((uint(branch_.minimaTick) << 1) | 1);\n // set base branch id and minima tick\n branchData[newBranchId_] = (branch_.id << 166) | (temp2_ << 196);\n } else {\n // new base branch does not have any connected branch\n branchData[newBranchId_] = 0;\n }\n } else {\n // new top tick is liquidated\n temp2_ = branch_.minimaTick < 0\n ? (uint(-branch_.minimaTick) << 1)\n : ((uint(branch_.minimaTick) << 1) | 1);\n if (newBranchId_ == 0) {\n vaultVariables_ = ((vaultVariables_ >> 52) << 52) | 2 | (temp2_ << 2) | (branch_.id << 22);\n } else {\n // uninitializing the non liquidated branch\n vaultVariables_ =\n ((vaultVariables_ >> 82) << 82) |\n 2 |\n (temp2_ << 2) |\n (branch_.id << 22) |\n ((newBranchId_ - 1) << 52); // decreasing total branch by 1\n branchData[newBranchId_] = 0;\n }\n }\n }\n\n // updating absorbed liquidity on storage\n absorbedLiquidity = absorbedLiquidity + a_.debtAbsorbed + (a_.colAbsorbed << 128);\n\n // Updating vault variables on storage\n // Absorb does not do any changes in total supply & total borrow. Hence no need to update total borrow & total supply.\n // this also resets the reentrancy bit\n vaultVariables = vaultVariables_;\n\n emit LogAbsorb(a_.colAbsorbed, a_.debtAbsorbed);\n }\n\n /// @dev Checks total supply of vault's in Liquidity Layer & Vault contract and rebalance it accordingly\n /// if vault supply is more than Liquidity Layer then deposit difference through reserve/rebalance contract\n /// if vault supply is less than Liquidity Layer then withdraw difference to reserve/rebalance contract\n /// if vault borrow is more than Liquidity Layer then borrow difference to reserve/rebalance contract\n /// if vault borrow is less than Liquidity Layer then payback difference through reserve/rebalance contract\n function rebalance() external payable _verifyCaller returns (int supplyAmt_, int borrowAmt_) {\n if (msg.sender != rebalancer) {\n revert FluidVaultError(ErrorTypes.VaultT1__NotRebalancer);\n }\n\n uint vaultVariables_ = vaultVariables;\n // ############# turning re-entrancy bit on #############\n if (vaultVariables_ & 1 == 0) {\n // Updating on storage\n vaultVariables = vaultVariables_ | 1;\n } else {\n revert FluidVaultError(ErrorTypes.VaultT1__AlreadyEntered);\n }\n\n IFluidVaultT1.ConstantViews memory constants_ = IFluidVaultT1(address(this)).constantsView();\n IFluidLiquidity liquidity_ = IFluidLiquidity(constants_.liquidity);\n RebalanceMemoryVariables memory r_;\n\n (r_.liqSupplyExPrice, r_.liqBorrowExPrice, r_.vaultSupplyExPrice, r_.vaultBorrowExPrice) = IFluidVaultT1(\n address(this)\n ).updateExchangePrices(vaultVariables2);\n\n // extract vault supply at Liquidity -> 64 bits starting from bit 1 (first bit is interest mode)\n uint totalSupplyLiquidity_ = (liquidity_.readFromStorage(constants_.liquidityUserSupplySlot) >>\n LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64;\n totalSupplyLiquidity_ = (totalSupplyLiquidity_ >> 8) << (totalSupplyLiquidity_ & X8);\n totalSupplyLiquidity_ =\n (totalSupplyLiquidity_ * r_.liqSupplyExPrice) /\n LiquidityCalcs.EXCHANGE_PRICES_PRECISION;\n\n // extract vault borrowings at Liquidity -> 64 bits starting from bit 1 (first bit is interest mode)\n uint totalBorrowLiquidity_ = (liquidity_.readFromStorage(constants_.liquidityUserBorrowSlot) >>\n LiquiditySlotsLink.BITS_USER_BORROW_AMOUNT) & X64;\n totalBorrowLiquidity_ = (totalBorrowLiquidity_ >> 8) << (totalBorrowLiquidity_ & X8);\n totalBorrowLiquidity_ =\n (totalBorrowLiquidity_ * r_.liqBorrowExPrice) /\n LiquidityCalcs.EXCHANGE_PRICES_PRECISION;\n\n uint totalSupplyVault_ = (vaultVariables_ >> 82) & X64;\n totalSupplyVault_ = (totalSupplyVault_ >> 8) << (totalSupplyVault_ & X8);\n totalSupplyVault_ = (totalSupplyVault_ * r_.vaultSupplyExPrice) / LiquidityCalcs.EXCHANGE_PRICES_PRECISION;\n\n uint totalBorrowVault_ = (vaultVariables_ >> 146) & X64;\n totalBorrowVault_ = (totalBorrowVault_ >> 8) << (totalBorrowVault_ & X8);\n totalBorrowVault_ = (totalBorrowVault_ * r_.vaultBorrowExPrice) / LiquidityCalcs.EXCHANGE_PRICES_PRECISION;\n\n uint value_;\n\n if (totalSupplyVault_ > totalSupplyLiquidity_) {\n // Fetch tokens from revenue/rebalance contract and supply in liquidity contract\n // This is the scenario when the supply rewards are going in vault, hence\n // the vault total supply is increasing at a higher pace than Liquidity contract.\n // We are not transferring rewards right when we set the rewards to keep things clean.\n // Also, this can also happen in case when supply rate magnifier is greater than 1.\n\n supplyAmt_ = int(totalSupplyVault_) - int(totalSupplyLiquidity_);\n\n if (constants_.supplyToken == NATIVE_TOKEN) {\n if (msg.value > uint(supplyAmt_)) {\n value_ = uint(supplyAmt_);\n SafeTransfer.safeTransferNative(msg.sender, msg.value - value_); // sending back excess ETH\n } else {\n value_ = msg.value; // setting amount as msg.value\n }\n supplyAmt_ = int(value_);\n } else {\n value_ = 0;\n }\n\n liquidity_.operate{ value: value_ }(\n constants_.supplyToken,\n supplyAmt_,\n 0,\n address(0),\n address(0),\n abi.encode(rebalancer)\n );\n } else if (totalSupplyLiquidity_ > totalSupplyVault_) {\n // Withdraw from Liquidity contract and send it to revenue contract.\n // This is the scenario when the vault user's are getting less ETH APR than what's going on Liquidity contract.\n // When supply rate magnifier is less than 1.\n supplyAmt_ = int(totalSupplyVault_) - int(totalSupplyLiquidity_);\n liquidity_.operate(constants_.supplyToken, supplyAmt_, 0, rebalancer, address(0), new bytes(0));\n }\n\n if (totalBorrowVault_ > totalBorrowLiquidity_) {\n // Borrow from Liquidity contract and send to revenue/rebalance contract\n // This is the scenario when the vault is charging more borrow to user than the Liquidity contract.\n // When borrow rate magnifier is greater than 1.\n borrowAmt_ = int(totalBorrowVault_) - int(totalBorrowLiquidity_);\n liquidity_.operate(constants_.borrowToken, 0, borrowAmt_, address(0), rebalancer, new bytes(0));\n } else if (totalBorrowLiquidity_ > totalBorrowVault_) {\n // Transfer from revenue/rebalance contract and payback on Liquidity contract\n // This is the scenario when vault protocol is earning rewards so effective borrow rate for users is low.\n // Or the case where borrow rate magnifier is less than 1\n\n borrowAmt_ = int(totalBorrowLiquidity_) - int(totalBorrowVault_);\n\n if (constants_.borrowToken == NATIVE_TOKEN) {\n if (msg.value > uint(borrowAmt_)) {\n value_ = uint(borrowAmt_);\n SafeTransfer.safeTransferNative(msg.sender, msg.value - value_);\n } else {\n value_ = msg.value; // setting amount as msg.value\n }\n borrowAmt_ = int(value_);\n } else {\n value_ = 0;\n }\n\n borrowAmt_ = -borrowAmt_;\n\n liquidity_.operate{ value: value_ }(\n constants_.borrowToken,\n 0,\n borrowAmt_,\n address(0),\n address(0),\n abi.encode(rebalancer)\n );\n }\n\n // Updating vault variable on storage to turn off the reentrancy bit\n vaultVariables = vaultVariables_;\n\n emit LogRebalance(supplyAmt_, borrowAmt_);\n }\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/coreModule/structs.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\ncontract Structs {\n // structs are used to mitigate Stack too deep errors\n\n struct OperateMemoryVars {\n // ## User's position before update ##\n uint oldColRaw;\n uint oldNetDebtRaw; // total debt - dust debt\n int oldTick;\n // ## User's position after update ##\n uint colRaw;\n uint debtRaw; // total debt - dust debt\n uint dustDebtRaw;\n int tick;\n uint tickId;\n // others\n uint256 vaultVariables2;\n uint256 branchId;\n int256 topTick;\n uint liquidityExPrice;\n uint supplyExPrice;\n uint borrowExPrice;\n uint branchData;\n // user's supply slot data in liquidity\n uint userSupplyLiquidityData;\n }\n\n struct BranchData {\n uint id;\n uint data;\n uint ratio;\n uint debtFactor;\n int minimaTick;\n uint baseBranchData;\n }\n\n struct TickData {\n int tick;\n uint data;\n uint ratio;\n uint ratioOneLess;\n uint length;\n uint currentRatio; // current tick is ratio with partials.\n uint partials;\n }\n\n // note: All the below token amounts are in raw form.\n struct CurrentLiquidity {\n uint256 debtRemaining; // Debt remaining to liquidate\n uint256 debt; // Current liquidatable debt before reaching next check point\n uint256 col; // Calculate using debt & ratioCurrent\n uint256 colPerDebt; // How much collateral to liquidate per unit of Debt\n uint256 totalDebtLiq; // Total debt liquidated till now\n uint256 totalColLiq; // Total collateral liquidated till now\n int tick; // Current tick to liquidate\n uint ratio; // Current ratio to liquidate\n uint tickStatus; // if 1 then it's a perfect tick, if 2 that means it's a liquidated tick\n int refTick; // ref tick to liquidate\n uint refRatio; // ratio at ref tick\n uint refTickStatus; // if 1 then it's a perfect tick, if 2 that means it's a liquidated tick, if 3 that means it's a liquidation threshold\n }\n\n struct TickHasDebt {\n int tick; // current tick\n int nextTick; // next tick with liquidity\n int mapId; // mapping ID of tickHasDebt\n uint bitsToRemove; // liquidity to remove till tick_ so we can search for next tick\n uint tickHasDebt; // getting tickHasDebt_ from tickHasDebt[mapId_]\n uint mostSigBit; // most significant bit in tickHasDebt_ to get the next tick\n }\n\n struct LiquidateMemoryVars {\n uint256 vaultVariables2;\n int liquidationTick;\n int maxTick;\n uint256 supplyExPrice;\n uint256 borrowExPrice;\n }\n\n struct AbsorbMemoryVariables {\n uint256 supplyExPrice;\n uint256 borrowExPrice;\n uint256 debtAbsorbed;\n uint256 colAbsorbed;\n uint256 vaultVariables2;\n int256 startingTick;\n uint256 mostSigBit;\n }\n\n struct ConstantViews {\n address liquidity;\n address factory;\n address adminImplementation;\n address secondaryImplementation;\n address supplyToken;\n address borrowToken;\n uint8 supplyDecimals;\n uint8 borrowDecimals;\n uint vaultId;\n bytes32 liquiditySupplyExchangePriceSlot;\n bytes32 liquidityBorrowExchangePriceSlot;\n bytes32 liquidityUserSupplySlot;\n bytes32 liquidityUserBorrowSlot;\n }\n\n struct RebalanceMemoryVariables {\n uint256 liqSupplyExPrice;\n uint256 liqBorrowExPrice;\n uint256 vaultSupplyExPrice;\n uint256 vaultBorrowExPrice;\n }\n}\n"
|
||
},
|
||
"contracts/reserve/error.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nabstract contract Error {\n error FluidReserveContractError(uint256 errorId_);\n}\n"
|
||
},
|
||
"contracts/reserve/errorTypes.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nlibrary ErrorTypes {\n /***********************************|\n | Reserve | \n |__________________________________*/\n\n /// @notice thrown when an unauthorized caller is trying to execute an auth-protected method\n uint256 internal constant ReserveContract__Unauthorized = 90001;\n\n /// @notice thrown when an input address is zero\n uint256 internal constant ReserveContract__AddressZero = 90002;\n\n /// @notice thrown when input arrays has different lenghts\n uint256 internal constant ReserveContract__InvalidInputLenghts = 90003;\n\n /// @notice thrown when renounceOwnership is called\n uint256 internal constant ReserveContract__RenounceOwnershipUnsupported = 90004;\n}\n"
|
||
},
|
||
"contracts/reserve/events.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nabstract contract Events {\n /// @notice Emitted when an address is added or removed from the auths\n event LogUpdateAuth(address indexed auth, bool isAuth);\n\n /// @notice Emitted when an address is added or removed from the rebalancers\n event LogUpdateRebalancer(address indexed rebalancer, bool isRebalancer);\n\n /// @notice Emitted when a token is approved for use by a protocol\n event LogAllow(address indexed protocol, address indexed token, uint256 newAllowance, uint existingAllowance);\n\n /// @notice Emitted when a token is revoked for use by a protocol\n event LogRevoke(address indexed protocol, address indexed token);\n\n /// @notice Emitted when fToken is rebalanced\n event LogRebalanceFToken(address indexed protocol, uint amount);\n\n /// @notice Emitted when vault is rebalanced\n event LogRebalanceVault(address indexed protocol, int colAmount, int debtAmount);\n\n /// @notice Emitted whenever funds for a certain `token` are transfered to Liquidity\n event LogTransferFunds(address indexed token);\n}\n"
|
||
},
|
||
"contracts/reserve/interfaces/iReserveContract.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IFluidLiquidity } from \"../../liquidity/interfaces/iLiquidity.sol\";\n\ninterface IFluidReserveContract {\n function isRebalancer(address user) external returns (bool);\n\n function initialize(\n address[] memory _auths,\n address[] memory _rebalancers,\n IFluidLiquidity liquidity_,\n address owner_\n ) external;\n\n function rebalanceFToken(address protocol_) external;\n\n function rebalanceVault(address protocol_) external;\n\n function transferFunds(address token_) external;\n\n function getProtocolTokens(address protocol_) external;\n\n function updateAuth(address auth_, bool isAuth_) external;\n\n function updateRebalancer(address rebalancer_, bool isRebalancer_) external;\n\n function approve(address[] memory protocols_, address[] memory tokens_, uint256[] memory amounts_) external;\n\n function revoke(address[] memory protocols_, address[] memory tokens_) external;\n}\n"
|
||
},
|
||
"contracts/reserve/main.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { UUPSUpgradeable } from \"@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol\";\nimport { IERC20 } from \"@openzeppelin/contracts/token/ERC20/IERC20.sol\";\nimport { SafeERC20 } from \"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol\";\nimport { EnumerableSet } from \"@openzeppelin/contracts/utils/structs/EnumerableSet.sol\";\n\nimport { IFluidLiquidity } from \"../liquidity/interfaces/iLiquidity.sol\";\nimport { IFluidLendingFactory } from \"../protocols/lending/interfaces/iLendingFactory.sol\";\nimport { IFTokenAdmin } from \"../protocols/lending/interfaces/iFToken.sol\";\nimport { IFluidVaultT1 } from \"../protocols/vault/interfaces/iVaultT1.sol\";\nimport { SafeTransfer } from \"../libraries/safeTransfer.sol\";\n\nimport { Variables } from \"./variables.sol\";\nimport { Events } from \"./events.sol\";\nimport { ErrorTypes } from \"./errorTypes.sol\";\nimport { Error } from \"./error.sol\";\n\nabstract contract ReserveContractAuth is Variables, Error, Events {\n using EnumerableSet for EnumerableSet.AddressSet;\n\n /// @dev validates that an address is not the zero address\n modifier validAddress(address value_) {\n if (value_ == address(0)) {\n revert FluidReserveContractError(ErrorTypes.ReserveContract__AddressZero);\n }\n _;\n }\n\n /// @notice Checks that the sender is an auth\n modifier onlyAuth() {\n if (!isAuth[msg.sender] && owner() != msg.sender)\n revert FluidReserveContractError(ErrorTypes.ReserveContract__Unauthorized);\n _;\n }\n\n /// @notice Updates an auth's status as an auth\n /// @param auth_ The address to update\n /// @param isAuth_ Whether or not the address should be an auth\n function updateAuth(address auth_, bool isAuth_) external onlyOwner validAddress(auth_) {\n isAuth[auth_] = isAuth_;\n emit LogUpdateAuth(auth_, isAuth_);\n }\n\n /// @notice Updates a rebalancer's status as a rebalancer\n /// @param rebalancer_ The address to update\n /// @param isRebalancer_ Whether or not the address should be a rebalancer\n function updateRebalancer(address rebalancer_, bool isRebalancer_) external onlyAuth validAddress(rebalancer_) {\n isRebalancer[rebalancer_] = isRebalancer_;\n emit LogUpdateRebalancer(rebalancer_, isRebalancer_);\n }\n\n /// @notice Approves protocols to spend the reserves tokens\n /// @dev The parameters are parallel arrays\n /// @param protocols_ The protocols that will be spending reserve tokens\n /// @param tokens_ The tokens to approve\n /// @param amounts_ The amounts to approve\n function approve(\n address[] memory protocols_,\n address[] memory tokens_,\n uint256[] memory amounts_\n ) external onlyAuth {\n if (protocols_.length != tokens_.length || tokens_.length != amounts_.length) {\n revert FluidReserveContractError(ErrorTypes.ReserveContract__InvalidInputLenghts);\n }\n\n for (uint256 i = 0; i < protocols_.length; i++) {\n address protocol_ = protocols_[i];\n address token_ = tokens_[i];\n uint256 amount_ = amounts_[i];\n uint256 existingAllowance_ = IERC20(token_).allowance(address(this), protocol_);\n\n // making approval 0 first and then re-approving with a new amount.\n SafeERC20.safeApprove(IERC20(address(token_)), protocol_, 0);\n SafeERC20.safeApprove(IERC20(address(token_)), protocol_, amount_);\n _protocolTokens[protocol_].add(token_);\n emit LogAllow(protocol_, token_, amount_, existingAllowance_);\n }\n }\n\n /// @notice Revokes protocols' ability to spend the reserves tokens\n /// @dev The parameters are parallel arrays\n /// @param protocols_ The protocols that will no longer be spending reserve tokens\n /// @param tokens_ The tokens to revoke\n function revoke(address[] memory protocols_, address[] memory tokens_) external onlyAuth {\n if (protocols_.length != tokens_.length) {\n revert FluidReserveContractError(ErrorTypes.ReserveContract__InvalidInputLenghts);\n }\n\n for (uint256 i = 0; i < protocols_.length; i++) {\n address protocol_ = protocols_[i];\n address token_ = tokens_[i];\n\n SafeERC20.safeApprove(IERC20(address(token_)), protocol_, 0);\n _protocolTokens[protocol_].remove(token_);\n emit LogRevoke(protocol_, token_);\n }\n }\n}\n\n/// @title Reserve Contract\n/// @notice This contract manages the approval of tokens for use by protocols and\n/// the execution of rebalances on protocols\ncontract FluidReserveContract is Error, ReserveContractAuth, UUPSUpgradeable {\n using EnumerableSet for EnumerableSet.AddressSet;\n using SafeERC20 for IERC20;\n\n /// @notice Checks that the sender is a rebalancer\n modifier onlyRebalancer() {\n if (!isRebalancer[msg.sender]) revert FluidReserveContractError(ErrorTypes.ReserveContract__Unauthorized);\n _;\n }\n\n constructor(IFluidLiquidity liquidity_) validAddress(address(liquidity_)) Variables(liquidity_) {\n // ensure logic contract initializer is not abused by disabling initializing\n // see https://forum.openzeppelin.com/t/security-advisory-initialize-uups-implementation-contracts/15301\n // and https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract\n _disableInitializers();\n }\n\n /// @notice initializes the contract\n /// @param _auths The addresses that have the auth to approve and revoke protocol token allowances\n /// @param _rebalancers The addresses that can execute a rebalance on a protocol\n /// @param owner_ owner address is able to upgrade contract and update auth users\n function initialize(\n address[] memory _auths,\n address[] memory _rebalancers,\n address owner_\n ) public initializer validAddress(owner_) {\n for (uint256 i = 0; i < _auths.length; i++) {\n isAuth[_auths[i]] = true;\n emit LogUpdateAuth(_auths[i], true);\n }\n for (uint256 i = 0; i < _rebalancers.length; i++) {\n isRebalancer[_rebalancers[i]] = true;\n emit LogUpdateRebalancer(_rebalancers[i], true);\n }\n _transferOwnership(owner_);\n }\n\n function _authorizeUpgrade(address) internal override onlyOwner {}\n\n /// @notice override renounce ownership as it could leave the contract in an unwanted state if called by mistake.\n function renounceOwnership() public view override onlyOwner {\n revert FluidReserveContractError(ErrorTypes.ReserveContract__RenounceOwnershipUnsupported);\n }\n\n /// @notice Executes a rebalance on a protocol by calling that protocol's `rebalance` function\n /// @param protocol_ The protocol to rebalance\n function rebalanceFToken(address protocol_) external onlyRebalancer {\n uint256 amount_ = IFTokenAdmin(protocol_).rebalance();\n emit LogRebalanceFToken(protocol_, amount_);\n }\n\n /// @notice Executes a rebalance on a protocol by calling that protocol's `rebalance` function\n /// @param protocol_ The protocol to rebalance\n function rebalanceVault(address protocol_) external onlyRebalancer {\n (int256 colAmount_, int256 debtAmount_) = IFluidVaultT1(protocol_).rebalance();\n emit LogRebalanceVault(protocol_, colAmount_, debtAmount_);\n }\n\n function transferFunds(address[] calldata tokens_) external virtual onlyAuth {\n for (uint256 i = 0; i < tokens_.length; i++) {\n SafeTransfer.safeTransfer(\n address(tokens_[i]),\n address(LIQUIDITY),\n IERC20(tokens_[i]).balanceOf(address(this))\n );\n emit LogTransferFunds(tokens_[i]);\n }\n }\n\n /// @notice Gets the tokens that are approved for use by a protocol\n /// @param protocol_ The protocol to get the tokens for\n /// @return result_ The tokens that are approved for use by the protocol\n function getProtocolTokens(address protocol_) external view returns (address[] memory result_) {\n EnumerableSet.AddressSet storage tokens_ = _protocolTokens[protocol_];\n result_ = new address[](tokens_.length());\n for (uint256 i = 0; i < tokens_.length(); i++) {\n result_[i] = tokens_.at(i);\n }\n }\n}\n"
|
||
},
|
||
"contracts/reserve/variables.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { Initializable } from \"@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol\";\nimport { OwnableUpgradeable } from \"@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol\";\nimport { EnumerableSet } from \"@openzeppelin/contracts/utils/structs/EnumerableSet.sol\";\nimport { IFluidLiquidity } from \"../liquidity/interfaces/iLiquidity.sol\";\nimport { IFluidLendingFactory } from \"../protocols/lending/interfaces/iLendingFactory.sol\";\n\nabstract contract Constants {\n /// @notice address of the liquidity contract\n IFluidLiquidity public immutable LIQUIDITY;\n\n constructor(IFluidLiquidity liquidity_) {\n LIQUIDITY = liquidity_;\n }\n}\n\nabstract contract Variables is Constants, Initializable, OwnableUpgradeable {\n using EnumerableSet for EnumerableSet.AddressSet;\n\n // ------------ storage variables from inherited contracts (Initializable, OwnableUpgradeable) come before vars here --------\n // @dev variables here start at storage slot 101, before is:\n // - Initializable with storage slot 0:\n // uint8 private _initialized;\n // bool private _initializing;\n // - OwnableUpgradeable with slots 1 to 100:\n // uint256[50] private __gap; (from ContextUpgradeable, slot 1 until slot 50)\n // address private _owner; (at slot 51)\n // uint256[49] private __gap; (slot 52 until slot 100)\n\n // ----------------------- slot 101 ---------------------------\n /// @notice Maps address to there status as an Auth\n mapping(address => bool) public isAuth;\n\n /// @notice Maps address to there status as a Rebalancer\n mapping(address => bool) public isRebalancer;\n\n /// @notice Mapping of protocol addresses to the tokens that are allowed to be used by that protocol\n mapping(address => EnumerableSet.AddressSet) internal _protocolTokens;\n\n constructor(IFluidLiquidity liquidity_) Constants(liquidity_) {}\n}\n"
|
||
},
|
||
"solmate/src/utils/SSTORE2.sol": {
|
||
"content": "// SPDX-License-Identifier: AGPL-3.0-only\npragma solidity >=0.8.0;\n\n/// @notice Read and write to persistent storage at a fraction of the cost.\n/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SSTORE2.sol)\n/// @author Modified from 0xSequence (https://github.com/0xSequence/sstore2/blob/master/contracts/SSTORE2.sol)\nlibrary SSTORE2 {\n uint256 internal constant DATA_OFFSET = 1; // We skip the first byte as it's a STOP opcode to ensure the contract can't be called.\n\n /*//////////////////////////////////////////////////////////////\n WRITE LOGIC\n //////////////////////////////////////////////////////////////*/\n\n function write(bytes memory data) internal returns (address pointer) {\n // Prefix the bytecode with a STOP opcode to ensure it cannot be called.\n bytes memory runtimeCode = abi.encodePacked(hex\"00\", data);\n\n bytes memory creationCode = abi.encodePacked(\n //---------------------------------------------------------------------------------------------------------------//\n // Opcode | Opcode + Arguments | Description | Stack View //\n //---------------------------------------------------------------------------------------------------------------//\n // 0x60 | 0x600B | PUSH1 11 | codeOffset //\n // 0x59 | 0x59 | MSIZE | 0 codeOffset //\n // 0x81 | 0x81 | DUP2 | codeOffset 0 codeOffset //\n // 0x38 | 0x38 | CODESIZE | codeSize codeOffset 0 codeOffset //\n // 0x03 | 0x03 | SUB | (codeSize - codeOffset) 0 codeOffset //\n // 0x80 | 0x80 | DUP | (codeSize - codeOffset) (codeSize - codeOffset) 0 codeOffset //\n // 0x92 | 0x92 | SWAP3 | codeOffset (codeSize - codeOffset) 0 (codeSize - codeOffset) //\n // 0x59 | 0x59 | MSIZE | 0 codeOffset (codeSize - codeOffset) 0 (codeSize - codeOffset) //\n // 0x39 | 0x39 | CODECOPY | 0 (codeSize - codeOffset) //\n // 0xf3 | 0xf3 | RETURN | //\n //---------------------------------------------------------------------------------------------------------------//\n hex\"60_0B_59_81_38_03_80_92_59_39_F3\", // Returns all code in the contract except for the first 11 (0B in hex) bytes.\n runtimeCode // The bytecode we want the contract to have after deployment. Capped at 1 byte less than the code size limit.\n );\n\n /// @solidity memory-safe-assembly\n assembly {\n // Deploy a new contract with the generated creation code.\n // We start 32 bytes into the code to avoid copying the byte length.\n pointer := create(0, add(creationCode, 32), mload(creationCode))\n }\n\n require(pointer != address(0), \"DEPLOYMENT_FAILED\");\n }\n\n /*//////////////////////////////////////////////////////////////\n READ LOGIC\n //////////////////////////////////////////////////////////////*/\n\n function read(address pointer) internal view returns (bytes memory) {\n return readBytecode(pointer, DATA_OFFSET, pointer.code.length - DATA_OFFSET);\n }\n\n function read(address pointer, uint256 start) internal view returns (bytes memory) {\n start += DATA_OFFSET;\n\n return readBytecode(pointer, start, pointer.code.length - start);\n }\n\n function read(\n address pointer,\n uint256 start,\n uint256 end\n ) internal view returns (bytes memory) {\n start += DATA_OFFSET;\n end += DATA_OFFSET;\n\n require(pointer.code.length >= end, \"OUT_OF_BOUNDS\");\n\n return readBytecode(pointer, start, end - start);\n }\n\n /*//////////////////////////////////////////////////////////////\n INTERNAL HELPER LOGIC\n //////////////////////////////////////////////////////////////*/\n\n function readBytecode(\n address pointer,\n uint256 start,\n uint256 size\n ) private view returns (bytes memory data) {\n /// @solidity memory-safe-assembly\n assembly {\n // Get a pointer to some free memory.\n data := mload(0x40)\n\n // Update the free memory pointer to prevent overriding our data.\n // We use and(x, not(31)) as a cheaper equivalent to sub(x, mod(x, 32)).\n // Adding 31 to size and running the result through the logic above ensures\n // the memory pointer remains word-aligned, following the Solidity convention.\n mstore(0x40, add(data, and(add(add(size, 32), 31), not(31))))\n\n // Store the size of the data in the first 32 byte chunk of free memory.\n mstore(data, size)\n\n // Copy the code into memory right after the 32 bytes we used to store the size.\n extcodecopy(pointer, add(data, 32), start, size)\n }\n }\n}\n"
|
||
}
|
||
},
|
||
"settings": {
|
||
"optimizer": {
|
||
"enabled": true,
|
||
"runs": 10000000
|
||
},
|
||
"evmVersion": "paris",
|
||
"outputSelection": {
|
||
"*": {
|
||
"*": [
|
||
"abi",
|
||
"evm.bytecode",
|
||
"evm.deployedBytecode",
|
||
"evm.methodIdentifiers",
|
||
"metadata",
|
||
"devdoc",
|
||
"userdoc",
|
||
"storageLayout",
|
||
"evm.gasEstimates"
|
||
],
|
||
"": [
|
||
"ast"
|
||
]
|
||
}
|
||
},
|
||
"metadata": {
|
||
"useLiteralContent": true
|
||
}
|
||
}
|
||
} |