mirror of
https://github.com/Instadapp/fluid-contracts-public.git
synced 2024-07-29 21:57:37 +00:00
d7a58e88ff
ARB: deploy protocols
177 lines
287 KiB
JSON
177 lines
287 KiB
JSON
{
|
||
"language": "Solidity",
|
||
"sources": {
|
||
"@openzeppelin/contracts/interfaces/IERC4626.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (interfaces/IERC4626.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../token/ERC20/IERC20.sol\";\nimport \"../token/ERC20/extensions/IERC20Metadata.sol\";\n\n/**\n * @dev Interface of the ERC4626 \"Tokenized Vault Standard\", as defined in\n * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].\n *\n * _Available since v4.7._\n */\ninterface IERC4626 is IERC20, IERC20Metadata {\n event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);\n\n event Withdraw(\n address indexed sender,\n address indexed receiver,\n address indexed owner,\n uint256 assets,\n uint256 shares\n );\n\n /**\n * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.\n *\n * - MUST be an ERC-20 token contract.\n * - MUST NOT revert.\n */\n function asset() external view returns (address assetTokenAddress);\n\n /**\n * @dev Returns the total amount of the underlying asset that is “managed” by Vault.\n *\n * - SHOULD include any compounding that occurs from yield.\n * - MUST be inclusive of any fees that are charged against assets in the Vault.\n * - MUST NOT revert.\n */\n function totalAssets() external view returns (uint256 totalManagedAssets);\n\n /**\n * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal\n * scenario where all the conditions are met.\n *\n * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.\n * - MUST NOT show any variations depending on the caller.\n * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.\n * - MUST NOT revert.\n *\n * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the\n * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and\n * from.\n */\n function convertToShares(uint256 assets) external view returns (uint256 shares);\n\n /**\n * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal\n * scenario where all the conditions are met.\n *\n * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.\n * - MUST NOT show any variations depending on the caller.\n * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.\n * - MUST NOT revert.\n *\n * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the\n * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and\n * from.\n */\n function convertToAssets(uint256 shares) external view returns (uint256 assets);\n\n /**\n * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,\n * through a deposit call.\n *\n * - MUST return a limited value if receiver is subject to some deposit limit.\n * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.\n * - MUST NOT revert.\n */\n function maxDeposit(address receiver) external view returns (uint256 maxAssets);\n\n /**\n * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given\n * current on-chain conditions.\n *\n * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit\n * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called\n * in the same transaction.\n * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the\n * deposit would be accepted, regardless if the user has enough tokens approved, etc.\n * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.\n * - MUST NOT revert.\n *\n * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in\n * share price or some other type of condition, meaning the depositor will lose assets by depositing.\n */\n function previewDeposit(uint256 assets) external view returns (uint256 shares);\n\n /**\n * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.\n *\n * - MUST emit the Deposit event.\n * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the\n * deposit execution, and are accounted for during deposit.\n * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not\n * approving enough underlying tokens to the Vault contract, etc).\n *\n * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.\n */\n function deposit(uint256 assets, address receiver) external returns (uint256 shares);\n\n /**\n * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.\n * - MUST return a limited value if receiver is subject to some mint limit.\n * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.\n * - MUST NOT revert.\n */\n function maxMint(address receiver) external view returns (uint256 maxShares);\n\n /**\n * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given\n * current on-chain conditions.\n *\n * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call\n * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the\n * same transaction.\n * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint\n * would be accepted, regardless if the user has enough tokens approved, etc.\n * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.\n * - MUST NOT revert.\n *\n * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in\n * share price or some other type of condition, meaning the depositor will lose assets by minting.\n */\n function previewMint(uint256 shares) external view returns (uint256 assets);\n\n /**\n * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.\n *\n * - MUST emit the Deposit event.\n * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint\n * execution, and are accounted for during mint.\n * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not\n * approving enough underlying tokens to the Vault contract, etc).\n *\n * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.\n */\n function mint(uint256 shares, address receiver) external returns (uint256 assets);\n\n /**\n * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the\n * Vault, through a withdraw call.\n *\n * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.\n * - MUST NOT revert.\n */\n function maxWithdraw(address owner) external view returns (uint256 maxAssets);\n\n /**\n * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,\n * given current on-chain conditions.\n *\n * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw\n * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if\n * called\n * in the same transaction.\n * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though\n * the withdrawal would be accepted, regardless if the user has enough shares, etc.\n * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.\n * - MUST NOT revert.\n *\n * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in\n * share price or some other type of condition, meaning the depositor will lose assets by depositing.\n */\n function previewWithdraw(uint256 assets) external view returns (uint256 shares);\n\n /**\n * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.\n *\n * - MUST emit the Withdraw event.\n * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the\n * withdraw execution, and are accounted for during withdraw.\n * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner\n * not having enough shares, etc).\n *\n * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.\n * Those methods should be performed separately.\n */\n function withdraw(\n uint256 assets,\n address receiver,\n address owner\n ) external returns (uint256 shares);\n\n /**\n * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,\n * through a redeem call.\n *\n * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.\n * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.\n * - MUST NOT revert.\n */\n function maxRedeem(address owner) external view returns (uint256 maxShares);\n\n /**\n * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,\n * given current on-chain conditions.\n *\n * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call\n * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the\n * same transaction.\n * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the\n * redemption would be accepted, regardless if the user has enough shares, etc.\n * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.\n * - MUST NOT revert.\n *\n * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in\n * share price or some other type of condition, meaning the depositor will lose assets by redeeming.\n */\n function previewRedeem(uint256 shares) external view returns (uint256 assets);\n\n /**\n * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.\n *\n * - MUST emit the Withdraw event.\n * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the\n * redeem execution, and are accounted for during redeem.\n * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner\n * not having enough shares, etc).\n *\n * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.\n * Those methods should be performed separately.\n */\n function redeem(\n uint256 shares,\n address receiver,\n address owner\n ) external returns (uint256 assets);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in\n * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].\n *\n * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by\n * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't\n * need to send a transaction, and thus is not required to hold Ether at all.\n */\ninterface IERC20Permit {\n /**\n * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,\n * given ``owner``'s signed approval.\n *\n * IMPORTANT: The same issues {IERC20-approve} has related to transaction\n * ordering also apply here.\n *\n * Emits an {Approval} event.\n *\n * Requirements:\n *\n * - `spender` cannot be the zero address.\n * - `deadline` must be a timestamp in the future.\n * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`\n * over the EIP712-formatted function arguments.\n * - the signature must use ``owner``'s current nonce (see {nonces}).\n *\n * For more information on the signature format, see the\n * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP\n * section].\n */\n function permit(\n address owner,\n address spender,\n uint256 value,\n uint256 deadline,\n uint8 v,\n bytes32 r,\n bytes32 s\n ) external;\n\n /**\n * @dev Returns the current nonce for `owner`. This value must be\n * included whenever a signature is generated for {permit}.\n *\n * Every successful call to {permit} increases ``owner``'s nonce by one. This\n * prevents a signature from being used multiple times.\n */\n function nonces(address owner) external view returns (uint256);\n\n /**\n * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.\n */\n // solhint-disable-next-line func-name-mixedcase\n function DOMAIN_SEPARATOR() external view returns (bytes32);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../IERC20.sol\";\n\n/**\n * @dev Interface for the optional metadata functions from the ERC20 standard.\n *\n * _Available since v4.1._\n */\ninterface IERC20Metadata is IERC20 {\n /**\n * @dev Returns the name of the token.\n */\n function name() external view returns (string memory);\n\n /**\n * @dev Returns the symbol of the token.\n */\n function symbol() external view returns (string memory);\n\n /**\n * @dev Returns the decimals places of the token.\n */\n function decimals() external view returns (uint8);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/token/ERC20/IERC20.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP.\n */\ninterface IERC20 {\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller's account to `to`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address to, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender's allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `from` to `to` using the\n * allowance mechanism. `amount` is then deducted from the caller's\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address from,\n address to,\n uint256 amount\n ) external returns (bool);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../IERC20.sol\";\nimport \"../extensions/draft-IERC20Permit.sol\";\nimport \"../../../utils/Address.sol\";\n\n/**\n * @title SafeERC20\n * @dev Wrappers around ERC20 operations that throw on failure (when the token\n * contract returns false). Tokens that return no value (and instead revert or\n * throw on failure) are also supported, non-reverting calls are assumed to be\n * successful.\n * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,\n * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.\n */\nlibrary SafeERC20 {\n using Address for address;\n\n function safeTransfer(\n IERC20 token,\n address to,\n uint256 value\n ) internal {\n _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));\n }\n\n function safeTransferFrom(\n IERC20 token,\n address from,\n address to,\n uint256 value\n ) internal {\n _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));\n }\n\n /**\n * @dev Deprecated. This function has issues similar to the ones found in\n * {IERC20-approve}, and its usage is discouraged.\n *\n * Whenever possible, use {safeIncreaseAllowance} and\n * {safeDecreaseAllowance} instead.\n */\n function safeApprove(\n IERC20 token,\n address spender,\n uint256 value\n ) internal {\n // safeApprove should only be called when setting an initial allowance,\n // or when resetting it to zero. To increase and decrease it, use\n // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'\n require(\n (value == 0) || (token.allowance(address(this), spender) == 0),\n \"SafeERC20: approve from non-zero to non-zero allowance\"\n );\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));\n }\n\n function safeIncreaseAllowance(\n IERC20 token,\n address spender,\n uint256 value\n ) internal {\n uint256 newAllowance = token.allowance(address(this), spender) + value;\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));\n }\n\n function safeDecreaseAllowance(\n IERC20 token,\n address spender,\n uint256 value\n ) internal {\n unchecked {\n uint256 oldAllowance = token.allowance(address(this), spender);\n require(oldAllowance >= value, \"SafeERC20: decreased allowance below zero\");\n uint256 newAllowance = oldAllowance - value;\n _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));\n }\n }\n\n function safePermit(\n IERC20Permit token,\n address owner,\n address spender,\n uint256 value,\n uint256 deadline,\n uint8 v,\n bytes32 r,\n bytes32 s\n ) internal {\n uint256 nonceBefore = token.nonces(owner);\n token.permit(owner, spender, value, deadline, v, r, s);\n uint256 nonceAfter = token.nonces(owner);\n require(nonceAfter == nonceBefore + 1, \"SafeERC20: permit did not succeed\");\n }\n\n /**\n * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement\n * on the return value: the return value is optional (but if data is returned, it must not be false).\n * @param token The token targeted by the call.\n * @param data The call data (encoded using abi.encode or one of its variants).\n */\n function _callOptionalReturn(IERC20 token, bytes memory data) private {\n // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since\n // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that\n // the target address contains contract code and also asserts for success in the low-level call.\n\n bytes memory returndata = address(token).functionCall(data, \"SafeERC20: low-level call failed\");\n if (returndata.length > 0) {\n // Return data is optional\n require(abi.decode(returndata, (bool)), \"SafeERC20: ERC20 operation did not succeed\");\n }\n }\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../IERC721.sol\";\n\n/**\n * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension\n * @dev See https://eips.ethereum.org/EIPS/eip-721\n */\ninterface IERC721Enumerable is IERC721 {\n /**\n * @dev Returns the total amount of tokens stored by the contract.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns a token ID owned by `owner` at a given `index` of its token list.\n * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.\n */\n function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);\n\n /**\n * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.\n * Use along with {totalSupply} to enumerate all tokens.\n */\n function tokenByIndex(uint256 index) external view returns (uint256);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/token/ERC721/IERC721.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../../utils/introspection/IERC165.sol\";\n\n/**\n * @dev Required interface of an ERC721 compliant contract.\n */\ninterface IERC721 is IERC165 {\n /**\n * @dev Emitted when `tokenId` token is transferred from `from` to `to`.\n */\n event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);\n\n /**\n * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.\n */\n event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);\n\n /**\n * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.\n */\n event ApprovalForAll(address indexed owner, address indexed operator, bool approved);\n\n /**\n * @dev Returns the number of tokens in ``owner``'s account.\n */\n function balanceOf(address owner) external view returns (uint256 balance);\n\n /**\n * @dev Returns the owner of the `tokenId` token.\n *\n * Requirements:\n *\n * - `tokenId` must exist.\n */\n function ownerOf(uint256 tokenId) external view returns (address owner);\n\n /**\n * @dev Safely transfers `tokenId` token from `from` to `to`.\n *\n * Requirements:\n *\n * - `from` cannot be the zero address.\n * - `to` cannot be the zero address.\n * - `tokenId` token must exist and be owned by `from`.\n * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.\n * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.\n *\n * Emits a {Transfer} event.\n */\n function safeTransferFrom(\n address from,\n address to,\n uint256 tokenId,\n bytes calldata data\n ) external;\n\n /**\n * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients\n * are aware of the ERC721 protocol to prevent tokens from being forever locked.\n *\n * Requirements:\n *\n * - `from` cannot be the zero address.\n * - `to` cannot be the zero address.\n * - `tokenId` token must exist and be owned by `from`.\n * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.\n * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.\n *\n * Emits a {Transfer} event.\n */\n function safeTransferFrom(\n address from,\n address to,\n uint256 tokenId\n ) external;\n\n /**\n * @dev Transfers `tokenId` token from `from` to `to`.\n *\n * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721\n * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must\n * understand this adds an external call which potentially creates a reentrancy vulnerability.\n *\n * Requirements:\n *\n * - `from` cannot be the zero address.\n * - `to` cannot be the zero address.\n * - `tokenId` token must be owned by `from`.\n * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address from,\n address to,\n uint256 tokenId\n ) external;\n\n /**\n * @dev Gives permission to `to` to transfer `tokenId` token to another account.\n * The approval is cleared when the token is transferred.\n *\n * Only a single account can be approved at a time, so approving the zero address clears previous approvals.\n *\n * Requirements:\n *\n * - The caller must own the token or be an approved operator.\n * - `tokenId` must exist.\n *\n * Emits an {Approval} event.\n */\n function approve(address to, uint256 tokenId) external;\n\n /**\n * @dev Approve or remove `operator` as an operator for the caller.\n * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.\n *\n * Requirements:\n *\n * - The `operator` cannot be the caller.\n *\n * Emits an {ApprovalForAll} event.\n */\n function setApprovalForAll(address operator, bool _approved) external;\n\n /**\n * @dev Returns the account approved for `tokenId` token.\n *\n * Requirements:\n *\n * - `tokenId` must exist.\n */\n function getApproved(uint256 tokenId) external view returns (address operator);\n\n /**\n * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.\n *\n * See {setApprovalForAll}\n */\n function isApprovedForAll(address owner, address operator) external view returns (bool);\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/utils/Address.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)\n\npragma solidity ^0.8.1;\n\n/**\n * @dev Collection of functions related to the address type\n */\nlibrary Address {\n /**\n * @dev Returns true if `account` is a contract.\n *\n * [IMPORTANT]\n * ====\n * It is unsafe to assume that an address for which this function returns\n * false is an externally-owned account (EOA) and not a contract.\n *\n * Among others, `isContract` will return false for the following\n * types of addresses:\n *\n * - an externally-owned account\n * - a contract in construction\n * - an address where a contract will be created\n * - an address where a contract lived, but was destroyed\n * ====\n *\n * [IMPORTANT]\n * ====\n * You shouldn't rely on `isContract` to protect against flash loan attacks!\n *\n * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets\n * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract\n * constructor.\n * ====\n */\n function isContract(address account) internal view returns (bool) {\n // This method relies on extcodesize/address.code.length, which returns 0\n // for contracts in construction, since the code is only stored at the end\n // of the constructor execution.\n\n return account.code.length > 0;\n }\n\n /**\n * @dev Replacement for Solidity's `transfer`: sends `amount` wei to\n * `recipient`, forwarding all available gas and reverting on errors.\n *\n * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost\n * of certain opcodes, possibly making contracts go over the 2300 gas limit\n * imposed by `transfer`, making them unable to receive funds via\n * `transfer`. {sendValue} removes this limitation.\n *\n * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].\n *\n * IMPORTANT: because control is transferred to `recipient`, care must be\n * taken to not create reentrancy vulnerabilities. Consider using\n * {ReentrancyGuard} or the\n * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].\n */\n function sendValue(address payable recipient, uint256 amount) internal {\n require(address(this).balance >= amount, \"Address: insufficient balance\");\n\n (bool success, ) = recipient.call{value: amount}(\"\");\n require(success, \"Address: unable to send value, recipient may have reverted\");\n }\n\n /**\n * @dev Performs a Solidity function call using a low level `call`. A\n * plain `call` is an unsafe replacement for a function call: use this\n * function instead.\n *\n * If `target` reverts with a revert reason, it is bubbled up by this\n * function (like regular Solidity function calls).\n *\n * Returns the raw returned data. To convert to the expected return value,\n * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].\n *\n * Requirements:\n *\n * - `target` must be a contract.\n * - calling `target` with `data` must not revert.\n *\n * _Available since v3.1._\n */\n function functionCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionCallWithValue(target, data, 0, \"Address: low-level call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with\n * `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal returns (bytes memory) {\n return functionCallWithValue(target, data, 0, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but also transferring `value` wei to `target`.\n *\n * Requirements:\n *\n * - the calling contract must have an ETH balance of at least `value`.\n * - the called Solidity function must be `payable`.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(\n address target,\n bytes memory data,\n uint256 value\n ) internal returns (bytes memory) {\n return functionCallWithValue(target, data, value, \"Address: low-level call with value failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but\n * with `errorMessage` as a fallback revert reason when `target` reverts.\n *\n * _Available since v3.1._\n */\n function functionCallWithValue(\n address target,\n bytes memory data,\n uint256 value,\n string memory errorMessage\n ) internal returns (bytes memory) {\n require(address(this).balance >= value, \"Address: insufficient balance for call\");\n (bool success, bytes memory returndata) = target.call{value: value}(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but performing a static call.\n *\n * _Available since v3.3._\n */\n function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {\n return functionStaticCall(target, data, \"Address: low-level static call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n * but performing a static call.\n *\n * _Available since v3.3._\n */\n function functionStaticCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal view returns (bytes memory) {\n (bool success, bytes memory returndata) = target.staticcall(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],\n * but performing a delegate call.\n *\n * _Available since v3.4._\n */\n function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {\n return functionDelegateCall(target, data, \"Address: low-level delegate call failed\");\n }\n\n /**\n * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],\n * but performing a delegate call.\n *\n * _Available since v3.4._\n */\n function functionDelegateCall(\n address target,\n bytes memory data,\n string memory errorMessage\n ) internal returns (bytes memory) {\n (bool success, bytes memory returndata) = target.delegatecall(data);\n return verifyCallResultFromTarget(target, success, returndata, errorMessage);\n }\n\n /**\n * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling\n * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.\n *\n * _Available since v4.8._\n */\n function verifyCallResultFromTarget(\n address target,\n bool success,\n bytes memory returndata,\n string memory errorMessage\n ) internal view returns (bytes memory) {\n if (success) {\n if (returndata.length == 0) {\n // only check isContract if the call was successful and the return data is empty\n // otherwise we already know that it was a contract\n require(isContract(target), \"Address: call to non-contract\");\n }\n return returndata;\n } else {\n _revert(returndata, errorMessage);\n }\n }\n\n /**\n * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the\n * revert reason or using the provided one.\n *\n * _Available since v4.3._\n */\n function verifyCallResult(\n bool success,\n bytes memory returndata,\n string memory errorMessage\n ) internal pure returns (bytes memory) {\n if (success) {\n return returndata;\n } else {\n _revert(returndata, errorMessage);\n }\n }\n\n function _revert(bytes memory returndata, string memory errorMessage) private pure {\n // Look for revert reason and bubble it up if present\n if (returndata.length > 0) {\n // The easiest way to bubble the revert reason is using memory via assembly\n /// @solidity memory-safe-assembly\n assembly {\n let returndata_size := mload(returndata)\n revert(add(32, returndata), returndata_size)\n }\n } else {\n revert(errorMessage);\n }\n }\n}\n"
|
||
},
|
||
"@openzeppelin/contracts/utils/introspection/IERC165.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC165 standard, as defined in the\n * https://eips.ethereum.org/EIPS/eip-165[EIP].\n *\n * Implementers can declare support of contract interfaces, which can then be\n * queried by others ({ERC165Checker}).\n *\n * For an implementation, see {ERC165}.\n */\ninterface IERC165 {\n /**\n * @dev Returns true if this contract implements the interface defined by\n * `interfaceId`. See the corresponding\n * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]\n * to learn more about how these ids are created.\n *\n * This function call must use less than 30 000 gas.\n */\n function supportsInterface(bytes4 interfaceId) external view returns (bool);\n}\n"
|
||
},
|
||
"contracts/config/error.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\ncontract Error {\n error FluidConfigError(uint256 errorId_);\n}\n"
|
||
},
|
||
"contracts/config/errorTypes.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nlibrary ErrorTypes {\n /***********************************|\n | ExpandPercentConfigHandler | \n |__________________________________*/\n\n /// @notice thrown when an input address is zero\n uint256 internal constant ExpandPercentConfigHandler__AddressZero = 100001;\n\n /// @notice thrown when an unauthorized `msg.sender` calls a protected method\n uint256 internal constant ExpandPercentConfigHandler__Unauthorized = 100002;\n\n /// @notice thrown when invalid params are passed into a method\n uint256 internal constant ExpandPercentConfigHandler__InvalidParams = 100003;\n\n /// @notice thrown when no update is currently needed\n uint256 internal constant ExpandPercentConfigHandler__NoUpdate = 100004;\n\n /// @notice thrown when slot is not used, e.g. when borrow token is 0 there is no borrow data\n uint256 internal constant ExpandPercentConfigHandler__SlotDoesNotExist = 100005;\n\n /***********************************|\n | EthenaRateConfigHandler | \n |__________________________________*/\n\n /// @notice thrown when an input address is zero\n uint256 internal constant EthenaRateConfigHandler__AddressZero = 100011;\n\n /// @notice thrown when an unauthorized `msg.sender` calls a protected method\n uint256 internal constant EthenaRateConfigHandler__Unauthorized = 100012;\n\n /// @notice thrown when invalid params are passed into a method\n uint256 internal constant EthenaRateConfigHandler__InvalidParams = 100013;\n\n /// @notice thrown when no update is currently needed\n uint256 internal constant EthenaRateConfigHandler__NoUpdate = 100014;\n\n /***********************************|\n | MaxBorrowConfigHandler | \n |__________________________________*/\n\n /// @notice thrown when an input address is zero\n uint256 internal constant MaxBorrowConfigHandler__AddressZero = 100021;\n\n /// @notice thrown when an unauthorized `msg.sender` calls a protected method\n uint256 internal constant MaxBorrowConfigHandler__Unauthorized = 100022;\n\n /// @notice thrown when invalid params are passed into a method\n uint256 internal constant MaxBorrowConfigHandler__InvalidParams = 100023;\n\n /// @notice thrown when no update is currently needed\n uint256 internal constant MaxBorrowConfigHandler__NoUpdate = 100024;\n\n /***********************************|\n | BufferRateConfigHandler | \n |__________________________________*/\n\n /// @notice thrown when an input address is zero\n uint256 internal constant BufferRateConfigHandler__AddressZero = 100031;\n\n /// @notice thrown when an unauthorized `msg.sender` calls a protected method\n uint256 internal constant BufferRateConfigHandler__Unauthorized = 100032;\n\n /// @notice thrown when invalid params are passed into a method\n uint256 internal constant BufferRateConfigHandler__InvalidParams = 100033;\n\n /// @notice thrown when no update is currently needed\n uint256 internal constant BufferRateConfigHandler__NoUpdate = 100034;\n\n /// @notice thrown when rate data version is not supported\n uint256 internal constant BufferRateConfigHandler__RateVersionUnsupported = 100035;\n}\n"
|
||
},
|
||
"contracts/config/ethenaRateHandler/events.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nabstract contract Events {\n /// @notice emitted when borrow magnifier is updated at vault\n event LogUpdateBorrowRateMagnifier(uint256 oldMagnifier, uint256 newMagnifier);\n}\n"
|
||
},
|
||
"contracts/config/ethenaRateHandler/interfaces/iStakedUSDe.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\nimport { IERC4626 } from \"@openzeppelin/contracts/interfaces/IERC4626.sol\";\n\ninterface IStakedUSDe is IERC4626 {\n /// @notice The amount of the last asset distribution from the controller contract into this\n /// contract + any unvested remainder at that time\n function vestingAmount() external view returns (uint256);\n\n /// @notice The timestamp of the last asset distribution from the controller contract into this contract\n function lastDistributionTimestamp() external view returns (uint256);\n\n /// @notice Returns the amount of USDe tokens that are vested in the contract.\n function totalAssets() external view returns (uint256);\n}\n"
|
||
},
|
||
"contracts/config/ethenaRateHandler/main.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IFluidLiquidity } from \"../../liquidity/interfaces/iLiquidity.sol\";\nimport { IFluidReserveContract } from \"../../reserve/interfaces/iReserveContract.sol\";\nimport { IFluidVaultT1 } from \"../../protocols/vault/interfaces/iVaultT1.sol\";\nimport { LiquiditySlotsLink } from \"../../libraries/liquiditySlotsLink.sol\";\nimport { FluidVaultT1Admin } from \"../../protocols/vault/vaultT1/adminModule/main.sol\";\nimport { IStakedUSDe } from \"./interfaces/iStakedUSDe.sol\";\nimport { Variables } from \"./variables.sol\";\nimport { Events } from \"./events.sol\";\nimport { Error } from \"../error.sol\";\nimport { ErrorTypes } from \"../errorTypes.sol\";\n\n/// @notice Sets borrow rate for sUSDe/debtToken vaults based on sUSDe yield rate, by adjusting the borrowRateMagnifier\ncontract FluidEthenaRateConfigHandler is Variables, Error, Events {\n /// @dev Validates that an address is not the zero address\n modifier validAddress(address value_) {\n if (value_ == address(0)) {\n revert FluidConfigError(ErrorTypes.EthenaRateConfigHandler__AddressZero);\n }\n _;\n }\n\n /// @dev Validates that an address is a rebalancer (taken from reserve contract)\n modifier onlyRebalancer() {\n if (!RESERVE_CONTRACT.isRebalancer(msg.sender)) {\n revert FluidConfigError(ErrorTypes.EthenaRateConfigHandler__Unauthorized);\n }\n _;\n }\n\n constructor(\n IFluidReserveContract reserveContract_,\n IFluidLiquidity liquidity_,\n IFluidVaultT1 vault_,\n IStakedUSDe stakedUSDe_,\n address borrowToken_,\n uint256 ratePercentMargin_,\n uint256 maxRewardsDelay_,\n uint256 utilizationPenaltyStart_,\n uint256 utilization100PenaltyPercent_\n )\n validAddress(address(reserveContract_))\n validAddress(address(liquidity_))\n validAddress(address(vault_))\n validAddress(address(stakedUSDe_))\n validAddress(borrowToken_)\n {\n if (\n ratePercentMargin_ == 0 ||\n ratePercentMargin_ >= 1e4 ||\n maxRewardsDelay_ == 0 ||\n utilizationPenaltyStart_ >= 1e4 ||\n utilization100PenaltyPercent_ == 0\n ) {\n revert FluidConfigError(ErrorTypes.EthenaRateConfigHandler__InvalidParams);\n }\n\n RESERVE_CONTRACT = reserveContract_;\n LIQUIDITY = liquidity_;\n SUSDE = stakedUSDe_;\n VAULT = vault_;\n BORROW_TOKEN = borrowToken_;\n\n _LIQUDITY_BORROW_TOKEN_EXCHANGE_PRICES_SLOT = LiquiditySlotsLink.calculateMappingStorageSlot(\n LiquiditySlotsLink.LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT,\n borrowToken_\n );\n\n RATE_PERCENT_MARGIN = ratePercentMargin_;\n MAX_REWARDS_DELAY = maxRewardsDelay_;\n\n UTILIZATION_PENALTY_START = utilizationPenaltyStart_;\n UTILIZATION100_PENALTY_PERCENT = utilization100PenaltyPercent_;\n }\n\n /// @notice Rebalances the borrow rate magnifier for `VAULT` based on borrow rate at Liquidity in relation to\n /// sUSDe yield rate (`getSUSDEYieldRate()`).\n /// Emits `LogUpdateBorrowRateMagnifier` in case of update. Reverts if no update is needed.\n /// Can only be called by an authorized rebalancer.\n function rebalance() external onlyRebalancer {\n uint256 targetMagnifier_ = calculateMagnifier();\n uint256 currentMagnifier_ = currentMagnifier();\n\n // execute update on vault if necessary\n if (targetMagnifier_ == currentMagnifier_) {\n revert FluidConfigError(ErrorTypes.EthenaRateConfigHandler__NoUpdate);\n }\n\n FluidVaultT1Admin(address(VAULT)).updateBorrowRateMagnifier(targetMagnifier_);\n\n emit LogUpdateBorrowRateMagnifier(currentMagnifier_, targetMagnifier_);\n }\n\n /// @notice Calculates the new borrow rate magnifier based on sUSDe yield rate and utilization\n /// @return magnifier_ the calculated magnifier value.\n function calculateMagnifier() public view returns (uint256 magnifier_) {\n uint256 sUSDeYieldRate_ = getSUSDeYieldRate();\n uint256 exchangePriceAndConfig_ = LIQUIDITY.readFromStorage(_LIQUDITY_BORROW_TOKEN_EXCHANGE_PRICES_SLOT);\n\n uint256 utilization_ = (exchangePriceAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14;\n\n // calculate target borrow rate. scaled by 1e18.\n // borrow rate is based on sUSDeYieldRate_ and a margin that goes to lenders\n // e.g. when RATE_PERCENT_MARGIN = 1000 (10%), then borrow rate will be 90% of the sUSDe yield rate\n // e.g. when sUSDe yield is 60%, borrow rate would be 54%\n uint256 targetBorrowRate_ = (sUSDeYieldRate_ * (1e4 - RATE_PERCENT_MARGIN)) / 1e4;\n\n if (utilization_ > UTILIZATION_PENALTY_START) {\n // above UTILIZATION_PENALTY_START (e.g. 90%), penalty should rise linearly according to UTILIZATION100_PENALTY_PERCENT\n // e.g. from 10% margin at 90% utilization to -3% penalty at 100% utilization\n // so from +RATE_PERCENT_MARGIN at UTILIZATION_PENALTY_START to -UTILIZATION100_PENALTY_PERCENT at 100%\n if (utilization_ < 1e4) {\n uint256 utilizationAbovePenaltyStart_ = utilization_ - UTILIZATION_PENALTY_START;\n uint256 penaltyUtilizationDiff_ = 1e4 - UTILIZATION_PENALTY_START;\n uint256 penaltyRateDiff_ = RATE_PERCENT_MARGIN + UTILIZATION100_PENALTY_PERCENT;\n\n // e.g. when current utilization = 96%, start penalty utilization = 90%, penalty at 100 = 3%, rate margin = 90%:\n // utilizationAbovePenaltyStart_ = 600 (6%)\n // penaltyUtilizationDiff_ = 1000 (10%)\n // penaltyRateDiff_ = 1000 + 300 = 1300 (13%)\n // marginAfterPenalty_ = 1300 * 600 / 1000 = 780 (7.8%)\n uint256 marginAfterPenalty_ = (penaltyRateDiff_ * utilizationAbovePenaltyStart_) /\n penaltyUtilizationDiff_;\n\n // e.g. when sUSDe yield is 60%, borrow rate would become 58.68% (from 60% * (90% + 7.8%) / 100% )\n targetBorrowRate_ = (sUSDeYieldRate_ * ((1e4 - RATE_PERCENT_MARGIN) + marginAfterPenalty_)) / 1e4;\n } else {\n // above 100% utilization, cap at -UTILIZATION100_PENALTY_PERCENT penalty\n targetBorrowRate_ = (sUSDeYieldRate_ * (1e4 + UTILIZATION100_PENALTY_PERCENT)) / 1e4;\n }\n }\n\n // get current neutral borrow rate at Liquidity (without any magnifier).\n // exchangePriceAndConfig slot at Liquidity, first 16 bits\n uint256 liquidityBorrowRate_ = exchangePriceAndConfig_ & X16;\n\n if (liquidityBorrowRate_ == 0) {\n return 1e4;\n }\n\n // calculate magnifier needed to reach target borrow rate.\n // liquidityBorrowRate_ * x = targetBorrowRate_. so x = targetBorrowRate_ / liquidityBorrowRate_.\n // must scale liquidityBorrowRate_ from 1e2 to 1e18 as targetBorrowRate_ is in 1e18. magnifier itself is scaled\n // by 1e4 (1x = 10000)\n magnifier_ = (1e4 * targetBorrowRate_) / (liquidityBorrowRate_ * 1e16);\n\n // make sure magnifier is within allowed limits\n if (magnifier_ < _MIN_MAGNIFIER) {\n return _MIN_MAGNIFIER;\n }\n if (magnifier_ > _MAX_MAGNIFIER) {\n return _MAX_MAGNIFIER;\n }\n }\n\n /// @notice returns the currently configured borrow magnifier at the `VAULT`.\n function currentMagnifier() public view returns (uint256) {\n // read borrow rate magnifier from Vault `vaultVariables2` located in storage slot 1, 16 bits from 16-31\n return (VAULT.readFromStorage(bytes32(uint256(1))) >> 16) & X16;\n }\n\n /// @notice calculates updated vesting yield rate based on `vestingAmount` and `totalAssets` of StakedUSDe contract\n /// @return rate_ sUSDe yearly yield rate scaled by 1e18 (1e18 = 1%, 1e20 = 100%)\n function getSUSDeYieldRate() public view returns (uint256 rate_) {\n if (block.timestamp > SUSDE.lastDistributionTimestamp() + _SUSDE_VESTING_PERIOD + MAX_REWARDS_DELAY) {\n // if rewards update on StakedUSDe contract is delayed by more than `MAX_REWARDS_DELAY`, we use rate as 0\n // as we can't know if e.g. funding would have gone negative and there are indeed no rewards.\n return 0;\n }\n\n // vestingAmount is yield per 8 hours (`SUSDE_VESTING_PERIOD`)\n rate_ = (SUSDE.vestingAmount() * 1e20) / SUSDE.totalAssets(); // 8 hours rate\n // turn into yearly yield\n rate_ = (rate_ * 365 * 24 hours) / _SUSDE_VESTING_PERIOD; // 365 days * 24 hours / 8 hours -> rate_ * 1095\n }\n}\n"
|
||
},
|
||
"contracts/config/ethenaRateHandler/variables.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IFluidLiquidity } from \"../../liquidity/interfaces/iLiquidity.sol\";\nimport { IFluidReserveContract } from \"../../reserve/interfaces/iReserveContract.sol\";\nimport { IFluidVaultT1 } from \"../../protocols/vault/interfaces/iVaultT1.sol\";\nimport { IStakedUSDe } from \"./interfaces/iStakedUSDe.sol\";\n\nabstract contract Constants {\n IFluidReserveContract public immutable RESERVE_CONTRACT;\n IFluidLiquidity public immutable LIQUIDITY;\n IFluidVaultT1 public immutable VAULT;\n IStakedUSDe public immutable SUSDE;\n address public immutable BORROW_TOKEN;\n\n /// @notice sUSDe vesting yield reward rate percent margin that goes to lenders\n /// e.g. RATE_PERCENT_MARGIN = 10% then borrow rate for debt token ends up as 90% of the sUSDe yield.\n /// (in 1e2: 100% = 10_000; 1% = 100)\n uint256 public immutable RATE_PERCENT_MARGIN;\n\n /// @notice max delay in seconds for rewards update after vesting period ended, after which we assume rate is 0.\n /// e.g. 15 min\n uint256 public immutable MAX_REWARDS_DELAY;\n\n /// @notice utilization penalty start point (in 1e2: 100% = 10_000; 1% = 100). above this, a penalty percent\n /// is applied, to incentivize deleveraging.\n uint256 public immutable UTILIZATION_PENALTY_START;\n /// @notice penalty percent target at 100%, on top of sUSDe yield rate if utilization is above UTILIZATION_PENALTY_START\n /// (in 1e2: 100% = 10_000; 1% = 100)\n uint256 public immutable UTILIZATION100_PENALTY_PERCENT;\n\n bytes32 internal immutable _LIQUDITY_BORROW_TOKEN_EXCHANGE_PRICES_SLOT;\n\n /// @dev vesting period defined as private constant on StakedUSDe contract\n uint256 internal constant _SUSDE_VESTING_PERIOD = 8 hours;\n\n uint256 internal constant X14 = 0x3fff;\n uint256 internal constant X16 = 0xffff;\n uint256 internal constant _MIN_MAGNIFIER = 1e4; // min magnifier is always at least 1x (10000)\n uint256 internal constant _MAX_MAGNIFIER = 65535; // max magnifier to fit in storage slot is 65535 (16 bits)\n}\n\nabstract contract Variables is Constants {}\n"
|
||
},
|
||
"contracts/infiniteProxy/error.sol": {
|
||
"content": "//SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\ncontract Error {\n error FluidInfiniteProxyError(uint256 errorId_);\n}\n"
|
||
},
|
||
"contracts/infiniteProxy/errorTypes.sol": {
|
||
"content": "//SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\nlibrary ErrorTypes {\n /***********************************|\n | Infinite proxy | \n |__________________________________*/\n\n /// @notice thrown when an implementation does not exist\n uint256 internal constant InfiniteProxy__ImplementationNotExist = 50001;\n}\n"
|
||
},
|
||
"contracts/infiniteProxy/events.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\ncontract Events {\n /// @notice emitted when a new admin is set\n event LogSetAdmin(address indexed oldAdmin, address indexed newAdmin);\n\n /// @notice emitted when a new dummy implementation is set\n event LogSetDummyImplementation(address indexed oldDummyImplementation, address indexed newDummyImplementation);\n\n /// @notice emitted when a new implementation is set with certain sigs\n event LogSetImplementation(address indexed implementation, bytes4[] sigs);\n\n /// @notice emitted when an implementation is removed\n event LogRemoveImplementation(address indexed implementation);\n}\n"
|
||
},
|
||
"contracts/infiniteProxy/interfaces/iProxy.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\ninterface IProxy {\n function setAdmin(address newAdmin_) external;\n\n function setDummyImplementation(address newDummyImplementation_) external;\n\n function addImplementation(address implementation_, bytes4[] calldata sigs_) external;\n\n function removeImplementation(address implementation_) external;\n\n function getAdmin() external view returns (address);\n\n function getDummyImplementation() external view returns (address);\n\n function getImplementationSigs(address impl_) external view returns (bytes4[] memory);\n\n function getSigsImplementation(bytes4 sig_) external view returns (address);\n\n function readFromStorage(bytes32 slot_) external view returns (uint256 result_);\n}\n"
|
||
},
|
||
"contracts/infiniteProxy/proxy.sol": {
|
||
"content": "// SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\nimport { Events } from \"./events.sol\";\nimport { ErrorTypes } from \"./errorTypes.sol\";\nimport { Error } from \"./error.sol\";\nimport { StorageRead } from \"../libraries/storageRead.sol\";\n\ncontract CoreInternals is StorageRead, Events, Error {\n struct SigsSlot {\n bytes4[] value;\n }\n\n /// @dev Storage slot with the admin of the contract.\n /// This is the keccak-256 hash of \"eip1967.proxy.admin\" subtracted by 1, and is\n /// validated in the constructor.\n bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;\n\n /// @dev Storage slot with the address of the current dummy-implementation.\n /// This is the keccak-256 hash of \"eip1967.proxy.implementation\" subtracted by 1, and is\n /// validated in the constructor.\n bytes32 internal constant _DUMMY_IMPLEMENTATION_SLOT =\n 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;\n\n /// @dev use EIP1967 proxy slot (see _DUMMY_IMPLEMENTATION_SLOT) except for first 4 bytes,\n // which are set to 0. This is combined with a sig which will be set in those first 4 bytes\n bytes32 internal constant _SIG_SLOT_BASE = 0x000000003ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;\n\n /// @dev Returns the storage slot which stores the sigs array set for the implementation.\n function _getSlotImplSigsSlot(address implementation_) internal pure returns (bytes32) {\n return keccak256(abi.encode(\"eip1967.proxy.implementation\", implementation_));\n }\n\n /// @dev Returns the storage slot which stores the implementation address for the function sig.\n function _getSlotSigsImplSlot(bytes4 sig_) internal pure returns (bytes32 result_) {\n assembly {\n // or operator sets sig_ in first 4 bytes with rest of bytes32 having default value of _SIG_SLOT_BASE\n result_ := or(_SIG_SLOT_BASE, sig_)\n }\n }\n\n /// @dev Returns an address `data_` located at `slot_`.\n function _getAddressSlot(bytes32 slot_) internal view returns (address data_) {\n assembly {\n data_ := sload(slot_)\n }\n }\n\n /// @dev Sets an address `data_` located at `slot_`.\n function _setAddressSlot(bytes32 slot_, address data_) internal {\n assembly {\n sstore(slot_, data_)\n }\n }\n\n /// @dev Returns an `SigsSlot` with member `value` located at `slot`.\n function _getSigsSlot(bytes32 slot_) internal pure returns (SigsSlot storage _r) {\n assembly {\n _r.slot := slot_\n }\n }\n\n /// @dev Sets new implementation and adds mapping from implementation to sigs and sig to implementation.\n function _setImplementationSigs(address implementation_, bytes4[] memory sigs_) internal {\n require(sigs_.length != 0, \"no-sigs\");\n bytes32 slot_ = _getSlotImplSigsSlot(implementation_);\n bytes4[] memory sigsCheck_ = _getSigsSlot(slot_).value;\n require(sigsCheck_.length == 0, \"implementation-already-exist\");\n\n for (uint256 i; i < sigs_.length; i++) {\n bytes32 sigSlot_ = _getSlotSigsImplSlot(sigs_[i]);\n require(_getAddressSlot(sigSlot_) == address(0), \"sig-already-exist\");\n _setAddressSlot(sigSlot_, implementation_);\n }\n\n _getSigsSlot(slot_).value = sigs_;\n emit LogSetImplementation(implementation_, sigs_);\n }\n\n /// @dev Removes implementation and the mappings corresponding to it.\n function _removeImplementationSigs(address implementation_) internal {\n bytes32 slot_ = _getSlotImplSigsSlot(implementation_);\n bytes4[] memory sigs_ = _getSigsSlot(slot_).value;\n require(sigs_.length != 0, \"implementation-not-exist\");\n\n for (uint256 i; i < sigs_.length; i++) {\n bytes32 sigSlot_ = _getSlotSigsImplSlot(sigs_[i]);\n _setAddressSlot(sigSlot_, address(0));\n }\n\n delete _getSigsSlot(slot_).value;\n emit LogRemoveImplementation(implementation_);\n }\n\n /// @dev Returns bytes4[] sigs from implementation address. If implemenatation is not registered then returns empty array.\n function _getImplementationSigs(address implementation_) internal view returns (bytes4[] memory) {\n bytes32 slot_ = _getSlotImplSigsSlot(implementation_);\n return _getSigsSlot(slot_).value;\n }\n\n /// @dev Returns implementation address from bytes4 sig. If sig is not registered then returns address(0).\n function _getSigImplementation(bytes4 sig_) internal view returns (address implementation_) {\n bytes32 slot_ = _getSlotSigsImplSlot(sig_);\n return _getAddressSlot(slot_);\n }\n\n /// @dev Returns the current admin.\n function _getAdmin() internal view returns (address) {\n return _getAddressSlot(_ADMIN_SLOT);\n }\n\n /// @dev Returns the current dummy-implementation.\n function _getDummyImplementation() internal view returns (address) {\n return _getAddressSlot(_DUMMY_IMPLEMENTATION_SLOT);\n }\n\n /// @dev Stores a new address in the EIP1967 admin slot.\n function _setAdmin(address newAdmin_) internal {\n address oldAdmin_ = _getAdmin();\n require(newAdmin_ != address(0), \"ERC1967: new admin is the zero address\");\n _setAddressSlot(_ADMIN_SLOT, newAdmin_);\n emit LogSetAdmin(oldAdmin_, newAdmin_);\n }\n\n /// @dev Stores a new address in the EIP1967 implementation slot.\n function _setDummyImplementation(address newDummyImplementation_) internal {\n address oldDummyImplementation_ = _getDummyImplementation();\n _setAddressSlot(_DUMMY_IMPLEMENTATION_SLOT, newDummyImplementation_);\n emit LogSetDummyImplementation(oldDummyImplementation_, newDummyImplementation_);\n }\n}\n\ncontract AdminInternals is CoreInternals {\n /// @dev Only admin guard\n modifier onlyAdmin() {\n require(msg.sender == _getAdmin(), \"only-admin\");\n _;\n }\n\n constructor(address admin_, address dummyImplementation_) {\n _setAdmin(admin_);\n _setDummyImplementation(dummyImplementation_);\n }\n\n /// @dev Sets new admin.\n function setAdmin(address newAdmin_) external onlyAdmin {\n _setAdmin(newAdmin_);\n }\n\n /// @dev Sets new dummy-implementation.\n function setDummyImplementation(address newDummyImplementation_) external onlyAdmin {\n _setDummyImplementation(newDummyImplementation_);\n }\n\n /// @dev Adds new implementation address.\n function addImplementation(address implementation_, bytes4[] calldata sigs_) external onlyAdmin {\n _setImplementationSigs(implementation_, sigs_);\n }\n\n /// @dev Removes an existing implementation address.\n function removeImplementation(address implementation_) external onlyAdmin {\n _removeImplementationSigs(implementation_);\n }\n}\n\n/// @title Proxy\n/// @notice This abstract contract provides a fallback function that delegates all calls to another contract using the EVM.\n/// It implements the Instadapp infinite-proxy: https://github.com/Instadapp/infinite-proxy\nabstract contract Proxy is AdminInternals {\n constructor(address admin_, address dummyImplementation_) AdminInternals(admin_, dummyImplementation_) {}\n\n /// @dev Returns admin's address.\n function getAdmin() external view returns (address) {\n return _getAdmin();\n }\n\n /// @dev Returns dummy-implementations's address.\n function getDummyImplementation() external view returns (address) {\n return _getDummyImplementation();\n }\n\n /// @dev Returns bytes4[] sigs from implementation address If not registered then returns empty array.\n function getImplementationSigs(address impl_) external view returns (bytes4[] memory) {\n return _getImplementationSigs(impl_);\n }\n\n /// @dev Returns implementation address from bytes4 sig. If sig is not registered then returns address(0).\n function getSigsImplementation(bytes4 sig_) external view returns (address) {\n return _getSigImplementation(sig_);\n }\n\n /// @dev Fallback function that delegates calls to the address returned by Implementations registry.\n fallback() external payable {\n address implementation_;\n assembly {\n // get slot for sig and directly SLOAD implementation address from storage at that slot\n implementation_ := sload(\n // same as in `_getSlotSigsImplSlot()` but we must also load msg.sig from calldata.\n // msg.sig is first 4 bytes of calldata, so we can use calldataload(0) with a mask\n or(\n // or operator sets sig_ in first 4 bytes with rest of bytes32 having default value of _SIG_SLOT_BASE\n _SIG_SLOT_BASE,\n and(calldataload(0), 0xFFFFFFFF00000000000000000000000000000000000000000000000000000000)\n )\n )\n }\n\n if (implementation_ == address(0)) {\n revert FluidInfiniteProxyError(ErrorTypes.InfiniteProxy__ImplementationNotExist);\n }\n\n // Delegate the current call to `implementation`.\n // This does not return to its internall call site, it will return directly to the external caller.\n // solhint-disable-next-line no-inline-assembly\n assembly {\n // Copy msg.data. We take full control of memory in this inline assembly\n // block because it will not return to Solidity code. We overwrite the\n // Solidity scratch pad at memory position 0.\n calldatacopy(0, 0, calldatasize())\n\n // Call the implementation.\n // out and outsize are 0 because we don't know the size yet.\n let result := delegatecall(gas(), implementation_, 0, calldatasize(), 0, 0)\n\n // Copy the returned data.\n returndatacopy(0, 0, returndatasize())\n\n if eq(result, 0) {\n // delegatecall returns 0 on error.\n revert(0, returndatasize())\n }\n\n return(0, returndatasize())\n }\n }\n\n receive() external payable {\n // receive method can never have calldata in EVM so no need for any logic here\n }\n}\n"
|
||
},
|
||
"contracts/libraries/bigMathMinified.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\n/// @title library that represents a number in BigNumber(coefficient and exponent) format to store in smaller bits.\n/// @notice the number is divided into two parts: a coefficient and an exponent. This comes at a cost of losing some precision\n/// at the end of the number because the exponent simply fills it with zeroes. This precision is oftentimes negligible and can\n/// result in significant gas cost reduction due to storage space reduction.\n/// Also note, a valid big number is as follows: if the exponent is > 0, then coefficient last bits should be occupied to have max precision.\n/// @dev roundUp is more like a increase 1, which happens everytime for the same number.\n/// roundDown simply sets trailing digits after coefficientSize to zero (floor), only once for the same number.\nlibrary BigMathMinified {\n /// @dev constants to use for `roundUp` input param to increase readability\n bool internal constant ROUND_DOWN = false;\n bool internal constant ROUND_UP = true;\n\n /// @dev converts `normal` number to BigNumber with `exponent` and `coefficient` (or precision).\n /// e.g.:\n /// 5035703444687813576399599 (normal) = (coefficient[32bits], exponent[8bits])[40bits]\n /// 5035703444687813576399599 (decimal) => 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 (binary)\n /// => 10000101010010110100000011111011000000000000000000000000000000000000000000000000000\n /// ^-------------------- 51(exponent) -------------- ^\n /// coefficient = 1000,0101,0100,1011,0100,0000,1111,1011 (2236301563)\n /// exponent = 0011,0011 (51)\n /// bigNumber = 1000,0101,0100,1011,0100,0000,1111,1011,0011,0011 (572493200179)\n ///\n /// @param normal number which needs to be converted into Big Number\n /// @param coefficientSize at max how many bits of precision there should be (64 = uint64 (64 bits precision))\n /// @param exponentSize at max how many bits of exponent there should be (8 = uint8 (8 bits exponent))\n /// @param roundUp signals if result should be rounded down or up\n /// @return bigNumber converted bigNumber (coefficient << exponent)\n function toBigNumber(\n uint256 normal,\n uint256 coefficientSize,\n uint256 exponentSize,\n bool roundUp\n ) internal pure returns (uint256 bigNumber) {\n assembly {\n let lastBit_\n let number_ := normal\n if gt(number_, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) {\n number_ := shr(0x80, number_)\n lastBit_ := 0x80\n }\n if gt(number_, 0xFFFFFFFFFFFFFFFF) {\n number_ := shr(0x40, number_)\n lastBit_ := add(lastBit_, 0x40)\n }\n if gt(number_, 0xFFFFFFFF) {\n number_ := shr(0x20, number_)\n lastBit_ := add(lastBit_, 0x20)\n }\n if gt(number_, 0xFFFF) {\n number_ := shr(0x10, number_)\n lastBit_ := add(lastBit_, 0x10)\n }\n if gt(number_, 0xFF) {\n number_ := shr(0x8, number_)\n lastBit_ := add(lastBit_, 0x8)\n }\n if gt(number_, 0xF) {\n number_ := shr(0x4, number_)\n lastBit_ := add(lastBit_, 0x4)\n }\n if gt(number_, 0x3) {\n number_ := shr(0x2, number_)\n lastBit_ := add(lastBit_, 0x2)\n }\n if gt(number_, 0x1) {\n lastBit_ := add(lastBit_, 1)\n }\n if gt(number_, 0) {\n lastBit_ := add(lastBit_, 1)\n }\n if lt(lastBit_, coefficientSize) {\n // for throw exception\n lastBit_ := coefficientSize\n }\n let exponent := sub(lastBit_, coefficientSize)\n let coefficient := shr(exponent, normal)\n if and(roundUp, gt(exponent, 0)) {\n // rounding up is only needed if exponent is > 0, as otherwise the coefficient fully holds the original number\n coefficient := add(coefficient, 1)\n if eq(shl(coefficientSize, 1), coefficient) {\n // case were coefficient was e.g. 111, with adding 1 it became 1000 (in binary) and coefficientSize 3 bits\n // final coefficient would exceed it's size. -> reduce coefficent to 100 and increase exponent by 1.\n coefficient := shl(sub(coefficientSize, 1), 1)\n exponent := add(exponent, 1)\n }\n }\n if iszero(lt(exponent, shl(exponentSize, 1))) {\n // if exponent is >= exponentSize, the normal number is too big to fit within\n // BigNumber with too small sizes for coefficient and exponent\n revert(0, 0)\n }\n bigNumber := shl(exponentSize, coefficient)\n bigNumber := add(bigNumber, exponent)\n }\n }\n\n /// @dev get `normal` number from `bigNumber`, `exponentSize` and `exponentMask`\n function fromBigNumber(\n uint256 bigNumber,\n uint256 exponentSize,\n uint256 exponentMask\n ) internal pure returns (uint256 normal) {\n assembly {\n let coefficient := shr(exponentSize, bigNumber)\n let exponent := and(bigNumber, exponentMask)\n normal := shl(exponent, coefficient)\n }\n }\n\n /// @dev gets the most significant bit `lastBit` of a `normal` number (length of given number of binary format).\n /// e.g.\n /// 5035703444687813576399599 = 10000101010010110100000011111011110010100110100000000011100101001101001101011101111\n /// lastBit = ^--------------------------------- 83 ----------------------------------------^\n function mostSignificantBit(uint256 normal) internal pure returns (uint lastBit) {\n assembly {\n let number_ := normal\n if gt(normal, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) {\n number_ := shr(0x80, number_)\n lastBit := 0x80\n }\n if gt(number_, 0xFFFFFFFFFFFFFFFF) {\n number_ := shr(0x40, number_)\n lastBit := add(lastBit, 0x40)\n }\n if gt(number_, 0xFFFFFFFF) {\n number_ := shr(0x20, number_)\n lastBit := add(lastBit, 0x20)\n }\n if gt(number_, 0xFFFF) {\n number_ := shr(0x10, number_)\n lastBit := add(lastBit, 0x10)\n }\n if gt(number_, 0xFF) {\n number_ := shr(0x8, number_)\n lastBit := add(lastBit, 0x8)\n }\n if gt(number_, 0xF) {\n number_ := shr(0x4, number_)\n lastBit := add(lastBit, 0x4)\n }\n if gt(number_, 0x3) {\n number_ := shr(0x2, number_)\n lastBit := add(lastBit, 0x2)\n }\n if gt(number_, 0x1) {\n lastBit := add(lastBit, 1)\n }\n if gt(number_, 0) {\n lastBit := add(lastBit, 1)\n }\n }\n }\n}\n"
|
||
},
|
||
"contracts/libraries/bigMathVault.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { BigMathMinified } from \"./bigMathMinified.sol\";\n\n/// @title Extended version of BigMathMinified. Implements functions for normal operators (*, /, etc) modified to interact with big numbers.\n/// @notice this is an optimized version mainly created by taking Fluid vault's codebase into consideration so it's use is limited for other cases.\n// \n// @dev IMPORTANT: for any change here, make sure to uncomment and run the fuzz tests in bigMathVault.t.sol\nlibrary BigMathVault {\n uint private constant COEFFICIENT_SIZE_DEBT_FACTOR = 35;\n uint private constant EXPONENT_SIZE_DEBT_FACTOR = 15;\n uint private constant COEFFICIENT_MAX_DEBT_FACTOR = (1 << COEFFICIENT_SIZE_DEBT_FACTOR) - 1;\n uint private constant EXPONENT_MAX_DEBT_FACTOR = (1 << EXPONENT_SIZE_DEBT_FACTOR) - 1;\n uint private constant DECIMALS_DEBT_FACTOR = 16384;\n uint internal constant MAX_MASK_DEBT_FACTOR = (1 << (COEFFICIENT_SIZE_DEBT_FACTOR + EXPONENT_SIZE_DEBT_FACTOR)) - 1;\n\n // Having precision as 2**64 on vault\n uint internal constant PRECISION = 64;\n uint internal constant TWO_POWER_64 = 1 << PRECISION;\n // Max bit for 35 bits * 35 bits number will be 70\n // why do we use 69 then here instead of 70\n uint internal constant TWO_POWER_69_MINUS_1 = (1 << 69) - 1;\n\n uint private constant COEFFICIENT_PLUS_PRECISION = COEFFICIENT_SIZE_DEBT_FACTOR + PRECISION; // 99\n uint private constant COEFFICIENT_PLUS_PRECISION_MINUS_1 = COEFFICIENT_PLUS_PRECISION - 1; // 98\n uint private constant TWO_POWER_COEFFICIENT_PLUS_PRECISION_MINUS_1 = (1 << COEFFICIENT_PLUS_PRECISION_MINUS_1) - 1; // (1 << 98) - 1;\n uint private constant TWO_POWER_COEFFICIENT_PLUS_PRECISION_MINUS_1_MINUS_1 =\n (1 << (COEFFICIENT_PLUS_PRECISION_MINUS_1 - 1)) - 1; // (1 << 97) - 1;\n\n /// @dev multiplies a `normal` number with a `bigNumber1` and then divides by `bigNumber2`.\n /// @dev For vault's use case MUST always:\n /// - bigNumbers have exponent size 15 bits\n /// - bigNumbers have coefficient size 35 bits and have 35th bit always 1 (when exponent > 0 BigMath numbers have max precision)\n /// so coefficients must always be in range 17179869184 <= coefficient <= 34359738367.\n /// - bigNumber1 (debt factor) always have exponent >= 1 & <= 16384\n /// - bigNumber2 (connection factor) always have exponent >= 1 & <= 32767 (15 bits)\n /// - bigNumber2 always >= bigNumber1 (connection factor can never be < base branch debt factor)\n /// - as a result of previous points, numbers must never be 0\n /// - normal is positionRawDebt and is always within 10000 and type(int128).max\n /// @return normal * bigNumber1 / bigNumber2\n function mulDivNormal(uint256 normal, uint256 bigNumber1, uint256 bigNumber2) internal pure returns (uint256) {\n unchecked {\n // exponent2_ - exponent1_\n uint netExponent_ = (bigNumber2 & EXPONENT_MAX_DEBT_FACTOR) - (bigNumber1 & EXPONENT_MAX_DEBT_FACTOR);\n if (netExponent_ < 129) {\n // (normal * coefficient1_) / (coefficient2_ << netExponent_);\n return ((normal * (bigNumber1 >> EXPONENT_SIZE_DEBT_FACTOR)) /\n ((bigNumber2 >> EXPONENT_SIZE_DEBT_FACTOR) << netExponent_));\n }\n // else:\n // biggest possible nominator: type(int128).max * 35bits max = 5846006549323611672814739330865132078589370433536\n // smallest possible denominator: 17179869184 << 129 (= 1 << 163) = 11692013098647223345629478661730264157247460343808\n // -> can only ever be 0\n return 0;\n }\n }\n\n /// @dev multiplies a `bigNumber` with normal `number1` and then divides by `TWO_POWER_64`.\n /// @dev For vault's use case (calculating new branch debt factor after liquidation):\n /// - number1 is debtFactor, intialized as TWO_POWER_64 and reduced from there, hence it's always <= TWO_POWER_64 and always > 0.\n /// - bigNumber is branch debt factor, which starts as ((X35 << 15) | (1 << 14)) and reduces from there.\n /// - bigNumber must have have exponent size 15 bits and be >= 1 & <= 16384\n /// - bigNumber must have coefficient size 35 bits and have 35th bit always 1 (when exponent > 0 BigMath numbers have max precision)\n /// so coefficients must always be in range 17179869184 <= coefficient <= 34359738367.\n /// @param bigNumber Coefficient | Exponent.\n /// @param number1 normal number.\n /// @return result bigNumber * number1 / TWO_POWER_64.\n function mulDivBigNumber(uint256 bigNumber, uint256 number1) internal pure returns (uint256 result) {\n // using unchecked as we are only at 1 place in Vault and it won't overflow there.\n unchecked {\n uint256 _resultNumerator = (bigNumber >> EXPONENT_SIZE_DEBT_FACTOR) * number1; // bigNumber coefficient * normal number\n // 99% chances are that most sig bit should be 64 + 35 - 1 or 64 + 35 - 2\n // diff = mostSigBit. Can only ever be >= 35 and <= 98\n uint256 diff = (_resultNumerator > TWO_POWER_COEFFICIENT_PLUS_PRECISION_MINUS_1)\n ? COEFFICIENT_PLUS_PRECISION\n : (_resultNumerator > TWO_POWER_COEFFICIENT_PLUS_PRECISION_MINUS_1_MINUS_1)\n ? COEFFICIENT_PLUS_PRECISION_MINUS_1\n : BigMathMinified.mostSignificantBit(_resultNumerator);\n\n // diff = difference in bits to make the _resultNumerator 35 bits again\n diff = diff - COEFFICIENT_SIZE_DEBT_FACTOR;\n _resultNumerator = _resultNumerator >> diff;\n // starting exponent is 16384, so exponent should never get 0 here\n result = (bigNumber & EXPONENT_MAX_DEBT_FACTOR) + diff;\n if (result > PRECISION) {\n result = (_resultNumerator << EXPONENT_SIZE_DEBT_FACTOR) + result - PRECISION; // divides by TWO_POWER_64 by reducing exponent by 64\n } else {\n // if number1 is small, e.g. 1e4 and bigNumber is also small e.g. coefficient = 17179869184 & exponent is at 50\n // then: resultNumerator = 171798691840000, diff most significant bit = 48, ending up with diff = 13\n // for exponent in result we end up doing: 50 + 13 - 64 -> underflowing exponent.\n // this should never happen anyway, but if it does better to revert than to continue with unknown effects.\n revert(); // debt factor should never become a BigNumber with exponent <= 0\n }\n }\n }\n\n /// @dev multiplies a `bigNumber1` with another `bigNumber2`.\n /// @dev For vault's use case (calculating connection factor of merged branches userTickDebtFactor * connectionDebtFactor *... connectionDebtFactor):\n /// - bigNumbers must have have exponent size 15 bits and be >= 1 & <= 32767\n /// - bigNumber must have coefficient size 35 bits and have 35th bit always 1 (when exponent > 0 BigMath numbers have max precision)\n /// so coefficients must always be in range 17179869184 <= coefficient <= 34359738367.\n /// @dev sum of exponents from `bigNumber1` `bigNumber2` should be > 16384.\n /// e.g. res = bigNumber1 * bigNumber2 = [(coe1, exp1) * (coe2, exp2)] >> decimal\n /// = (coe1*coe2>>overflow, exp1+exp2+overflow-decimal)\n /// @param bigNumber1 BigNumber format with coefficient and exponent.\n /// @param bigNumber2 BigNumber format with coefficient and exponent.\n /// @return BigNumber format with coefficient and exponent\n function mulBigNumber(uint256 bigNumber1, uint256 bigNumber2) internal pure returns (uint256) {\n unchecked {\n // coefficient1_ * coefficient2_\n uint resCoefficient_ = (bigNumber1 >> EXPONENT_SIZE_DEBT_FACTOR) *\n (bigNumber2 >> EXPONENT_SIZE_DEBT_FACTOR);\n // res coefficient at min can be 17179869184 * 17179869184 = 295147905179352825856 (= 1 << 68; 69th bit as 1)\n // res coefficient at max can be 34359738367 * 34359738367 = 1180591620648691826689 (X35 * X35 fits in 70 bits)\n uint overflowLen_ = resCoefficient_ > TWO_POWER_69_MINUS_1\n ? COEFFICIENT_SIZE_DEBT_FACTOR\n : COEFFICIENT_SIZE_DEBT_FACTOR - 1;\n // overflowLen_ is either 34 or 35\n resCoefficient_ = resCoefficient_ >> overflowLen_;\n\n // bigNumber2 is connection factor\n // exponent1_ + exponent2_ + overflowLen_ - decimals\n uint resExponent_ = ((bigNumber1 & EXPONENT_MAX_DEBT_FACTOR) +\n (bigNumber2 & EXPONENT_MAX_DEBT_FACTOR) +\n overflowLen_);\n if (resExponent_ < DECIMALS_DEBT_FACTOR) {\n // for this ever to happen, the debt factors used to calculate connection factors would have to be at extremely\n // unrealistic values. Like e.g.\n // branch3 (debt factor X35 << 15 | 16383) got merged into branch2 (debt factor X35 << 15 | 8190)\n // -> connection factor (divBigNumber): ((coe1<<precision_)/coe2>>overflowLen, exp1+decimal+overflowLen-exp2-precision_) so:\n // coefficient: (X35<<64)/X35 >> 30 = 17179869184\n // exponent: 8190+16384+30-16383-64 = 8157.\n // result: 17179869184 << 15 | 8157\n // and then branch2 into branch1 (debt factor X35 << 15 | 22). -> connection factor:\n // coefficient: (X35<<64)/X35 >> 30 = 17179869184\n // exponent: 22+16384+30-8190-64 = 8182.\n // result: 17179869184 << 15 | 8182\n // connection factors sum up (mulBigNumber): (coe1*coe2>>overflow, exp1+exp2+overflow-decimal)\n // exponent: 8182+8157+35-16384=16374-16384=-10. underflow.\n // this should never happen anyway, but if it does better to revert than to continue with unknown effects.\n revert();\n }\n resExponent_ = resExponent_ - DECIMALS_DEBT_FACTOR;\n\n if (resExponent_ > EXPONENT_MAX_DEBT_FACTOR) {\n // if resExponent_ is not within limits that means user's got ~100% (something like 99.999999999999...)\n // this situation will probably never happen and this basically means user's position is ~100% liquidated\n return MAX_MASK_DEBT_FACTOR;\n }\n\n return ((resCoefficient_ << EXPONENT_SIZE_DEBT_FACTOR) | resExponent_);\n }\n }\n\n /// @dev divides a `bigNumber1` by `bigNumber2`.\n /// @dev For vault's use case (calculating connectionFactor_ = baseBranchDebtFactor / currentBranchDebtFactor) bigNumbers MUST always:\n /// - have exponent size 15 bits and be >= 1 & <= 16384\n /// - have coefficient size 35 bits and have 35th bit always 1 (when exponent > 0 BigMath numbers have max precision)\n /// so coefficients must always be in range 17179869184 <= coefficient <= 34359738367.\n /// - as a result of previous points, numbers must never be 0\n /// e.g. res = bigNumber1 / bigNumber2 = [(coe1, exp1) / (coe2, exp2)] << decimal\n /// = ((coe1<<precision_)/coe2, exp1+decimal-exp2-precision_)\n /// @param bigNumber1 BigNumber format with coefficient and exponent\n /// @param bigNumber2 BigNumber format with coefficient and exponent\n /// @return BigNumber format with coefficient and exponent\n /// Returned connection factor can only ever be >= baseBranchDebtFactor (c = x*100/y with both x,y > 0 & x,y <= 100: c can only ever be >= x)\n function divBigNumber(uint256 bigNumber1, uint256 bigNumber2) internal pure returns (uint256) {\n unchecked {\n // (coefficient1_ << PRECISION) / coefficient2_\n uint256 resCoefficient_ = ((bigNumber1 >> EXPONENT_SIZE_DEBT_FACTOR) << PRECISION) /\n (bigNumber2 >> EXPONENT_SIZE_DEBT_FACTOR);\n // nominator at min 17179869184 << 64 = 316912650057057350374175801344. at max 34359738367 << 64 = 633825300095667956674642051072.\n // so min value resCoefficient_ 9223372037123211264 (64 bits) vs max 36893488146345361408 (fits in 65 bits)\n\n // mostSigBit will be PRECISION + 1 or PRECISION\n uint256 overflowLen_ = ((resCoefficient_ >> PRECISION) == 1) ? (PRECISION + 1) : PRECISION;\n // Overflow will be PRECISION - COEFFICIENT_SIZE_DEBT_FACTOR or (PRECISION + 1) - COEFFICIENT_SIZE_DEBT_FACTOR\n // Meaning 64 - 35 = 29 or 65 - 35 = 30\n overflowLen_ = overflowLen_ - COEFFICIENT_SIZE_DEBT_FACTOR;\n resCoefficient_ = resCoefficient_ >> overflowLen_;\n\n // exponent1_ will always be less than or equal to 16384\n // exponent2_ will always be less than or equal to 16384\n // Even if exponent2_ is 0 (not possible) & resExponent_ = DECIMALS_DEBT_FACTOR then also resExponent_ will be less than max limit, so no overflow\n // result exponent = (exponent1_ + DECIMALS_DEBT_FACTOR + overflowLen_) - (exponent2_ + PRECISION);\n uint256 resExponent_ = ((bigNumber1 & EXPONENT_MAX_DEBT_FACTOR) + // exponent1_\n DECIMALS_DEBT_FACTOR + // DECIMALS_DEBT_FACTOR is 100% as it is percentage value\n overflowLen_); // addition part resExponent_ here min 16414, max 32798\n // reuse overFlowLen_ variable for subtraction sum of exponent\n overflowLen_ = (bigNumber2 & EXPONENT_MAX_DEBT_FACTOR) + PRECISION; // subtraction part overflowLen_ here: min 65, max 16448\n if (resExponent_ > overflowLen_) {\n resExponent_ = resExponent_ - overflowLen_;\n\n return ((resCoefficient_ << EXPONENT_SIZE_DEBT_FACTOR) | resExponent_);\n }\n\n // Can happen if bigNumber1 exponent is < 35 (35+16384+29 = 16448) and bigNumber2 exponent is e.g. max 16384.\n // this would mean a branch with a normal big debt factor (bigNumber2) is merged into a base branch with an extremely small\n // debt factor (bigNumber1).\n // this should never happen anyway, but if it does better to revert than to continue with unknown effects.\n revert(); // connection factor should never become a BigNumber with exponent <= 0\n }\n }\n}\n"
|
||
},
|
||
"contracts/libraries/errorTypes.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nlibrary LibsErrorTypes {\n /***********************************|\n | LiquidityCalcs | \n |__________________________________*/\n\n /// @notice thrown when supply or borrow exchange price is zero at calc token data (token not configured yet)\n uint256 internal constant LiquidityCalcs__ExchangePriceZero = 70001;\n\n /// @notice thrown when rate data is set to a version that is not implemented\n uint256 internal constant LiquidityCalcs__UnsupportedRateVersion = 70002;\n\n /// @notice thrown when the calculated borrow rate turns negative. This should never happen.\n uint256 internal constant LiquidityCalcs__BorrowRateNegative = 70003;\n\n /***********************************|\n | SafeTransfer | \n |__________________________________*/\n\n /// @notice thrown when safe transfer from for an ERC20 fails\n uint256 internal constant SafeTransfer__TransferFromFailed = 71001;\n\n /// @notice thrown when safe transfer for an ERC20 fails\n uint256 internal constant SafeTransfer__TransferFailed = 71002;\n}\n"
|
||
},
|
||
"contracts/libraries/liquidityCalcs.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { LibsErrorTypes as ErrorTypes } from \"./errorTypes.sol\";\nimport { LiquiditySlotsLink } from \"./liquiditySlotsLink.sol\";\nimport { BigMathMinified } from \"./bigMathMinified.sol\";\n\n/// @notice implements calculation methods used for Fluid liquidity such as updated exchange prices,\n/// borrow rate, withdrawal / borrow limits, revenue amount.\nlibrary LiquidityCalcs {\n error FluidLiquidityCalcsError(uint256 errorId_);\n\n /// @notice emitted if the calculated borrow rate surpassed max borrow rate (16 bits) and was capped at maximum value 65535\n event BorrowRateMaxCap();\n\n /// @dev constants as from Liquidity variables.sol\n uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12;\n\n /// @dev Ignoring leap years\n uint256 internal constant SECONDS_PER_YEAR = 365 days;\n // constants used for BigMath conversion from and to storage\n uint256 internal constant DEFAULT_EXPONENT_SIZE = 8;\n uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF;\n\n uint256 internal constant FOUR_DECIMALS = 1e4;\n uint256 internal constant TWELVE_DECIMALS = 1e12;\n uint256 internal constant X14 = 0x3fff;\n uint256 internal constant X15 = 0x7fff;\n uint256 internal constant X16 = 0xffff;\n uint256 internal constant X18 = 0x3ffff;\n uint256 internal constant X24 = 0xffffff;\n uint256 internal constant X33 = 0x1ffffffff;\n uint256 internal constant X64 = 0xffffffffffffffff;\n\n ///////////////////////////////////////////////////////////////////////////\n ////////// CALC EXCHANGE PRICES /////////\n ///////////////////////////////////////////////////////////////////////////\n\n /// @dev calculates interest (exchange prices) for a token given its' exchangePricesAndConfig from storage.\n /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage\n /// @return supplyExchangePrice_ updated supplyExchangePrice\n /// @return borrowExchangePrice_ updated borrowExchangePrice\n function calcExchangePrices(\n uint256 exchangePricesAndConfig_\n ) internal view returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) {\n // Extracting exchange prices\n supplyExchangePrice_ =\n (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) &\n X64;\n borrowExchangePrice_ =\n (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) &\n X64;\n\n if (supplyExchangePrice_ == 0 || borrowExchangePrice_ == 0) {\n revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__ExchangePriceZero);\n }\n\n uint256 temp_ = exchangePricesAndConfig_ & X16; // temp_ = borrowRate\n\n unchecked {\n // last timestamp can not be > current timestamp\n uint256 secondsSinceLastUpdate_ = block.timestamp -\n ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33);\n\n uint256 borrowRatio_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO) &\n X15;\n if (secondsSinceLastUpdate_ == 0 || temp_ == 0 || borrowRatio_ == 1) {\n // if no time passed, borrow rate is 0, or no raw borrowings: no exchange price update needed\n // (if borrowRatio_ == 1 means there is only borrowInterestFree, as first bit is 1 and rest is 0)\n return (supplyExchangePrice_, borrowExchangePrice_);\n }\n\n // calculate new borrow exchange price.\n // formula borrowExchangePriceIncrease: previous price * borrow rate * secondsSinceLastUpdate_.\n // nominator is max uint112 (uint64 * uint16 * uint32). Divisor can not be 0.\n borrowExchangePrice_ +=\n (borrowExchangePrice_ * temp_ * secondsSinceLastUpdate_) /\n (SECONDS_PER_YEAR * FOUR_DECIMALS);\n\n // FOR SUPPLY EXCHANGE PRICE:\n // all yield paid by borrowers (in mode with interest) goes to suppliers in mode with interest.\n // formula: previous price * supply rate * secondsSinceLastUpdate_.\n // where supply rate = (borrow rate - revenueFee%) * ratioSupplyYield. And\n // ratioSupplyYield = utilization * supplyRatio * borrowRatio\n //\n // Example:\n // supplyRawInterest is 80, supplyInterestFree is 20. totalSupply is 100. BorrowedRawInterest is 50.\n // BorrowInterestFree is 10. TotalBorrow is 60. borrow rate 40%, revenueFee 10%.\n // yield is 10 (so half a year must have passed).\n // supplyRawInterest must become worth 89. totalSupply must become 109. BorrowedRawInterest must become 60.\n // borrowInterestFree must still be 10. supplyInterestFree still 20. totalBorrow 70.\n // supplyExchangePrice would have to go from 1 to 1,125 (+ 0.125). borrowExchangePrice from 1 to 1,2 (+0.2).\n // utilization is 60%. supplyRatio = 20 / 80 = 25% (only 80% of lenders receiving yield).\n // borrowRatio = 10 / 50 = 20% (only 83,333% of borrowers paying yield):\n // x of borrowers paying yield = 100% - (20 / (100 + 20)) = 100% - 16.6666666% = 83,333%.\n // ratioSupplyYield = 60% * 83,33333% * (100% + 20%) = 62,5%\n // supplyRate = (40% * (100% - 10%)) * = 36% * 62,5% = 22.5%\n // increase in supplyExchangePrice, assuming 100 as previous price.\n // 100 * 22,5% * 1/2 (half a year) = 0,1125.\n // cross-check supplyRawInterest worth = 80 * 1.1125 = 89. totalSupply worth = 89 + 20.\n\n // -------------- 1. calculate ratioSupplyYield --------------------------------\n // step1: utilization * supplyRatio (or actually part of lenders receiving yield)\n\n // temp_ => supplyRatio (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383)\n // if first bit 0 then ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)\n // else ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)\n temp_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) & X15;\n\n if (temp_ == 1) {\n // if no raw supply: no exchange price update needed\n // (if supplyRatio_ == 1 means there is only supplyInterestFree, as first bit is 1 and rest is 0)\n return (supplyExchangePrice_, borrowExchangePrice_);\n }\n\n // ratioSupplyYield precision is 1e27 as 100% for increased precision when supplyInterestFree > supplyWithInterest\n if (temp_ & 1 == 1) {\n // ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)\n temp_ = temp_ >> 1;\n\n // Note: case where temp_ == 0 (only supplyInterestFree, no yield) already covered by early return\n // in the if statement a little above.\n\n // based on above example but supplyRawInterest is 20, supplyInterestFree is 80. no fee.\n // supplyRawInterest must become worth 30. totalSupply must become 110.\n // supplyExchangePrice would have to go from 1 to 1,5. borrowExchangePrice from 1 to 1,2.\n // so ratioSupplyYield must come out as 2.5 (250%).\n // supplyRatio would be (20 * 10_000 / 80) = 2500. but must be inverted.\n temp_ = (1e27 * FOUR_DECIMALS) / temp_; // e.g. 1e31 / 2500 = 4e27. (* 1e27 for precision)\n // e.g. 5_000 * (1e27 + 4e27) / 1e27 = 25_000 (=250%).\n temp_ =\n // utilization * (100% + 100% / supplyRatio)\n (((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) *\n (1e27 + temp_)) / // extract utilization (max 16_383 so there is no way this can overflow).\n (FOUR_DECIMALS);\n // max possible value of temp_ here is 16383 * (1e27 + 1e31) / 1e4 = ~1.64e31\n } else {\n // ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)\n temp_ = temp_ >> 1;\n // if temp_ == 0 then only supplyWithInterest => full yield. temp_ is already 0\n\n // e.g. 5_000 * 10_000 + (20 * 10_000 / 80) / 10_000 = 5000 * 12500 / 10000 = 6250 (=62.5%).\n temp_ =\n // 1e27 * utilization * (100% + supplyRatio) / 100%\n (1e27 *\n ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * // extract utilization (max 16_383 so there is no way this can overflow).\n (FOUR_DECIMALS + temp_)) /\n (FOUR_DECIMALS * FOUR_DECIMALS);\n // max possible temp_ value: 1e27 * 16383 * 2e4 / 1e8 = 3.2766e27\n }\n // from here temp_ => ratioSupplyYield (utilization * supplyRatio part) scaled by 1e27. max possible value ~1.64e31\n\n // step2 of ratioSupplyYield: add borrowRatio (only x% of borrowers paying yield)\n if (borrowRatio_ & 1 == 1) {\n // ratio is borrowWithInterest / borrowInterestFree (borrowInterestFree is bigger)\n borrowRatio_ = borrowRatio_ >> 1;\n // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.\n\n // Note: case where borrowRatio_ == 0 (only borrowInterestFree, no yield) already covered\n // at the beginning of the method by early return if `borrowRatio_ == 1`.\n\n // based on above example but borrowRawInterest is 10, borrowInterestFree is 50. no fee. borrowRatio = 20%.\n // so only 16.66% of borrowers are paying yield. so the 100% - part of the formula is not needed.\n // x of borrowers paying yield = (borrowRatio / (100 + borrowRatio)) = 16.6666666%\n // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.\n borrowRatio_ = (borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_);\n // max value here for borrowRatio_ is (1e31 / (1e4 + 1e4))= 5e26 (= 50% of borrowers paying yield).\n } else {\n // ratio is borrowInterestFree / borrowWithInterest (borrowWithInterest is bigger)\n borrowRatio_ = borrowRatio_ >> 1;\n\n // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.\n // x of borrowers paying yield = 100% - (borrowRatio / (100 + borrowRatio)) = 100% - 16.6666666% = 83,333%.\n borrowRatio_ = (1e27 - ((borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_)));\n // borrowRatio can never be > 100%. so max subtraction can be 100% - 100% / 200%.\n // or if borrowRatio_ is 0 -> 100% - 0. or if borrowRatio_ is 1 -> 100% - 1 / 101.\n // max value here for borrowRatio_ is 1e27 - 0 = 1e27 (= 100% of borrowers paying yield).\n }\n\n // temp_ => ratioSupplyYield. scaled down from 1e25 = 1% each to normal percent precision 1e2 = 1%.\n // max nominator value is ~1.64e31 * 1e27 = 1.64e58. max result = 1.64e8\n temp_ = (FOUR_DECIMALS * temp_ * borrowRatio_) / 1e54;\n\n // 2. calculate supply rate\n // temp_ => supply rate (borrow rate - revenueFee%) * ratioSupplyYield.\n // division part is done in next step to increase precision. (divided by 2x FOUR_DECIMALS, fee + borrowRate)\n // Note that all calculation divisions for supplyExchangePrice are rounded down.\n // Note supply rate can be bigger than the borrowRate, e.g. if there are only few lenders with interest\n // but more suppliers not earning interest.\n temp_ = ((exchangePricesAndConfig_ & X16) * // borrow rate\n temp_ * // ratioSupplyYield\n (FOUR_DECIMALS - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14))); // revenueFee\n // fee can not be > 100%. max possible = 65535 * ~1.64e8 * 1e4 =~1.074774e17.\n\n // 3. calculate increase in supply exchange price\n supplyExchangePrice_ += ((supplyExchangePrice_ * temp_ * secondsSinceLastUpdate_) /\n (SECONDS_PER_YEAR * FOUR_DECIMALS * FOUR_DECIMALS * FOUR_DECIMALS));\n // max possible nominator = max uint 64 * 1.074774e17 * max uint32 = ~8.52e45. Denominator can not be 0.\n }\n }\n\n ///////////////////////////////////////////////////////////////////////////\n ////////// CALC REVENUE /////////\n ///////////////////////////////////////////////////////////////////////////\n\n /// @dev gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from storage\n /// and the current balance of the Fluid liquidity contract for the token.\n /// @param totalAmounts_ total amounts packed uint256 read from storage\n /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage\n /// @param liquidityTokenBalance_ current balance of Liquidity contract (IERC20(token_).balanceOf(address(this)))\n /// @return revenueAmount_ collectable revenue amount\n function calcRevenue(\n uint256 totalAmounts_,\n uint256 exchangePricesAndConfig_,\n uint256 liquidityTokenBalance_\n ) internal view returns (uint256 revenueAmount_) {\n // @dev no need to super-optimize this method as it is only used by admin\n\n // calculate the new exchange prices based on earned interest\n (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) = calcExchangePrices(exchangePricesAndConfig_);\n\n // total supply = interest free + with interest converted from raw\n uint256 totalSupply_ = getTotalSupply(totalAmounts_, supplyExchangePrice_);\n\n if (totalSupply_ > 0) {\n // available revenue: balanceOf(token) + totalBorrowings - totalLendings.\n revenueAmount_ = liquidityTokenBalance_ + getTotalBorrow(totalAmounts_, borrowExchangePrice_);\n // ensure there is no possible case because of rounding etc. where this would revert,\n // explicitly check if >\n revenueAmount_ = revenueAmount_ > totalSupply_ ? revenueAmount_ - totalSupply_ : 0;\n // Note: if utilization > 100% (totalSupply < totalBorrow), then all the amount above 100% utilization\n // can only be revenue.\n } else {\n // if supply is 0, then rest of balance can be withdrawn as revenue so that no amounts get stuck\n revenueAmount_ = liquidityTokenBalance_;\n }\n }\n\n ///////////////////////////////////////////////////////////////////////////\n ////////// CALC LIMITS /////////\n ///////////////////////////////////////////////////////////////////////////\n\n /// @dev calculates withdrawal limit before an operate execution:\n /// amount of user supply that must stay supplied (not amount that can be withdrawn).\n /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M\n /// @param userSupplyData_ user supply data packed uint256 from storage\n /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and converted from BigMath\n /// @return currentWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction.\n /// returned value is in raw for with interest mode, normal amount for interest free mode!\n function calcWithdrawalLimitBeforeOperate(\n uint256 userSupplyData_,\n uint256 userSupply_\n ) internal view returns (uint256 currentWithdrawalLimit_) {\n // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet).\n // first tx where timestamp is 0 will enter `if (lastWithdrawalLimit_ == 0)` because lastWithdrawalLimit_ is not set yet.\n // returning max withdrawal allowed, which is not exactly right but doesn't matter because the first interaction must be\n // a deposit anyway. Important is that it would not revert.\n\n // Note the first time a deposit brings the user supply amount to above the base withdrawal limit, the active limit\n // is the fully expanded limit immediately.\n\n // extract last set withdrawal limit\n uint256 lastWithdrawalLimit_ = (userSupplyData_ >>\n LiquiditySlotsLink.BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT) & X64;\n lastWithdrawalLimit_ =\n (lastWithdrawalLimit_ >> DEFAULT_EXPONENT_SIZE) <<\n (lastWithdrawalLimit_ & DEFAULT_EXPONENT_MASK);\n if (lastWithdrawalLimit_ == 0) {\n // withdrawal limit is not activated. Max withdrawal allowed\n return 0;\n }\n\n uint256 maxWithdrawableLimit_;\n uint256 temp_;\n unchecked {\n // extract max withdrawable percent of user supply and\n // calculate maximum withdrawable amount expandPercentage of user supply at full expansion duration elapsed\n // e.g.: if 10% expandPercentage, meaning 10% is withdrawable after full expandDuration has elapsed.\n\n // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).\n maxWithdrawableLimit_ =\n (((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14) * userSupply_) /\n FOUR_DECIMALS;\n\n // time elapsed since last withdrawal limit was set (in seconds)\n // @dev last process timestamp is guaranteed to exist for withdrawal, as a supply must have happened before.\n // last timestamp can not be > current timestamp\n temp_ =\n block.timestamp -\n ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) & X33);\n }\n // calculate withdrawable amount of expandPercent that is elapsed of expandDuration.\n // e.g. if 60% of expandDuration has elapsed, then user should be able to withdraw 6% of user supply, down to 94%.\n // Note: no explicit check for this needed, it is covered by setting minWithdrawalLimit_ if needed.\n temp_ =\n (maxWithdrawableLimit_ * temp_) /\n // extract expand duration: After this, decrement won't happen (user can withdraw 100% of withdraw limit)\n ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24); // expand duration can never be 0\n // calculate expanded withdrawal limit: last withdrawal limit - withdrawable amount.\n // Note: withdrawable amount here can grow bigger than userSupply if timeElapsed is a lot bigger than expandDuration,\n // which would cause the subtraction `lastWithdrawalLimit_ - withdrawableAmount_` to revert. In that case, set 0\n // which will cause minimum (fully expanded) withdrawal limit to be set in lines below.\n unchecked {\n // underflow explicitly checked & handled\n currentWithdrawalLimit_ = lastWithdrawalLimit_ > temp_ ? lastWithdrawalLimit_ - temp_ : 0;\n // calculate minimum withdrawal limit: minimum amount of user supply that must stay supplied at full expansion.\n // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_\n temp_ = userSupply_ - maxWithdrawableLimit_;\n }\n // if withdrawal limit is decreased below minimum then set minimum\n // (e.g. when more than expandDuration time has elapsed)\n if (temp_ > currentWithdrawalLimit_) {\n currentWithdrawalLimit_ = temp_;\n }\n }\n\n /// @dev calculates withdrawal limit after an operate execution:\n /// amount of user supply that must stay supplied (not amount that can be withdrawn).\n /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M\n /// @param userSupplyData_ user supply data packed uint256 from storage\n /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and added / subtracted with the executed operate amount\n /// @param newWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction, result from `calcWithdrawalLimitBeforeOperate`\n /// @return withdrawalLimit_ updated withdrawal limit that should be written to storage. returned value is in\n /// raw for with interest mode, normal amount for interest free mode!\n function calcWithdrawalLimitAfterOperate(\n uint256 userSupplyData_,\n uint256 userSupply_,\n uint256 newWithdrawalLimit_\n ) internal pure returns (uint256) {\n // temp_ => base withdrawal limit. below this, maximum withdrawals are allowed\n uint256 temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18;\n temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);\n\n // if user supply is below base limit then max withdrawals are allowed\n if (userSupply_ < temp_) {\n return 0;\n }\n // temp_ => withdrawal limit expandPercent (is in 1e2 decimals)\n temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14;\n unchecked {\n // temp_ => minimum withdrawal limit: userSupply - max withdrawable limit (userSupply * expandPercent))\n // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).\n // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_\n temp_ = userSupply_ - ((userSupply_ * temp_) / FOUR_DECIMALS);\n }\n // if new (before operation) withdrawal limit is less than minimum limit then set minimum limit.\n // e.g. can happen on new deposits. withdrawal limit is instantly fully expanded in a scenario where\n // increased deposit amount outpaces withrawals.\n if (temp_ > newWithdrawalLimit_) {\n return temp_;\n }\n return newWithdrawalLimit_;\n }\n\n /// @dev calculates borrow limit before an operate execution:\n /// total amount user borrow can reach (not borrowable amount in current operation).\n /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M\n /// @param userBorrowData_ user borrow data packed uint256 from storage\n /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_`\n /// @return currentBorrowLimit_ current borrow limit updated for expansion since last interaction. returned value is in\n /// raw for with interest mode, normal amount for interest free mode!\n function calcBorrowLimitBeforeOperate(\n uint256 userBorrowData_,\n uint256 userBorrow_\n ) internal view returns (uint256 currentBorrowLimit_) {\n // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet) -> base limit.\n // first tx where timestamp is 0 will enter `if (maxExpandedBorrowLimit_ < baseBorrowLimit_)` because `userBorrow_` and thus\n // `maxExpansionLimit_` and thus `maxExpandedBorrowLimit_` is 0 and `baseBorrowLimit_` can not be 0.\n\n // temp_ = extract borrow expand percent (is in 1e2 decimals)\n uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14;\n\n uint256 maxExpansionLimit_;\n uint256 maxExpandedBorrowLimit_;\n unchecked {\n // calculate max expansion limit: Max amount limit can expand to since last interaction\n // userBorrow_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).\n maxExpansionLimit_ = ((userBorrow_ * temp_) / FOUR_DECIMALS);\n\n // calculate max borrow limit: Max point limit can increase to since last interaction\n maxExpandedBorrowLimit_ = userBorrow_ + maxExpansionLimit_;\n }\n\n // currentBorrowLimit_ = extract base borrow limit\n currentBorrowLimit_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;\n currentBorrowLimit_ =\n (currentBorrowLimit_ >> DEFAULT_EXPONENT_SIZE) <<\n (currentBorrowLimit_ & DEFAULT_EXPONENT_MASK);\n\n if (maxExpandedBorrowLimit_ < currentBorrowLimit_) {\n return currentBorrowLimit_;\n }\n // time elapsed since last borrow limit was set (in seconds)\n unchecked {\n // temp_ = timeElapsed_ (last timestamp can not be > current timestamp)\n temp_ =\n block.timestamp -\n ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) & X33); // extract last update timestamp\n }\n\n // currentBorrowLimit_ = expandedBorrowableAmount + extract last set borrow limit\n currentBorrowLimit_ =\n // calculate borrow limit expansion since last interaction for `expandPercent` that is elapsed of `expandDuration`.\n // divisor is extract expand duration (after this, full expansion to expandPercentage happened).\n ((maxExpansionLimit_ * temp_) /\n ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24)) + // expand duration can never be 0\n // extract last set borrow limit\n BigMathMinified.fromBigNumber(\n (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT) & X64,\n DEFAULT_EXPONENT_SIZE,\n DEFAULT_EXPONENT_MASK\n );\n\n // if timeElapsed is bigger than expandDuration, new borrow limit would be > max expansion,\n // so set to `maxExpandedBorrowLimit_` in that case.\n // also covers the case where last process timestamp = 0 (timeElapsed would simply be very big)\n if (currentBorrowLimit_ > maxExpandedBorrowLimit_) {\n currentBorrowLimit_ = maxExpandedBorrowLimit_;\n }\n // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)\n temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;\n temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);\n\n if (currentBorrowLimit_ > temp_) {\n currentBorrowLimit_ = temp_;\n }\n }\n\n /// @dev calculates borrow limit after an operate execution:\n /// total amount user borrow can reach (not borrowable amount in current operation).\n /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M\n /// @param userBorrowData_ user borrow data packed uint256 from storage\n /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` and added / subtracted with the executed operate amount\n /// @param newBorrowLimit_ current borrow limit updated for expansion since last interaction, result from `calcBorrowLimitBeforeOperate`\n /// @return borrowLimit_ updated borrow limit that should be written to storage.\n /// returned value is in raw for with interest mode, normal amount for interest free mode!\n function calcBorrowLimitAfterOperate(\n uint256 userBorrowData_,\n uint256 userBorrow_,\n uint256 newBorrowLimit_\n ) internal pure returns (uint256 borrowLimit_) {\n // temp_ = extract borrow expand percent\n uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; // (is in 1e2 decimals)\n\n unchecked {\n // borrowLimit_ = calculate maximum borrow limit at full expansion.\n // userBorrow_ needs to be at least 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).\n borrowLimit_ = userBorrow_ + ((userBorrow_ * temp_) / FOUR_DECIMALS);\n }\n\n // temp_ = extract base borrow limit\n temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;\n temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);\n\n if (borrowLimit_ < temp_) {\n // below base limit, borrow limit is always base limit\n return temp_;\n }\n // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)\n temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;\n temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);\n\n // make sure fully expanded borrow limit is not above hard max borrow limit\n if (borrowLimit_ > temp_) {\n borrowLimit_ = temp_;\n }\n // if new borrow limit (from before operate) is > max borrow limit, set max borrow limit.\n // (e.g. on a repay shrinking instantly to fully expanded borrow limit from new borrow amount. shrinking is instant)\n if (newBorrowLimit_ > borrowLimit_) {\n return borrowLimit_;\n }\n return newBorrowLimit_;\n }\n\n ///////////////////////////////////////////////////////////////////////////\n ////////// CALC RATES /////////\n ///////////////////////////////////////////////////////////////////////////\n\n /// @dev Calculates new borrow rate from utilization for a token\n /// @param rateData_ rate data packed uint256 from storage for the token\n /// @param utilization_ totalBorrow / totalSupply. 1e4 = 100% utilization\n /// @return rate_ rate for that particular token in 1e2 precision (e.g. 5% rate = 500)\n function calcBorrowRateFromUtilization(uint256 rateData_, uint256 utilization_) internal returns (uint256 rate_) {\n // extract rate version: 4 bits (0xF) starting from bit 0\n uint256 rateVersion_ = (rateData_ & 0xF);\n\n if (rateVersion_ == 1) {\n rate_ = calcRateV1(rateData_, utilization_);\n } else if (rateVersion_ == 2) {\n rate_ = calcRateV2(rateData_, utilization_);\n } else {\n revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__UnsupportedRateVersion);\n }\n\n if (rate_ > X16) {\n // hard cap for borrow rate at maximum value 16 bits (65535) to make sure it does not overflow storage space.\n // this is unlikely to ever happen if configs stay within expected levels.\n rate_ = X16;\n // emit event to more easily become aware\n emit BorrowRateMaxCap();\n }\n }\n\n /// @dev calculates the borrow rate based on utilization for rate data version 1 (with one kink) in 1e2 precision\n /// @param rateData_ rate data packed uint256 from storage for the token\n /// @param utilization_ in 1e2 (100% = 1e4)\n /// @return rate_ rate in 1e2 precision\n function calcRateV1(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) {\n /// For rate v1 (one kink) ------------------------------------------------------\n /// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 52- 67 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Last 188 bits => 68-255 => blank, might come in use in future\n\n // y = mx + c.\n // y is borrow rate\n // x is utilization\n // m = slope (m can also be negative for declining rates)\n // c is constant (c can be negative)\n\n uint256 y1_;\n uint256 y2_;\n uint256 x1_;\n uint256 x2_;\n\n // extract kink1: 16 bits (0xFFFF) starting from bit 20\n // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two\n uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_UTILIZATION_AT_KINK) & X16;\n if (utilization_ < kink1_) {\n // if utilization is less than kink\n y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO) & X16;\n y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16;\n x1_ = 0; // 0%\n x2_ = kink1_;\n } else {\n // else utilization is greater than kink\n y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16;\n y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX) & X16;\n x1_ = kink1_;\n x2_ = FOUR_DECIMALS; // 100%\n }\n\n int256 constant_;\n int256 slope_;\n unchecked {\n // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1).\n // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor)\n // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS\n slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_));\n\n // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx.\n // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256\n // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12;\n // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256\n // subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256\n constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_));\n\n // calculating new borrow rate\n // - slope_ max value is 65535 * 1e12,\n // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply)\n // - constant max value is 65535 * 1e12\n // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256\n // divisor TWELVE_DECIMALS can not be 0\n slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings\n if (slope_ < 0) {\n revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative);\n }\n rate_ = uint256(slope_) / TWELVE_DECIMALS;\n }\n }\n\n /// @dev calculates the borrow rate based on utilization for rate data version 2 (with two kinks) in 1e4 precision\n /// @param rateData_ rate data packed uint256 from storage for the token\n /// @param utilization_ in 1e2 (100% = 1e4)\n /// @return rate_ rate in 1e4 precision\n function calcRateV2(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) {\n /// For rate v2 (two kinks) -----------------------------------------------------\n /// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 52- 67 => Utilization at kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 68- 83 => Rate at utilization kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Next 16 bits => 84- 99 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)\n /// Last 156 bits => 100-255 => blank, might come in use in future\n\n // y = mx + c.\n // y is borrow rate\n // x is utilization\n // m = slope (m can also be negative for declining rates)\n // c is constant (c can be negative)\n\n uint256 y1_;\n uint256 y2_;\n uint256 x1_;\n uint256 x2_;\n\n // extract kink1: 16 bits (0xFFFF) starting from bit 20\n // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two\n uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1) & X16;\n if (utilization_ < kink1_) {\n // if utilization is less than kink1\n y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO) & X16;\n y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16;\n x1_ = 0; // 0%\n x2_ = kink1_;\n } else {\n // extract kink2: 16 bits (0xFFFF) starting from bit 52\n uint256 kink2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2) & X16;\n if (utilization_ < kink2_) {\n // if utilization is less than kink2\n y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16;\n y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16;\n x1_ = kink1_;\n x2_ = kink2_;\n } else {\n // else utilization is greater than kink2\n y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16;\n y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX) & X16;\n x1_ = kink2_;\n x2_ = FOUR_DECIMALS;\n }\n }\n\n int256 constant_;\n int256 slope_;\n unchecked {\n // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1).\n // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor)\n // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS\n slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_));\n\n // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx.\n // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256\n // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12;\n // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256\n // subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256\n constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_));\n\n // calculating new borrow rate\n // - slope_ max value is 65535 * 1e12,\n // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply)\n // - constant max value is 65535 * 1e12\n // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256\n // divisor TWELVE_DECIMALS can not be 0\n slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings\n if (slope_ < 0) {\n revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative);\n }\n rate_ = uint256(slope_) / TWELVE_DECIMALS;\n }\n }\n\n /// @dev reads the total supply out of Liquidity packed storage `totalAmounts_` for `supplyExchangePrice_`\n function getTotalSupply(\n uint256 totalAmounts_,\n uint256 supplyExchangePrice_\n ) internal pure returns (uint256 totalSupply_) {\n // totalSupply_ => supplyInterestFree\n totalSupply_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64;\n totalSupply_ = (totalSupply_ >> DEFAULT_EXPONENT_SIZE) << (totalSupply_ & DEFAULT_EXPONENT_MASK);\n\n uint256 totalSupplyRaw_ = totalAmounts_ & X64; // no shifting as supplyRaw is first 64 bits\n totalSupplyRaw_ = (totalSupplyRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalSupplyRaw_ & DEFAULT_EXPONENT_MASK);\n\n // totalSupply = supplyInterestFree + supplyRawInterest normalized from raw\n totalSupply_ += ((totalSupplyRaw_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION);\n }\n\n /// @dev reads the total borrow out of Liquidity packed storage `totalAmounts_` for `borrowExchangePrice_`\n function getTotalBorrow(\n uint256 totalAmounts_,\n uint256 borrowExchangePrice_\n ) internal pure returns (uint256 totalBorrow_) {\n // totalBorrow_ => borrowInterestFree\n // no & mask needed for borrow interest free as it occupies the last bits in the storage slot\n totalBorrow_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE);\n totalBorrow_ = (totalBorrow_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrow_ & DEFAULT_EXPONENT_MASK);\n\n uint256 totalBorrowRaw_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64;\n totalBorrowRaw_ = (totalBorrowRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrowRaw_ & DEFAULT_EXPONENT_MASK);\n\n // totalBorrow = borrowInterestFree + borrowRawInterest normalized from raw\n totalBorrow_ += ((totalBorrowRaw_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION);\n }\n}\n"
|
||
},
|
||
"contracts/libraries/liquiditySlotsLink.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\n/// @notice library that helps in reading / working with storage slot data of Fluid Liquidity.\n/// @dev as all data for Fluid Liquidity is internal, any data must be fetched directly through manual\n/// slot reading through this library or, if gas usage is less important, through the FluidLiquidityResolver.\nlibrary LiquiditySlotsLink {\n /// @dev storage slot for status at Liquidity\n uint256 internal constant LIQUIDITY_STATUS_SLOT = 1;\n /// @dev storage slot for auths mapping at Liquidity\n uint256 internal constant LIQUIDITY_AUTHS_MAPPING_SLOT = 2;\n /// @dev storage slot for guardians mapping at Liquidity\n uint256 internal constant LIQUIDITY_GUARDIANS_MAPPING_SLOT = 3;\n /// @dev storage slot for user class mapping at Liquidity\n uint256 internal constant LIQUIDITY_USER_CLASS_MAPPING_SLOT = 4;\n /// @dev storage slot for exchangePricesAndConfig mapping at Liquidity\n uint256 internal constant LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT = 5;\n /// @dev storage slot for rateData mapping at Liquidity\n uint256 internal constant LIQUIDITY_RATE_DATA_MAPPING_SLOT = 6;\n /// @dev storage slot for totalAmounts mapping at Liquidity\n uint256 internal constant LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT = 7;\n /// @dev storage slot for user supply double mapping at Liquidity\n uint256 internal constant LIQUIDITY_USER_SUPPLY_DOUBLE_MAPPING_SLOT = 8;\n /// @dev storage slot for user borrow double mapping at Liquidity\n uint256 internal constant LIQUIDITY_USER_BORROW_DOUBLE_MAPPING_SLOT = 9;\n /// @dev storage slot for listed tokens array at Liquidity\n uint256 internal constant LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT = 10;\n\n // --------------------------------\n // @dev stacked uint256 storage slots bits position data for each:\n\n // ExchangePricesAndConfig\n uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATE = 0;\n uint256 internal constant BITS_EXCHANGE_PRICES_FEE = 16;\n uint256 internal constant BITS_EXCHANGE_PRICES_UTILIZATION = 30;\n uint256 internal constant BITS_EXCHANGE_PRICES_UPDATE_THRESHOLD = 44;\n uint256 internal constant BITS_EXCHANGE_PRICES_LAST_TIMESTAMP = 58;\n uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE = 91;\n uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE = 155;\n uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_RATIO = 219;\n uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATIO = 234;\n\n // RateData:\n uint256 internal constant BITS_RATE_DATA_VERSION = 0;\n // RateData: V1\n uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO = 4;\n uint256 internal constant BITS_RATE_DATA_V1_UTILIZATION_AT_KINK = 20;\n uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK = 36;\n uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX = 52;\n // RateData: V2\n uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO = 4;\n uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1 = 20;\n uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1 = 36;\n uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2 = 52;\n uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2 = 68;\n uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX = 84;\n\n // TotalAmounts\n uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_WITH_INTEREST = 0;\n uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE = 64;\n uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST = 128;\n uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE = 192;\n\n // UserSupplyData\n uint256 internal constant BITS_USER_SUPPLY_MODE = 0;\n uint256 internal constant BITS_USER_SUPPLY_AMOUNT = 1;\n uint256 internal constant BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT = 65;\n uint256 internal constant BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP = 129;\n uint256 internal constant BITS_USER_SUPPLY_EXPAND_PERCENT = 162;\n uint256 internal constant BITS_USER_SUPPLY_EXPAND_DURATION = 176;\n uint256 internal constant BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT = 200;\n uint256 internal constant BITS_USER_SUPPLY_IS_PAUSED = 255;\n\n // UserBorrowData\n uint256 internal constant BITS_USER_BORROW_MODE = 0;\n uint256 internal constant BITS_USER_BORROW_AMOUNT = 1;\n uint256 internal constant BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT = 65;\n uint256 internal constant BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP = 129;\n uint256 internal constant BITS_USER_BORROW_EXPAND_PERCENT = 162;\n uint256 internal constant BITS_USER_BORROW_EXPAND_DURATION = 176;\n uint256 internal constant BITS_USER_BORROW_BASE_BORROW_LIMIT = 200;\n uint256 internal constant BITS_USER_BORROW_MAX_BORROW_LIMIT = 218;\n uint256 internal constant BITS_USER_BORROW_IS_PAUSED = 255;\n\n // --------------------------------\n\n /// @notice Calculating the slot ID for Liquidity contract for single mapping at `slot_` for `key_`\n function calculateMappingStorageSlot(uint256 slot_, address key_) internal pure returns (bytes32) {\n return keccak256(abi.encode(key_, slot_));\n }\n\n /// @notice Calculating the slot ID for Liquidity contract for double mapping at `slot_` for `key1_` and `key2_`\n function calculateDoubleMappingStorageSlot(\n uint256 slot_,\n address key1_,\n address key2_\n ) internal pure returns (bytes32) {\n bytes32 intermediateSlot_ = keccak256(abi.encode(key1_, slot_));\n return keccak256(abi.encode(key2_, intermediateSlot_));\n }\n}\n"
|
||
},
|
||
"contracts/libraries/storageRead.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\n/// @notice implements a method to read uint256 data from storage at a bytes32 storage slot key.\ncontract StorageRead {\n function readFromStorage(bytes32 slot_) public view returns (uint256 result_) {\n assembly {\n result_ := sload(slot_) // read value from the storage slot\n }\n }\n}"
|
||
},
|
||
"contracts/libraries/tickMath.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\n/// @title library that calculates number \"tick\" and \"ratioX96\" from this: ratioX96 = (1.0015^tick) * 2^96\n/// @notice this library is used in Fluid Vault protocol for optimiziation.\n/// @dev \"tick\" supports between -32767 and 32767. \"ratioX96\" supports between 37075072 and 169307877264527972847801929085841449095838922544595\nlibrary TickMath {\n /// The minimum tick that can be passed in getRatioAtTick. 1.0015**-32767\n int24 internal constant MIN_TICK = -32767;\n /// The maximum tick that can be passed in getRatioAtTick. 1.0015**32767\n int24 internal constant MAX_TICK = 32767;\n\n uint256 internal constant FACTOR00 = 0x100000000000000000000000000000000;\n uint256 internal constant FACTOR01 = 0xff9dd7de423466c20352b1246ce4856f; // 2^128/1.0015**1 = 339772707859149738855091969477551883631\n uint256 internal constant FACTOR02 = 0xff3bd55f4488ad277531fa1c725a66d0; // 2^128/1.0015**2 = 339263812140938331358054887146831636176\n uint256 internal constant FACTOR03 = 0xfe78410fd6498b73cb96a6917f853259; // 2^128/1.0015**4 = 338248306163758188337119769319392490073\n uint256 internal constant FACTOR04 = 0xfcf2d9987c9be178ad5bfeffaa123273; // 2^128/1.0015**8 = 336226404141693512316971918999264834163\n uint256 internal constant FACTOR05 = 0xf9ef02c4529258b057769680fc6601b3; // 2^128/1.0015**16 = 332218786018727629051611634067491389875\n uint256 internal constant FACTOR06 = 0xf402d288133a85a17784a411f7aba082; // 2^128/1.0015**32 = 324346285652234375371948336458280706178\n uint256 internal constant FACTOR07 = 0xe895615b5beb6386553757b0352bda90; // 2^128/1.0015**64 = 309156521885964218294057947947195947664\n uint256 internal constant FACTOR08 = 0xd34f17a00ffa00a8309940a15930391a; // 2^128/1.0015**128 = 280877777739312896540849703637713172762 \n uint256 internal constant FACTOR09 = 0xae6b7961714e20548d88ea5123f9a0ff; // 2^128/1.0015**256 = 231843708922198649176471782639349113087\n uint256 internal constant FACTOR10 = 0x76d6461f27082d74e0feed3b388c0ca1; // 2^128/1.0015**512 = 157961477267171621126394973980180876449\n uint256 internal constant FACTOR11 = 0x372a3bfe0745d8b6b19d985d9a8b85bb; // 2^128/1.0015**1024 = 73326833024599564193373530205717235131\n uint256 internal constant FACTOR12 = 0x0be32cbee48979763cf7247dd7bb539d; // 2^128/1.0015**2048 = 15801066890623697521348224657638773661\n uint256 internal constant FACTOR13 = 0x8d4f70c9ff4924dac37612d1e2921e; // 2^128/1.0015**4096 = 733725103481409245883800626999235102\n uint256 internal constant FACTOR14 = 0x4e009ae5519380809a02ca7aec77; // 2^128/1.0015**8192 = 1582075887005588088019997442108535\n uint256 internal constant FACTOR15 = 0x17c45e641b6e95dee056ff10; // 2^128/1.0015**16384 = 7355550435635883087458926352\n\n /// The minimum value that can be returned from getRatioAtTick. Equivalent to getRatioAtTick(MIN_TICK). ~ Equivalent to `(1 << 96) * (1.0015**-32767)`\n uint256 internal constant MIN_RATIOX96 = 37075072;\n /// The maximum value that can be returned from getRatioAtTick. Equivalent to getRatioAtTick(MAX_TICK).\n /// ~ Equivalent to `(1 << 96) * (1.0015**32767)`, rounding etc. leading to minor difference\n uint256 internal constant MAX_RATIOX96 = 169307877264527972847801929085841449095838922544595;\n\n uint256 internal constant ZERO_TICK_SCALED_RATIO = 0x1000000000000000000000000; // 1 << 96 // 79228162514264337593543950336\n uint256 internal constant _1E26 = 1e26;\n\n /// @notice ratioX96 = (1.0015^tick) * 2^96\n /// @dev Throws if |tick| > max tick\n /// @param tick The input tick for the above formula\n /// @return ratioX96 ratio = (debt amount/collateral amount)\n function getRatioAtTick(int tick) internal pure returns (uint256 ratioX96) {\n assembly {\n let absTick_ := sub(xor(tick, sar(255, tick)), sar(255, tick))\n\n if gt(absTick_, MAX_TICK) {\n revert(0, 0)\n }\n let factor_ := FACTOR00\n if and(absTick_, 0x1) {\n factor_ := FACTOR01\n }\n if and(absTick_, 0x2) {\n factor_ := shr(128, mul(factor_, FACTOR02))\n }\n if and(absTick_, 0x4) {\n factor_ := shr(128, mul(factor_, FACTOR03))\n }\n if and(absTick_, 0x8) {\n factor_ := shr(128, mul(factor_, FACTOR04))\n }\n if and(absTick_, 0x10) {\n factor_ := shr(128, mul(factor_, FACTOR05))\n }\n if and(absTick_, 0x20) {\n factor_ := shr(128, mul(factor_, FACTOR06))\n }\n if and(absTick_, 0x40) {\n factor_ := shr(128, mul(factor_, FACTOR07))\n }\n if and(absTick_, 0x80) {\n factor_ := shr(128, mul(factor_, FACTOR08))\n }\n if and(absTick_, 0x100) {\n factor_ := shr(128, mul(factor_, FACTOR09))\n }\n if and(absTick_, 0x200) {\n factor_ := shr(128, mul(factor_, FACTOR10))\n }\n if and(absTick_, 0x400) {\n factor_ := shr(128, mul(factor_, FACTOR11))\n }\n if and(absTick_, 0x800) {\n factor_ := shr(128, mul(factor_, FACTOR12))\n }\n if and(absTick_, 0x1000) {\n factor_ := shr(128, mul(factor_, FACTOR13))\n }\n if and(absTick_, 0x2000) {\n factor_ := shr(128, mul(factor_, FACTOR14))\n }\n if and(absTick_, 0x4000) {\n factor_ := shr(128, mul(factor_, FACTOR15))\n }\n\n let precision_ := 0\n if iszero(and(tick, 0x8000000000000000000000000000000000000000000000000000000000000000)) {\n factor_ := div(0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, factor_)\n // we round up in the division so getTickAtRatio of the output price is always consistent\n if mod(factor_, 0x100000000) {\n precision_ := 1\n }\n }\n ratioX96 := add(shr(32, factor_), precision_)\n }\n }\n\n /// @notice ratioX96 = (1.0015^tick) * 2^96\n /// @dev Throws if ratioX96 > max ratio || ratioX96 < min ratio\n /// @param ratioX96 The input ratio; ratio = (debt amount/collateral amount)\n /// @return tick The output tick for the above formula. Returns in round down form. if tick is 123.23 then 123, if tick is -123.23 then returns -124\n /// @return perfectRatioX96 perfect ratio for the above tick\n function getTickAtRatio(uint256 ratioX96) internal pure returns (int tick, uint perfectRatioX96) {\n assembly {\n if or(gt(ratioX96, MAX_RATIOX96), lt(ratioX96, MIN_RATIOX96)) {\n revert(0, 0)\n }\n\n let cond := lt(ratioX96, ZERO_TICK_SCALED_RATIO)\n let factor_\n\n if iszero(cond) {\n // if ratioX96 >= ZERO_TICK_SCALED_RATIO\n factor_ := div(mul(ratioX96, _1E26), ZERO_TICK_SCALED_RATIO)\n }\n if cond {\n // ratioX96 < ZERO_TICK_SCALED_RATIO\n factor_ := div(mul(ZERO_TICK_SCALED_RATIO, _1E26), ratioX96)\n }\n\n // put in https://www.wolframalpha.com/ whole equation: (1.0015^tick) * 2^96 * 10^26 / 79228162514264337593543950336\n\n // for tick = 16384\n // ratioX96 = (1.0015^16384) * 2^96 = 3665252098134783297721995888537077351735\n // 3665252098134783297721995888537077351735 * 10^26 / 79228162514264337593543950336 =\n // 4626198540796508716348404308345255985.06131964639489434655721\n if iszero(lt(factor_, 4626198540796508716348404308345255985)) {\n tick := or(tick, 0x4000)\n factor_ := div(mul(factor_, _1E26), 4626198540796508716348404308345255985)\n }\n // for tick = 8192\n // ratioX96 = (1.0015^8192) * 2^96 = 17040868196391020479062776466509865\n // 17040868196391020479062776466509865 * 10^26 / 79228162514264337593543950336 =\n // 21508599537851153911767490449162.3037648642153898377655505172\n if iszero(lt(factor_, 21508599537851153911767490449162)) {\n tick := or(tick, 0x2000)\n factor_ := div(mul(factor_, _1E26), 21508599537851153911767490449162)\n }\n // for tick = 4096\n // ratioX96 = (1.0015^4096) * 2^96 = 36743933851015821532611831851150\n // 36743933851015821532611831851150 * 10^26 / 79228162514264337593543950336 =\n // 46377364670549310883002866648.9777607649742626173648716941385\n if iszero(lt(factor_, 46377364670549310883002866649)) {\n tick := or(tick, 0x1000)\n factor_ := div(mul(factor_, _1E26), 46377364670549310883002866649)\n }\n // for tick = 2048\n // ratioX96 = (1.0015^2048) * 2^96 = 1706210527034005899209104452335\n // 1706210527034005899209104452335 * 10^26 / 79228162514264337593543950336 =\n // 2153540449365864845468344760.06357108484096046743300420319322\n if iszero(lt(factor_, 2153540449365864845468344760)) {\n tick := or(tick, 0x800)\n factor_ := div(mul(factor_, _1E26), 2153540449365864845468344760)\n }\n // for tick = 1024\n // ratioX96 = (1.0015^1024) * 2^96 = 367668226692760093024536487236\n // 367668226692760093024536487236 * 10^26 / 79228162514264337593543950336 =\n // 464062544207767844008185024.950588990554136265212906454481127\n if iszero(lt(factor_, 464062544207767844008185025)) {\n tick := or(tick, 0x400)\n factor_ := div(mul(factor_, _1E26), 464062544207767844008185025)\n }\n // for tick = 512\n // ratioX96 = (1.0015^512) * 2^96 = 170674186729409605620119663668\n // 170674186729409605620119663668 * 10^26 / 79228162514264337593543950336 =\n // 215421109505955298802281577.031879604792139232258508172947569\n if iszero(lt(factor_, 215421109505955298802281577)) {\n tick := or(tick, 0x200)\n factor_ := div(mul(factor_, _1E26), 215421109505955298802281577)\n }\n // for tick = 256\n // ratioX96 = (1.0015^256) * 2^96 = 116285004205991934861656513301\n // 116285004205991934861656513301 * 10^26 / 79228162514264337593543950336 =\n // 146772309890508740607270614.667650899656438875541505058062410\n if iszero(lt(factor_, 146772309890508740607270615)) {\n tick := or(tick, 0x100)\n factor_ := div(mul(factor_, _1E26), 146772309890508740607270615)\n }\n // for tick = 128\n // ratioX96 = (1.0015^128) * 2^96 = 95984619659632141743747099590\n // 95984619659632141743747099590 * 10^26 / 79228162514264337593543950336 =\n // 121149622323187099817270416.157248837742741760456796835775887\n if iszero(lt(factor_, 121149622323187099817270416)) {\n tick := or(tick, 0x80)\n factor_ := div(mul(factor_, _1E26), 121149622323187099817270416)\n }\n // for tick = 64\n // ratioX96 = (1.0015^64) * 2^96 = 87204845308406958006717891124\n // 87204845308406958006717891124 * 10^26 / 79228162514264337593543950336 =\n // 110067989135437147685980801.568068573422377364214113968609839\n if iszero(lt(factor_, 110067989135437147685980801)) {\n tick := or(tick, 0x40)\n factor_ := div(mul(factor_, _1E26), 110067989135437147685980801)\n }\n // for tick = 32\n // ratioX96 = (1.0015^32) * 2^96 = 83120873769022354029916374475\n // 83120873769022354029916374475 * 10^26 / 79228162514264337593543950336 =\n // 104913292358707887270979599.831816586773651266562785765558183\n if iszero(lt(factor_, 104913292358707887270979600)) {\n tick := or(tick, 0x20)\n factor_ := div(mul(factor_, _1E26), 104913292358707887270979600)\n }\n // for tick = 16\n // ratioX96 = (1.0015^16) * 2^96 = 81151180492336368327184716176\n // 81151180492336368327184716176 * 10^26 / 79228162514264337593543950336 =\n // 102427189924701091191840927.762844039579442328381455567932128\n if iszero(lt(factor_, 102427189924701091191840928)) {\n tick := or(tick, 0x10)\n factor_ := div(mul(factor_, _1E26), 102427189924701091191840928)\n }\n // for tick = 8\n // ratioX96 = (1.0015^8) * 2^96 = 80183906840906820640659903620\n // 80183906840906820640659903620 * 10^26 / 79228162514264337593543950336 =\n // 101206318935480056907421312.890625\n if iszero(lt(factor_, 101206318935480056907421313)) {\n tick := or(tick, 0x8)\n factor_ := div(mul(factor_, _1E26), 101206318935480056907421313)\n }\n // for tick = 4\n // ratioX96 = (1.0015^4) * 2^96 = 79704602139525152702959747603\n // 79704602139525152702959747603 * 10^26 / 79228162514264337593543950336 =\n // 100601351350506250000000000\n if iszero(lt(factor_, 100601351350506250000000000)) {\n tick := or(tick, 0x4)\n factor_ := div(mul(factor_, _1E26), 100601351350506250000000000)\n }\n // for tick = 2\n // ratioX96 = (1.0015^2) * 2^96 = 79466025265172787701084167660\n // 79466025265172787701084167660 * 10^26 / 79228162514264337593543950336 =\n // 100300225000000000000000000\n if iszero(lt(factor_, 100300225000000000000000000)) {\n tick := or(tick, 0x2)\n factor_ := div(mul(factor_, _1E26), 100300225000000000000000000)\n }\n // for tick = 1\n // ratioX96 = (1.0015^1) * 2^96 = 79347004758035734099934266261\n // 79347004758035734099934266261 * 10^26 / 79228162514264337593543950336 =\n // 100150000000000000000000000\n if iszero(lt(factor_, 100150000000000000000000000)) {\n tick := or(tick, 0x1)\n factor_ := div(mul(factor_, _1E26), 100150000000000000000000000)\n }\n if iszero(cond) {\n // if ratioX96 >= ZERO_TICK_SCALED_RATIO\n perfectRatioX96 := div(mul(ratioX96, _1E26), factor_)\n }\n if cond {\n // ratioX96 < ZERO_TICK_SCALED_RATIO\n tick := not(tick)\n perfectRatioX96 := div(mul(ratioX96, factor_), 100150000000000000000000000)\n }\n // perfect ratio should always be <= ratioX96\n // not sure if it can ever be bigger but better to have extra checks\n if gt(perfectRatioX96, ratioX96) {\n revert(0, 0)\n }\n }\n }\n}\n"
|
||
},
|
||
"contracts/liquidity/adminModule/structs.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nabstract contract Structs {\n struct AddressBool {\n address addr;\n bool value;\n }\n\n struct AddressUint256 {\n address addr;\n uint256 value;\n }\n\n /// @notice struct to set borrow rate data for version 1\n struct RateDataV1Params {\n ///\n /// @param token for rate data\n address token;\n ///\n /// @param kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100\n /// utilization below kink usually means slow increase in rate, once utilization is above kink borrow rate increases fast\n uint256 kink;\n ///\n /// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100\n /// i.e. constant minimum borrow rate\n /// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then)\n uint256 rateAtUtilizationZero;\n ///\n /// @param rateAtUtilizationKink borrow rate when utilization is at kink. in 1e2: 100% = 10_000; 1% = 100\n /// e.g. when rate should be 7% at kink then rateAtUtilizationKink would be 700\n uint256 rateAtUtilizationKink;\n ///\n /// @param rateAtUtilizationMax borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100\n /// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500\n uint256 rateAtUtilizationMax;\n }\n\n /// @notice struct to set borrow rate data for version 2\n struct RateDataV2Params {\n ///\n /// @param token for rate data\n address token;\n ///\n /// @param kink1 first kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100\n /// utilization below kink 1 usually means slow increase in rate, once utilization is above kink 1 borrow rate increases faster\n uint256 kink1;\n ///\n /// @param kink2 second kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100\n /// utilization below kink 2 usually means slow / medium increase in rate, once utilization is above kink 2 borrow rate increases fast\n uint256 kink2;\n ///\n /// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100\n /// i.e. constant minimum borrow rate\n /// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then)\n uint256 rateAtUtilizationZero;\n ///\n /// @param rateAtUtilizationKink1 desired borrow rate when utilization is at first kink. in 1e2: 100% = 10_000; 1% = 100\n /// e.g. when rate should be 7% at first kink then rateAtUtilizationKink would be 700\n uint256 rateAtUtilizationKink1;\n ///\n /// @param rateAtUtilizationKink2 desired borrow rate when utilization is at second kink. in 1e2: 100% = 10_000; 1% = 100\n /// e.g. when rate should be 7% at second kink then rateAtUtilizationKink would be 1_200\n uint256 rateAtUtilizationKink2;\n ///\n /// @param rateAtUtilizationMax desired borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100\n /// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500\n uint256 rateAtUtilizationMax;\n }\n\n /// @notice struct to set token config\n struct TokenConfig {\n ///\n /// @param token address\n address token;\n ///\n /// @param fee charges on borrower's interest. in 1e2: 100% = 10_000; 1% = 100\n uint256 fee;\n ///\n /// @param threshold on when to update the storage slot. in 1e2: 100% = 10_000; 1% = 100\n uint256 threshold;\n }\n\n /// @notice struct to set user supply & withdrawal config\n struct UserSupplyConfig {\n ///\n /// @param user address\n address user;\n ///\n /// @param token address\n address token;\n ///\n /// @param mode: 0 = without interest. 1 = with interest\n uint8 mode;\n ///\n /// @param expandPercent withdrawal limit expand percent. in 1e2: 100% = 10_000; 1% = 100\n /// Also used to calculate rate at which withdrawal limit should decrease (instant).\n uint256 expandPercent;\n ///\n /// @param expandDuration withdrawal limit expand duration in seconds.\n /// used to calculate rate together with expandPercent\n uint256 expandDuration;\n ///\n /// @param baseWithdrawalLimit base limit, below this, user can withdraw the entire amount.\n /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:\n /// with interest -> raw, without interest -> normal\n uint256 baseWithdrawalLimit;\n }\n\n /// @notice struct to set user borrow & payback config\n struct UserBorrowConfig {\n ///\n /// @param user address\n address user;\n ///\n /// @param token address\n address token;\n ///\n /// @param mode: 0 = without interest. 1 = with interest\n uint8 mode;\n ///\n /// @param expandPercent debt limit expand percent. in 1e2: 100% = 10_000; 1% = 100\n /// Also used to calculate rate at which debt limit should decrease (instant).\n uint256 expandPercent;\n ///\n /// @param expandDuration debt limit expand duration in seconds.\n /// used to calculate rate together with expandPercent\n uint256 expandDuration;\n ///\n /// @param baseDebtCeiling base borrow limit. until here, borrow limit remains as baseDebtCeiling\n /// (user can borrow until this point at once without stepped expansion). Above this, automated limit comes in place.\n /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:\n /// with interest -> raw, without interest -> normal\n uint256 baseDebtCeiling;\n ///\n /// @param maxDebtCeiling max borrow ceiling, maximum amount the user can borrow.\n /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:\n /// with interest -> raw, without interest -> normal\n uint256 maxDebtCeiling;\n }\n}\n"
|
||
},
|
||
"contracts/liquidity/interfaces/iLiquidity.sol": {
|
||
"content": "//SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\nimport { IProxy } from \"../../infiniteProxy/interfaces/iProxy.sol\";\nimport { Structs as AdminModuleStructs } from \"../adminModule/structs.sol\";\n\ninterface IFluidLiquidityAdmin {\n /// @notice adds/removes auths. Auths generally could be contracts which can have restricted actions defined on contract.\n /// auths can be helpful in reducing governance overhead where it's not needed.\n /// @param authsStatus_ array of structs setting allowed status for an address.\n /// status true => add auth, false => remove auth\n function updateAuths(AdminModuleStructs.AddressBool[] calldata authsStatus_) external;\n\n /// @notice adds/removes guardians. Only callable by Governance.\n /// @param guardiansStatus_ array of structs setting allowed status for an address.\n /// status true => add guardian, false => remove guardian\n function updateGuardians(AdminModuleStructs.AddressBool[] calldata guardiansStatus_) external;\n\n /// @notice changes the revenue collector address (contract that is sent revenue). Only callable by Governance.\n /// @param revenueCollector_ new revenue collector address\n function updateRevenueCollector(address revenueCollector_) external;\n\n /// @notice changes current status, e.g. for pausing or unpausing all user operations. Only callable by Auths.\n /// @param newStatus_ new status\n /// status = 2 -> pause, status = 1 -> resume.\n function changeStatus(uint256 newStatus_) external;\n\n /// @notice update tokens rate data version 1. Only callable by Auths.\n /// @param tokensRateData_ array of RateDataV1Params with rate data to set for each token\n function updateRateDataV1s(AdminModuleStructs.RateDataV1Params[] calldata tokensRateData_) external;\n\n /// @notice update tokens rate data version 2. Only callable by Auths.\n /// @param tokensRateData_ array of RateDataV2Params with rate data to set for each token\n function updateRateDataV2s(AdminModuleStructs.RateDataV2Params[] calldata tokensRateData_) external;\n\n /// @notice updates token configs: fee charge on borrowers interest & storage update utilization threshold.\n /// Only callable by Auths.\n /// @param tokenConfigs_ contains token address, fee & utilization threshold\n function updateTokenConfigs(AdminModuleStructs.TokenConfig[] calldata tokenConfigs_) external;\n\n /// @notice updates user classes: 0 is for new protocols, 1 is for established protocols.\n /// Only callable by Auths.\n /// @param userClasses_ struct array of uint256 value to assign for each user address\n function updateUserClasses(AdminModuleStructs.AddressUint256[] calldata userClasses_) external;\n\n /// @notice sets user supply configs per token basis. Eg: with interest or interest-free and automated limits.\n /// Only callable by Auths.\n /// @param userSupplyConfigs_ struct array containing user supply config, see `UserSupplyConfig` struct for more info\n function updateUserSupplyConfigs(AdminModuleStructs.UserSupplyConfig[] memory userSupplyConfigs_) external;\n\n /// @notice setting user borrow configs per token basis. Eg: with interest or interest-free and automated limits.\n /// Only callable by Auths.\n /// @param userBorrowConfigs_ struct array containing user borrow config, see `UserBorrowConfig` struct for more info\n function updateUserBorrowConfigs(AdminModuleStructs.UserBorrowConfig[] memory userBorrowConfigs_) external;\n\n /// @notice pause operations for a particular user in class 0 (class 1 users can't be paused by guardians).\n /// Only callable by Guardians.\n /// @param user_ address of user to pause operations for\n /// @param supplyTokens_ token addresses to pause withdrawals for\n /// @param borrowTokens_ token addresses to pause borrowings for\n function pauseUser(address user_, address[] calldata supplyTokens_, address[] calldata borrowTokens_) external;\n\n /// @notice unpause operations for a particular user in class 0 (class 1 users can't be paused by guardians).\n /// Only callable by Guardians.\n /// @param user_ address of user to unpause operations for\n /// @param supplyTokens_ token addresses to unpause withdrawals for\n /// @param borrowTokens_ token addresses to unpause borrowings for\n function unpauseUser(address user_, address[] calldata supplyTokens_, address[] calldata borrowTokens_) external;\n\n /// @notice collects revenue for tokens to configured revenueCollector address.\n /// @param tokens_ array of tokens to collect revenue for\n /// @dev Note that this can revert if token balance is < revenueAmount (utilization > 100%)\n function collectRevenue(address[] calldata tokens_) external;\n\n /// @notice gets the current updated exchange prices for n tokens and updates all prices, rates related data in storage.\n /// @param tokens_ tokens to update exchange prices for\n /// @return supplyExchangePrices_ new supply rates of overall system for each token\n /// @return borrowExchangePrices_ new borrow rates of overall system for each token\n function updateExchangePrices(\n address[] calldata tokens_\n ) external returns (uint256[] memory supplyExchangePrices_, uint256[] memory borrowExchangePrices_);\n}\n\ninterface IFluidLiquidityLogic is IFluidLiquidityAdmin {\n /// @notice Single function which handles supply, withdraw, borrow & payback\n /// @param token_ address of token (0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE for native)\n /// @param supplyAmount_ if +ve then supply, if -ve then withdraw, if 0 then nothing\n /// @param borrowAmount_ if +ve then borrow, if -ve then payback, if 0 then nothing\n /// @param withdrawTo_ if withdrawal then to which address\n /// @param borrowTo_ if borrow then to which address\n /// @param callbackData_ callback data passed to `liquidityCallback` method of protocol\n /// @return memVar3_ updated supplyExchangePrice\n /// @return memVar4_ updated borrowExchangePrice\n /// @dev to trigger skipping in / out transfers when in&out amounts balance themselves out (gas optimization):\n /// - supply(+) == borrow(+), withdraw(-) == payback(-).\n /// - `withdrawTo_` / `borrowTo_` must be msg.sender (protocol)\n /// - `callbackData_` MUST be encoded so that \"from\" address is at last 20 bytes (if this optimization is desired),\n /// also for native token operations where liquidityCallback is not triggered!\n /// from address must come at last position if there is more data. I.e. encode like:\n /// abi.encode(otherVar1, otherVar2, FROM_ADDRESS). Note dynamic types used with abi.encode come at the end\n /// so if dynamic types are needed, you must use abi.encodePacked to ensure the from address is at the end.\n function operate(\n address token_,\n int256 supplyAmount_,\n int256 borrowAmount_,\n address withdrawTo_,\n address borrowTo_,\n bytes calldata callbackData_\n ) external payable returns (uint256 memVar3_, uint256 memVar4_);\n}\n\ninterface IFluidLiquidity is IProxy, IFluidLiquidityLogic {}\n"
|
||
},
|
||
"contracts/liquidity/proxy.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { Proxy } from \"../infiniteProxy/proxy.sol\";\n\n/// @notice Fluid Liquidity infinte proxy.\n/// Liquidity is the central point of the Instadapp Fluid architecture, it is the core interaction point\n/// for all allow-listed protocols, such as fTokens, Vault, Flashloan, StETH protocol, DEX protocol etc.\ncontract FluidLiquidityProxy is Proxy {\n constructor(address admin_, address dummyImplementation_) Proxy(admin_, dummyImplementation_) {}\n}\n"
|
||
},
|
||
"contracts/protocols/vault/error.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\ncontract Error {\n error FluidVaultError(uint256 errorId_);\n\n /// @notice used to simulate liquidation to find the maximum liquidatable amounts\n error FluidLiquidateResult(uint256 colLiquidated, uint256 debtLiquidated);\n}"
|
||
},
|
||
"contracts/protocols/vault/errorTypes.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nlibrary ErrorTypes {\n /***********************************|\n | Vault Factory | \n |__________________________________*/\n\n uint256 internal constant VaultFactory__InvalidOperation = 30001;\n uint256 internal constant VaultFactory__Unauthorized = 30002;\n uint256 internal constant VaultFactory__SameTokenNotAllowed = 30003;\n uint256 internal constant VaultFactory__InvalidParams = 30004;\n uint256 internal constant VaultFactory__InvalidVault = 30005;\n uint256 internal constant VaultFactory__InvalidVaultAddress = 30006;\n uint256 internal constant VaultFactory__OnlyDelegateCallAllowed = 30007;\n\n /***********************************|\n | VaultT1 | \n |__________________________________*/\n\n /// @notice thrown at reentrancy\n uint256 internal constant VaultT1__AlreadyEntered = 31001;\n\n /// @notice thrown when user sends deposit & borrow amount as 0\n uint256 internal constant VaultT1__InvalidOperateAmount = 31002;\n\n /// @notice thrown when msg.value is not in sync with native token deposit or payback\n uint256 internal constant VaultT1__InvalidMsgValueOperate = 31003;\n\n /// @notice thrown when msg.sender is not the owner of the vault\n uint256 internal constant VaultT1__NotAnOwner = 31004;\n\n /// @notice thrown when user's position does not exist. Sending the wrong index from the frontend\n uint256 internal constant VaultT1__TickIsEmpty = 31005;\n\n /// @notice thrown when the user's position is above CF and the user tries to make it more risky by trying to withdraw or borrow\n uint256 internal constant VaultT1__PositionAboveCF = 31006;\n\n /// @notice thrown when the top tick is not initialized. Happens if the vault is totally new or all the user's left\n uint256 internal constant VaultT1__TopTickDoesNotExist = 31007;\n\n /// @notice thrown when msg.value in liquidate is not in sync payback\n uint256 internal constant VaultT1__InvalidMsgValueLiquidate = 31008;\n\n /// @notice thrown when slippage is more on liquidation than what the liquidator sent\n uint256 internal constant VaultT1__ExcessSlippageLiquidation = 31009;\n\n /// @notice thrown when msg.sender is not the rebalancer/reserve contract\n uint256 internal constant VaultT1__NotRebalancer = 31010;\n\n /// @notice thrown when NFT of one vault interacts with the NFT of other vault\n uint256 internal constant VaultT1__NftNotOfThisVault = 31011;\n\n /// @notice thrown when the token is not initialized on the liquidity contract\n uint256 internal constant VaultT1__TokenNotInitialized = 31012;\n\n /// @notice thrown when admin updates fallback if a non-auth calls vault\n uint256 internal constant VaultT1__NotAnAuth = 31013;\n\n /// @notice thrown in operate when user tries to witdhraw more collateral than deposited\n uint256 internal constant VaultT1__ExcessCollateralWithdrawal = 31014;\n\n /// @notice thrown in operate when user tries to payback more debt than borrowed\n uint256 internal constant VaultT1__ExcessDebtPayback = 31015;\n\n /// @notice thrown when user try to withdrawal more than operate's withdrawal limit\n uint256 internal constant VaultT1__WithdrawMoreThanOperateLimit = 31016;\n\n /// @notice thrown when caller of liquidityCallback is not Liquidity\n uint256 internal constant VaultT1__InvalidLiquidityCallbackAddress = 31017;\n\n /// @notice thrown when reentrancy is not already on\n uint256 internal constant VaultT1__NotEntered = 31018;\n\n /// @notice thrown when someone directly calls secondary implementation contract\n uint256 internal constant VaultT1__OnlyDelegateCallAllowed = 31019;\n\n /// @notice thrown when the safeTransferFrom for a token amount failed\n uint256 internal constant VaultT1__TransferFromFailed = 31020;\n\n /// @notice thrown when exchange price overflows while updating on storage\n uint256 internal constant VaultT1__ExchangePriceOverFlow = 31021;\n\n /// @notice thrown when debt to liquidate amt is sent wrong\n uint256 internal constant VaultT1__InvalidLiquidationAmt = 31022;\n\n /// @notice thrown when user debt or collateral goes above 2**128 or below -2**128\n uint256 internal constant VaultT1__UserCollateralDebtExceed = 31023;\n\n /// @notice thrown if on liquidation branch debt becomes lower than 100\n uint256 internal constant VaultT1__BranchDebtTooLow = 31024;\n\n /// @notice thrown when tick's debt is less than 10000\n uint256 internal constant VaultT1__TickDebtTooLow = 31025;\n\n /// @notice thrown when the received new liquidity exchange price is of unexpected value (< than the old one)\n uint256 internal constant VaultT1__LiquidityExchangePriceUnexpected = 31026;\n\n /// @notice thrown when user's debt is less than 10000\n uint256 internal constant VaultT1__UserDebtTooLow = 31027;\n\n /// @notice thrown when on only payback and only deposit the ratio of position increases\n uint256 internal constant VaultT1__InvalidPaybackOrDeposit = 31028;\n\n /// @notice thrown when liquidation just happens of a single partial\n uint256 internal constant VaultT1__InvalidLiquidation = 31029;\n\n /// @notice thrown when msg.value is sent wrong in rebalance\n uint256 internal constant VaultT1__InvalidMsgValueInRebalance = 31030;\n\n /// @notice thrown when nothing rebalanced\n uint256 internal constant VaultT1__NothingToRebalance = 31031;\n\n /***********************************|\n | ERC721 | \n |__________________________________*/\n\n uint256 internal constant ERC721__InvalidParams = 32001;\n uint256 internal constant ERC721__Unauthorized = 32002;\n uint256 internal constant ERC721__InvalidOperation = 32003;\n uint256 internal constant ERC721__UnsafeRecipient = 32004;\n uint256 internal constant ERC721__OutOfBoundsIndex = 32005;\n\n /***********************************|\n | Vault Admin | \n |__________________________________*/\n\n /// @notice thrown when admin tries to setup invalid value which are crossing limits\n uint256 internal constant VaultT1Admin__ValueAboveLimit = 33001;\n\n /// @notice when someone directly calls admin implementation contract\n uint256 internal constant VaultT1Admin__OnlyDelegateCallAllowed = 33002;\n\n /// @notice thrown when auth sends NFT ID as 0 while collecting dust debt\n uint256 internal constant VaultT1Admin__NftIdShouldBeNonZero = 33003;\n\n /// @notice thrown when trying to collect dust debt of NFT which is not of this vault\n uint256 internal constant VaultT1Admin__NftNotOfThisVault = 33004;\n\n /// @notice thrown when dust debt of NFT is 0, meaning nothing to collect\n uint256 internal constant VaultT1Admin__DustDebtIsZero = 33005;\n\n /// @notice thrown when final debt after liquidation is not 0, meaning position 100% liquidated\n uint256 internal constant VaultT1Admin__FinalDebtShouldBeZero = 33006;\n\n /// @notice thrown when NFT is not liquidated state\n uint256 internal constant VaultT1Admin__NftNotLiquidated = 33007;\n\n /// @notice thrown when total absorbed dust debt is 0\n uint256 internal constant VaultT1Admin__AbsorbedDustDebtIsZero = 33008;\n\n /// @notice thrown when address is set as 0\n uint256 internal constant VaultT1Admin__AddressZeroNotAllowed = 33009;\n\n /***********************************|\n | Vault Rewards | \n |__________________________________*/\n\n uint256 internal constant VaultRewards__Unauthorized = 34001;\n uint256 internal constant VaultRewards__AddressZero = 34002;\n uint256 internal constant VaultRewards__InvalidParams = 34003;\n uint256 internal constant VaultRewards__NewMagnifierSameAsOldMagnifier = 34004;\n uint256 internal constant VaultRewards__NotTheInitiator = 34005;\n uint256 internal constant VaultRewards__AlreadyStarted = 34006;\n uint256 internal constant VaultRewards__RewardsNotStartedOrEnded = 34007;\n}"
|
||
},
|
||
"contracts/protocols/vault/factory/ERC721/ERC721.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { ErrorTypes } from \"../../errorTypes.sol\";\nimport { Error } from \"../../error.sol\";\n\n/// @notice Fluid Vault Factory ERC721 base contract. Implements the ERC721 standard, based on Solmate.\n/// In addition, implements ERC721 Enumerable.\n/// Modern, minimalist, and gas efficient ERC-721 with Enumerable implementation.\n///\n/// @author Instadapp\n/// @author Modified Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol)\nabstract contract ERC721 is Error {\n /*//////////////////////////////////////////////////////////////\n EVENTS\n //////////////////////////////////////////////////////////////*/\n\n event Transfer(address indexed from, address indexed to, uint256 indexed id);\n\n event Approval(address indexed owner, address indexed spender, uint256 indexed id);\n\n event ApprovalForAll(address indexed owner, address indexed operator, bool approved);\n\n /*//////////////////////////////////////////////////////////////\n METADATA STORAGE/LOGIC\n //////////////////////////////////////////////////////////////*/\n\n string public name;\n\n string public symbol;\n\n function tokenURI(uint256 id) public view virtual returns (string memory);\n\n /*//////////////////////////////////////////////////////////////\n ERC721 BALANCE/OWNER STORAGE\n //////////////////////////////////////////////////////////////*/\n\n // token id => token config\n // uint160 0 - 159: address:: owner\n // uint32 160 - 191: uint32:: index\n // uint32 192 - 223: uint32:: vaultId\n // uint32 224 - 255: uint32:: null\n mapping(uint256 => uint256) internal _tokenConfig;\n\n // owner => slot => index\n /*\n // slot 0: \n // uint32 0 - 31: uint32:: balanceOf\n // uint224 32 - 255: 7 tokenIds each of uint32 packed\n // slot N (N >= 1)\n // uint32 * 8 each tokenId\n */\n mapping(address => mapping(uint256 => uint256)) internal _ownerConfig;\n\n /// @notice returns `owner_` of NFT with `id_`\n function ownerOf(uint256 id_) public view virtual returns (address owner_) {\n if ((owner_ = address(uint160(_tokenConfig[id_]))) == address(0))\n revert FluidVaultError(ErrorTypes.ERC721__InvalidParams);\n }\n\n /// @notice returns total count of NFTs owned by `owner_`\n function balanceOf(address owner_) public view virtual returns (uint256) {\n if (owner_ == address(0)) revert FluidVaultError(ErrorTypes.ERC721__InvalidParams);\n\n return _ownerConfig[owner_][0] & type(uint32).max;\n }\n\n /*//////////////////////////////////////////////////////////////\n ERC721Enumerable STORAGE\n //////////////////////////////////////////////////////////////*/\n\n /// @notice total amount of tokens stored by the contract.\n uint256 public totalSupply;\n\n /*//////////////////////////////////////////////////////////////\n ERC721 APPROVAL STORAGE\n //////////////////////////////////////////////////////////////*/\n\n /// @notice trackes if a NFT id is approved for a certain address.\n mapping(uint256 => address) public getApproved;\n\n /// @notice trackes if all the NFTs of an owner are approved for a certain other address.\n mapping(address => mapping(address => bool)) public isApprovedForAll;\n\n /*//////////////////////////////////////////////////////////////\n CONSTRUCTOR\n //////////////////////////////////////////////////////////////*/\n\n constructor(string memory _name, string memory _symbol) {\n name = _name;\n symbol = _symbol;\n }\n\n /*//////////////////////////////////////////////////////////////\n ERC721 LOGIC\n //////////////////////////////////////////////////////////////*/\n\n /// @notice approves an NFT with `id_` to be spent (transferred) by `spender_`\n function approve(address spender_, uint256 id_) public virtual {\n address owner_ = address(uint160(_tokenConfig[id_]));\n if (!(msg.sender == owner_ || isApprovedForAll[owner_][msg.sender]))\n revert FluidVaultError(ErrorTypes.ERC721__Unauthorized);\n\n getApproved[id_] = spender_;\n\n emit Approval(owner_, spender_, id_);\n }\n\n /// @notice approves all NFTs owned by msg.sender to be spent (transferred) by `operator_`\n function setApprovalForAll(address operator_, bool approved_) public virtual {\n isApprovedForAll[msg.sender][operator_] = approved_;\n\n emit ApprovalForAll(msg.sender, operator_, approved_);\n }\n\n /// @notice transfers an NFT with `id_` `from_` address `to_` address without safe check\n function transferFrom(address from_, address to_, uint256 id_) public virtual {\n uint256 tokenConfig_ = _tokenConfig[id_];\n if (from_ != address(uint160(tokenConfig_))) revert FluidVaultError(ErrorTypes.ERC721__InvalidParams);\n\n if (!(msg.sender == from_ || isApprovedForAll[from_][msg.sender] || msg.sender == getApproved[id_]))\n revert FluidVaultError(ErrorTypes.ERC721__Unauthorized);\n\n // call _transfer with vaultId extracted from tokenConfig_\n _transfer(from_, to_, id_, (tokenConfig_ >> 192) & type(uint32).max);\n\n delete getApproved[id_];\n\n emit Transfer(from_, to_, id_);\n }\n\n /// @notice transfers an NFT with `id_` `from_` address `to_` address\n function safeTransferFrom(address from_, address to_, uint256 id_) public virtual {\n transferFrom(from_, to_, id_);\n\n if (\n !(to_.code.length == 0 ||\n ERC721TokenReceiver(to_).onERC721Received(msg.sender, from_, id_, \"\") ==\n ERC721TokenReceiver.onERC721Received.selector)\n ) revert FluidVaultError(ErrorTypes.ERC721__UnsafeRecipient);\n }\n\n /// @notice transfers an NFT with `id_` `from_` address `to_` address, passing `data_` to `onERC721Received` callback\n function safeTransferFrom(address from_, address to_, uint256 id_, bytes calldata data_) public virtual {\n transferFrom(from_, to_, id_);\n\n if (\n !((to_.code.length == 0) ||\n ERC721TokenReceiver(to_).onERC721Received(msg.sender, from_, id_, data_) ==\n ERC721TokenReceiver.onERC721Received.selector)\n ) revert FluidVaultError(ErrorTypes.ERC721__UnsafeRecipient);\n }\n\n /*//////////////////////////////////////////////////////////////\n ERC721Enumerable LOGIC\n //////////////////////////////////////////////////////////////*/\n\n /// @notice Returns a token ID at a given `index_` of all the tokens stored by the contract.\n /// Use along with {totalSupply} to enumerate all tokens.\n function tokenByIndex(uint256 index_) external view returns (uint256) {\n if (index_ >= totalSupply) {\n revert FluidVaultError(ErrorTypes.ERC721__OutOfBoundsIndex);\n }\n return index_ + 1;\n }\n\n /// @notice Returns a token ID owned by `owner_` at a given `index_` of its token list.\n /// Use along with {balanceOf} to enumerate all of `owner_`'s tokens.\n function tokenOfOwnerByIndex(address owner_, uint256 index_) external view returns (uint256) {\n if (index_ >= balanceOf(owner_)) {\n revert FluidVaultError(ErrorTypes.ERC721__OutOfBoundsIndex);\n }\n\n index_ = index_ + 1;\n return (_ownerConfig[owner_][index_ / 8] >> ((index_ % 8) * 32)) & type(uint32).max;\n }\n\n /*//////////////////////////////////////////////////////////////\n ERC165 LOGIC\n //////////////////////////////////////////////////////////////*/\n\n function supportsInterface(bytes4 interfaceId_) public view virtual returns (bool) {\n return\n interfaceId_ == 0x01ffc9a7 || // ERC165 Interface ID for ERC165\n interfaceId_ == 0x80ac58cd || // ERC165 Interface ID for ERC721\n interfaceId_ == 0x5b5e139f || // ERC165 Interface ID for ERC721Metadata\n interfaceId_ == 0x780e9d63; // ERC165 Interface ID for ERC721Enumberable\n }\n\n /*//////////////////////////////////////////////////////////////\n INTERNAL TRANSFER LOGIC\n //////////////////////////////////////////////////////////////*/\n\n function _transfer(address from_, address to_, uint256 id_, uint256 vaultId_) internal {\n if (to_ == address(0)) {\n revert FluidVaultError(ErrorTypes.ERC721__InvalidOperation);\n } else if (from_ == address(0)) {\n _add(to_, id_, vaultId_);\n } else if (to_ != from_) {\n _remove(from_, id_);\n _add(to_, id_, vaultId_);\n }\n }\n\n function _add(address user_, uint256 id_, uint256 vaultId_) private {\n uint256 ownerConfig_ = _ownerConfig[user_][0];\n unchecked {\n // index starts from `1`\n uint256 balanceOf_ = (ownerConfig_ & type(uint32).max) + 1;\n\n _tokenConfig[id_] = (uint160(user_) | (balanceOf_ << 160) | (vaultId_ << 192));\n\n _ownerConfig[user_][0] = (ownerConfig_ & ~uint256(type(uint32).max)) | (balanceOf_);\n\n uint256 wordIndex_ = (balanceOf_ / 8);\n _ownerConfig[user_][wordIndex_] = _ownerConfig[user_][wordIndex_] | (id_ << ((balanceOf_ % 8) * 32));\n }\n }\n\n function _remove(address user_, uint256 id_) private {\n uint256 temp_ = _tokenConfig[id_];\n\n // fetching `id_` details and deleting it.\n uint256 tokenIndex_ = (temp_ >> 160) & type(uint32).max;\n _tokenConfig[id_] = 0;\n\n // fetching & updating balance\n temp_ = _ownerConfig[user_][0];\n uint256 lastTokenIndex_ = (temp_ & type(uint32).max); // (lastTokenIndex_ = balanceOf)\n _ownerConfig[user_][0] = (temp_ & ~uint256(type(uint32).max)) | (lastTokenIndex_ - 1);\n\n {\n unchecked {\n uint256 lastTokenWordIndex_ = (lastTokenIndex_ / 8);\n uint256 lastTokenBitShift_ = (lastTokenIndex_ % 8) * 32;\n temp_ = _ownerConfig[user_][lastTokenWordIndex_];\n\n // replace `id_` tokenId with `last` tokenId.\n if (lastTokenIndex_ != tokenIndex_) {\n uint256 wordIndex_ = (tokenIndex_ / 8);\n uint256 bitShift_ = (tokenIndex_ % 8) * 32;\n\n // temp_ here is _ownerConfig[user_][lastTokenWordIndex_];\n uint256 lastTokenId_ = uint256((temp_ >> lastTokenBitShift_) & type(uint32).max);\n if (wordIndex_ == lastTokenWordIndex_) {\n // this case, when lastToken and currentToken are in same slot.\n // updating temp_ as we will remove the lastToken from this slot itself\n temp_ = (temp_ & ~(uint256(type(uint32).max) << bitShift_)) | (lastTokenId_ << bitShift_);\n } else {\n _ownerConfig[user_][wordIndex_] =\n (_ownerConfig[user_][wordIndex_] & ~(uint256(type(uint32).max) << bitShift_)) |\n (lastTokenId_ << bitShift_);\n }\n _tokenConfig[lastTokenId_] =\n (_tokenConfig[lastTokenId_] & ~(uint256(type(uint32).max) << 160)) |\n (tokenIndex_ << 160);\n }\n\n // temp_ here is _ownerConfig[user_][lastTokenWordIndex_];\n _ownerConfig[user_][lastTokenWordIndex_] = temp_ & ~(uint256(type(uint32).max) << lastTokenBitShift_);\n }\n }\n }\n\n /*//////////////////////////////////////////////////////////////\n INTERNAL MINT LOGIC\n //////////////////////////////////////////////////////////////*/\n\n function _mint(address to_, uint256 vaultId_) internal virtual returns (uint256 id_) {\n\n unchecked {\n ++totalSupply;\n }\n\n id_ = totalSupply;\n if (id_ >= type(uint32).max || _tokenConfig[id_] != 0) revert FluidVaultError(ErrorTypes.ERC721__InvalidParams);\n\n _transfer(address(0), to_, id_, vaultId_);\n\n emit Transfer(address(0), to_, id_);\n }\n}\n\nabstract contract ERC721TokenReceiver {\n function onERC721Received(address, address, uint256, bytes calldata) external virtual returns (bytes4) {\n return ERC721TokenReceiver.onERC721Received.selector;\n }\n}"
|
||
},
|
||
"contracts/protocols/vault/factory/main.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { Owned } from \"solmate/src/auth/Owned.sol\";\nimport { ERC721 } from \"./ERC721/ERC721.sol\";\nimport { ErrorTypes } from \"../errorTypes.sol\";\n\nimport { StorageRead } from \"../../../libraries/storageRead.sol\";\n\nabstract contract VaultFactoryVariables is Owned, ERC721, StorageRead {\n /// @dev ERC721 tokens name\n string internal constant ERC721_NAME = \"Fluid Vault\";\n /// @dev ERC721 tokens symbol\n string internal constant ERC721_SYMBOL = \"fVLT\";\n\n /*//////////////////////////////////////////////////////////////\n STORAGE VARIABLES\n //////////////////////////////////////////////////////////////*/\n\n // ------------ storage variables from inherited contracts (Owned and ERC721) come before vars here --------\n\n // ----------------------- slot 0 ---------------------------\n // address public owner; // from Owned\n\n // 12 bytes empty\n\n // ----------------------- slot 1 ---------------------------\n // string public name;\n\n // ----------------------- slot 2 ---------------------------\n // string public symbol;\n\n // ----------------------- slot 3 ---------------------------\n // mapping(uint256 => uint256) internal _tokenConfig;\n\n // ----------------------- slot 4 ---------------------------\n // mapping(address => mapping(uint256 => uint256)) internal _ownerConfig;\n\n // ----------------------- slot 5 ---------------------------\n // uint256 public totalSupply;\n\n // ----------------------- slot 6 ---------------------------\n // mapping(uint256 => address) public getApproved;\n\n // ----------------------- slot 7 ---------------------------\n // mapping(address => mapping(address => bool)) public isApprovedForAll;\n\n // ----------------------- slot 8 ---------------------------\n /// @dev deployer can deploy new Vault contract\n /// owner can add/remove deployer.\n /// Owner is deployer by default.\n mapping(address => bool) internal _deployers;\n\n // ----------------------- slot 9 ---------------------------\n /// @dev global auths can update any vault config.\n /// owner can add/remove global auths.\n /// Owner is global auth by default.\n mapping(address => bool) internal _globalAuths;\n\n // ----------------------- slot 10 ---------------------------\n /// @dev vault auths can update specific vault config.\n /// owner can add/remove vault auths.\n /// Owner is vault auth by default.\n /// vault => auth => add/remove\n mapping(address => mapping(address => bool)) internal _vaultAuths;\n\n // ----------------------- slot 11 ---------------------------\n /// @dev total no of vaults deployed by the factory\n /// only addresses that have deployer role or owner can deploy new vault.\n uint256 internal _totalVaults;\n\n // ----------------------- slot 12 ---------------------------\n /// @dev vault deployment logics for deploying vault\n /// These logic contracts hold the deployment logics of specific vaults and are called via .delegatecall inside deployVault().\n /// only addresses that have owner can add/remove new vault deployment logic.\n mapping(address => bool) internal _vaultDeploymentLogics;\n\n /*//////////////////////////////////////////////////////////////\n CONSTRUCTOR\n //////////////////////////////////////////////////////////////*/\n constructor(address owner_) Owned(owner_) ERC721(ERC721_NAME, ERC721_SYMBOL) {}\n}\n\nabstract contract VaultFactoryEvents {\n /// @dev Emitted when a new vault is deployed.\n /// @param vault The address of the newly deployed vault.\n /// @param vaultId The id of the newly deployed vault.\n event VaultDeployed(address indexed vault, uint256 indexed vaultId);\n\n /// @dev Emitted when a new token/position is minted by a vault.\n /// @param vault The address of the vault that minted the token.\n /// @param user The address of the user who received the minted token.\n /// @param tokenId The ID of the newly minted token.\n event NewPositionMinted(address indexed vault, address indexed user, uint256 indexed tokenId);\n\n /// @dev Emitted when the deployer is modified by owner.\n /// @param deployer Address whose deployer status is updated.\n /// @param allowed Indicates whether the address is authorized as a deployer or not.\n event LogSetDeployer(address indexed deployer, bool indexed allowed);\n\n /// @dev Emitted when the globalAuth is modified by owner.\n /// @param globalAuth Address whose globalAuth status is updated.\n /// @param allowed Indicates whether the address is authorized as a deployer or not.\n event LogSetGlobalAuth(address indexed globalAuth, bool indexed allowed);\n\n /// @dev Emitted when the vaultAuth is modified by owner.\n /// @param vaultAuth Address whose vaultAuth status is updated.\n /// @param allowed Indicates whether the address is authorized as a deployer or not.\n /// @param vault Address of the specific vault related to the authorization change.\n event LogSetVaultAuth(address indexed vaultAuth, bool indexed allowed, address indexed vault);\n\n /// @dev Emitted when the vault deployment logic is modified by owner.\n /// @param vaultDeploymentLogic The address of the vault deployment logic contract.\n /// @param allowed Indicates whether the address is authorized as a deployer or not.\n event LogSetVaultDeploymentLogic(address indexed vaultDeploymentLogic, bool indexed allowed);\n}\n\nabstract contract VaultFactoryCore is VaultFactoryVariables, VaultFactoryEvents {\n constructor(address owner_) validAddress(owner_) VaultFactoryVariables(owner_) {}\n\n /// @dev validates that an address is not the zero address\n modifier validAddress(address value_) {\n if (value_ == address(0)) {\n revert FluidVaultError(ErrorTypes.VaultFactory__InvalidParams);\n }\n _;\n }\n}\n\n/// @dev Implements Vault Factory auth-only callable methods. Owner / auths can set various config values and\n/// can define the allow-listed deployers.\nabstract contract VaultFactoryAuth is VaultFactoryCore {\n /// @notice Sets an address (`deployer_`) as allowed deployer or not.\n /// This function can only be called by the owner.\n /// @param deployer_ The address to be set as deployer.\n /// @param allowed_ A boolean indicating whether the specified address is allowed to deploy vaults.\n function setDeployer(address deployer_, bool allowed_) external onlyOwner validAddress(deployer_) {\n _deployers[deployer_] = allowed_;\n\n emit LogSetDeployer(deployer_, allowed_);\n }\n\n /// @notice Sets an address (`globalAuth_`) as a global authorization or not.\n /// This function can only be called by the owner.\n /// @param globalAuth_ The address to be set as global authorization.\n /// @param allowed_ A boolean indicating whether the specified address is allowed to update any vault config.\n function setGlobalAuth(address globalAuth_, bool allowed_) external onlyOwner validAddress(globalAuth_) {\n _globalAuths[globalAuth_] = allowed_;\n\n emit LogSetGlobalAuth(globalAuth_, allowed_);\n }\n\n /// @notice Sets an address (`vaultAuth_`) as allowed vault authorization or not for a specific vault (`vault_`).\n /// This function can only be called by the owner.\n /// @param vault_ The address of the vault for which the authorization is being set.\n /// @param vaultAuth_ The address to be set as vault authorization.\n /// @param allowed_ A boolean indicating whether the specified address is allowed to update the specific vault config.\n function setVaultAuth(\n address vault_,\n address vaultAuth_,\n bool allowed_\n ) external onlyOwner validAddress(vaultAuth_) {\n _vaultAuths[vault_][vaultAuth_] = allowed_;\n\n emit LogSetVaultAuth(vaultAuth_, allowed_, vault_);\n }\n\n /// @notice Sets an address as allowed vault deployment logic (`deploymentLogic_`) contract or not.\n /// This function can only be called by the owner.\n /// @param deploymentLogic_ The address of the vault deployment logic contract to be set.\n /// @param allowed_ A boolean indicating whether the specified address is allowed to deploy new type of vault.\n function setVaultDeploymentLogic(\n address deploymentLogic_,\n bool allowed_\n ) public onlyOwner validAddress(deploymentLogic_) {\n _vaultDeploymentLogics[deploymentLogic_] = allowed_;\n\n emit LogSetVaultDeploymentLogic(deploymentLogic_, allowed_);\n }\n\n /// @notice Spell allows owner aka governance to do any arbitrary call on factory\n /// @param target_ Address to which the call needs to be delegated\n /// @param data_ Data to execute at the delegated address\n function spell(address target_, bytes memory data_) external onlyOwner returns (bytes memory response_) {\n assembly {\n let succeeded := delegatecall(gas(), target_, add(data_, 0x20), mload(data_), 0, 0)\n let size := returndatasize()\n\n response_ := mload(0x40)\n mstore(0x40, add(response_, and(add(add(size, 0x20), 0x1f), not(0x1f))))\n mstore(response_, size)\n returndatacopy(add(response_, 0x20), 0, size)\n\n switch iszero(succeeded)\n case 1 {\n // throw if delegatecall failed\n returndatacopy(0x00, 0x00, size)\n revert(0x00, size)\n }\n }\n }\n\n /// @notice Checks if the provided address (`deployer_`) is authorized as a deployer.\n /// @param deployer_ The address to be checked for deployer authorization.\n /// @return Returns `true` if the address is a deployer, otherwise `false`.\n function isDeployer(address deployer_) public view returns (bool) {\n return _deployers[deployer_] || owner == deployer_;\n }\n\n /// @notice Checks if the provided address (`globalAuth_`) has global vault authorization privileges.\n /// @param globalAuth_ The address to be checked for global authorization privileges.\n /// @return Returns `true` if the given address has global authorization privileges, otherwise `false`.\n function isGlobalAuth(address globalAuth_) public view returns (bool) {\n return _globalAuths[globalAuth_] || owner == globalAuth_;\n }\n\n /// @notice Checks if the provided address (`vaultAuth_`) has vault authorization privileges for the specified vault (`vault_`).\n /// @param vault_ The address of the vault to check.\n /// @param vaultAuth_ The address to be checked for vault authorization privileges.\n /// @return Returns `true` if the given address has vault authorization privileges for the specified vault, otherwise `false`.\n function isVaultAuth(address vault_, address vaultAuth_) public view returns (bool) {\n return _vaultAuths[vault_][vaultAuth_] || owner == vaultAuth_;\n }\n\n /// @notice Checks if the provided (`vaultDeploymentLogic_`) address has authorization for vault deployment.\n /// @param vaultDeploymentLogic_ The address of the vault deploy logic to check for authorization privileges.\n /// @return Returns `true` if the given address has authorization privileges for vault deployment, otherwise `false`.\n function isVaultDeploymentLogic(address vaultDeploymentLogic_) public view returns (bool) {\n return _vaultDeploymentLogics[vaultDeploymentLogic_];\n }\n}\n\n/// @dev implements VaultFactory deploy vault related methods.\nabstract contract VaultFactoryDeployment is VaultFactoryCore, VaultFactoryAuth {\n /// @dev Deploys a contract using the CREATE opcode with the provided bytecode (`bytecode_`).\n /// This is an internal function, meant to be used within the contract to facilitate the deployment of other contracts.\n /// @param bytecode_ The bytecode of the contract to be deployed.\n /// @return address_ Returns the address of the deployed contract.\n function _deploy(bytes memory bytecode_) internal returns (address address_) {\n if (bytecode_.length == 0) {\n revert FluidVaultError(ErrorTypes.VaultFactory__InvalidOperation);\n }\n /// @solidity memory-safe-assembly\n assembly {\n address_ := create(0, add(bytecode_, 0x20), mload(bytecode_))\n }\n if (address_ == address(0)) {\n revert FluidVaultError(ErrorTypes.VaultFactory__InvalidOperation);\n }\n }\n\n /// @notice Deploys a new vault using the specified deployment logic `vaultDeploymentLogic_` and data `vaultDeploymentData_`.\n /// Only accounts with deployer access or the owner can deploy a new vault.\n /// @param vaultDeploymentLogic_ The address of the vault deployment logic contract.\n /// @param vaultDeploymentData_ The data to be used for vault deployment.\n /// @return vault_ Returns the address of the newly deployed vault.\n function deployVault(\n address vaultDeploymentLogic_,\n bytes calldata vaultDeploymentData_\n ) external returns (address vault_) {\n // Revert if msg.sender doesn't have deployer access or is an owner.\n if (!isDeployer(msg.sender)) revert FluidVaultError(ErrorTypes.VaultFactory__Unauthorized);\n // Revert if vaultDeploymentLogic_ is not whitelisted.\n if (!isVaultDeploymentLogic(vaultDeploymentLogic_))\n revert FluidVaultError(ErrorTypes.VaultFactory__Unauthorized);\n\n // Vault ID for the new vault and also acts as `nonce` for CREATE\n uint256 vaultId_ = ++_totalVaults;\n\n // compute vault address for vault id.\n vault_ = getVaultAddress(vaultId_);\n\n // deploy the vault using vault deployment logic by making .delegatecall\n (bool success_, bytes memory data_) = vaultDeploymentLogic_.delegatecall(vaultDeploymentData_);\n\n if (!(success_ && vault_ == _deploy(abi.decode(data_, (bytes))) && isVault(vault_))) {\n revert FluidVaultError(ErrorTypes.VaultFactory__InvalidVaultAddress);\n }\n\n emit VaultDeployed(vault_, vaultId_);\n }\n\n /// @notice Computes the address of a vault based on its given ID (`vaultId_`).\n /// @param vaultId_ The ID of the vault.\n /// @return vault_ Returns the computed address of the vault.\n function getVaultAddress(uint256 vaultId_) public view returns (address vault_) {\n // @dev based on https://ethereum.stackexchange.com/a/61413\n\n // nonce of smart contract always starts with 1. so, with nonce 0 there won't be any deployment\n // hence, nonce of vault deployment starts with 1.\n bytes memory data;\n if (vaultId_ == 0x00) {\n return address(0);\n } else if (vaultId_ <= 0x7f) {\n data = abi.encodePacked(bytes1(0xd6), bytes1(0x94), address(this), uint8(vaultId_));\n } else if (vaultId_ <= 0xff) {\n data = abi.encodePacked(bytes1(0xd7), bytes1(0x94), address(this), bytes1(0x81), uint8(vaultId_));\n } else if (vaultId_ <= 0xffff) {\n data = abi.encodePacked(bytes1(0xd8), bytes1(0x94), address(this), bytes1(0x82), uint16(vaultId_));\n } else if (vaultId_ <= 0xffffff) {\n data = abi.encodePacked(bytes1(0xd9), bytes1(0x94), address(this), bytes1(0x83), uint24(vaultId_));\n } else {\n data = abi.encodePacked(bytes1(0xda), bytes1(0x94), address(this), bytes1(0x84), uint32(vaultId_));\n }\n\n return address(uint160(uint256(keccak256(data))));\n }\n\n /// @notice Checks if a given address (`vault_`) corresponds to a valid vault.\n /// @param vault_ The vault address to check.\n /// @return Returns `true` if the given address corresponds to a valid vault, otherwise `false`.\n function isVault(address vault_) public view returns (bool) {\n if (vault_.code.length == 0) {\n return false;\n } else {\n // VAULT_ID() function signature is 0x540acabc\n (bool success_, bytes memory data_) = vault_.staticcall(hex\"540acabc\");\n return success_ && vault_ == getVaultAddress(abi.decode(data_, (uint256)));\n }\n }\n\n /// @notice Returns the total number of vaults deployed by the factory.\n /// @return Returns the total number of vaults.\n function totalVaults() external view returns (uint256) {\n return _totalVaults;\n }\n}\n\nabstract contract VaultFactoryERC721 is VaultFactoryCore, VaultFactoryDeployment {\n /// @notice Mints a new ERC721 token for a specific vault (`vaultId_`) to a specified user (`user_`).\n /// Only the corresponding vault is authorized to mint a token.\n /// @param vaultId_ The ID of the vault that's minting the token.\n /// @param user_ The address receiving the minted token.\n /// @return tokenId_ The ID of the newly minted token.\n function mint(uint256 vaultId_, address user_) external returns (uint256 tokenId_) {\n if (msg.sender != getVaultAddress(vaultId_)) revert FluidVaultError(ErrorTypes.VaultFactory__InvalidVault);\n\n // Using _mint() instead of _safeMint() to allow any msg.sender to receive ERC721 without onERC721Received holder.\n tokenId_ = _mint(user_, vaultId_);\n\n emit NewPositionMinted(msg.sender, user_, tokenId_);\n }\n\n /// @notice Returns the URI of the specified token ID (`id_`).\n /// In this implementation, an empty string is returned as no specific URI is defined.\n /// @param id_ The ID of the token to query.\n /// @return An empty string since no specific URI is defined in this implementation.\n function tokenURI(uint256 id_) public view virtual override returns (string memory) {\n return \"\";\n }\n}\n\n/// @title Fluid VaultFactory\n/// @notice creates Fluid vault protocol vaults, which are interacting with Fluid Liquidity to deposit / borrow funds.\n/// Vaults are created at a deterministic address, given an incrementing `vaultId` (see `getVaultAddress()`).\n/// Vaults can only be deployed by allow-listed deployer addresses.\n/// This factory also implements ERC721-Enumerable, the NFTs are used to represent created user positions. Only vaults\n/// can mint new NFTs.\n/// @dev Note the deployed vaults start out with no config at Liquidity contract.\n/// This must be done by Liquidity auths in a separate step, otherwise no deposits will be possible.\n/// This contract is not upgradeable. It supports adding new vault deployment logic contracts for new, future vaults.\ncontract FluidVaultFactory is VaultFactoryCore, VaultFactoryAuth, VaultFactoryDeployment, VaultFactoryERC721 {\n constructor(address owner_) VaultFactoryCore(owner_) {}\n}"
|
||
},
|
||
"contracts/protocols/vault/interfaces/iVaultFactory.sol": {
|
||
"content": "//SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\nimport { IERC721Enumerable } from \"@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol\";\n\ninterface IFluidVaultFactory is IERC721Enumerable {\n /// @notice Minting an NFT Vault for the user\n function mint(uint256 vaultId_, address user_) external returns (uint256 tokenId_);\n\n /// @notice returns owner of Vault which is also an NFT\n function ownerOf(uint256 tokenId) external view returns (address owner);\n\n /// @notice Global auth is auth for all vaults\n function isGlobalAuth(address auth_) external view returns (bool);\n\n /// @notice Vault auth is auth for a specific vault\n function isVaultAuth(address vault_, address auth_) external view returns (bool);\n\n /// @notice Total vaults deployed.\n function totalVaults() external view returns (uint256);\n\n /// @notice Compute vaultAddress\n function getVaultAddress(uint256 vaultId) external view returns (address);\n\n /// @notice read uint256 `result_` for a storage `slot_` key\n function readFromStorage(bytes32 slot_) external view returns (uint256 result_);\n}\n"
|
||
},
|
||
"contracts/protocols/vault/interfaces/iVaultT1.sol": {
|
||
"content": "//SPDX-License-Identifier: MIT\npragma solidity 0.8.21;\n\ninterface IFluidVaultT1 {\n /// @notice returns the vault id\n function VAULT_ID() external view returns (uint256);\n\n /// @notice reads uint256 data `result_` from storage at a bytes32 storage `slot_` key.\n function readFromStorage(bytes32 slot_) external view returns (uint256 result_);\n\n struct ConstantViews {\n address liquidity;\n address factory;\n address adminImplementation;\n address secondaryImplementation;\n address supplyToken;\n address borrowToken;\n uint8 supplyDecimals;\n uint8 borrowDecimals;\n uint vaultId;\n bytes32 liquiditySupplyExchangePriceSlot;\n bytes32 liquidityBorrowExchangePriceSlot;\n bytes32 liquidityUserSupplySlot;\n bytes32 liquidityUserBorrowSlot;\n }\n\n /// @notice returns all Vault constants\n function constantsView() external view returns (ConstantViews memory constantsView_);\n\n /// @notice fetches the latest user position after a liquidation\n function fetchLatestPosition(\n int256 positionTick_,\n uint256 positionTickId_,\n uint256 positionRawDebt_,\n uint256 tickData_\n )\n external\n view\n returns (\n int256, // tick\n uint256, // raw debt\n uint256, // raw collateral\n uint256, // branchID_\n uint256 // branchData_\n );\n\n /// @notice calculates the updated vault exchange prices\n function updateExchangePrices(\n uint256 vaultVariables2_\n )\n external\n view\n returns (\n uint256 liqSupplyExPrice_,\n uint256 liqBorrowExPrice_,\n uint256 vaultSupplyExPrice_,\n uint256 vaultBorrowExPrice_\n );\n\n /// @notice calculates the updated vault exchange prices and writes them to storage\n function updateExchangePricesOnStorage()\n external\n returns (\n uint256 liqSupplyExPrice_,\n uint256 liqBorrowExPrice_,\n uint256 vaultSupplyExPrice_,\n uint256 vaultBorrowExPrice_\n );\n\n /// @notice returns the liquidity contract address\n function LIQUIDITY() external view returns (address);\n\n function operate(\n uint256 nftId_, // if 0 then new position\n int256 newCol_, // if negative then withdraw\n int256 newDebt_, // if negative then payback\n address to_ // address at which the borrow & withdraw amount should go to. If address(0) then it'll go to msg.sender\n )\n external\n payable\n returns (\n uint256, // nftId_\n int256, // final supply amount. if - then withdraw\n int256 // final borrow amount. if - then payback\n );\n \n function liquidate(\n uint256 debtAmt_,\n uint256 colPerUnitDebt_, // min collateral needed per unit of debt in 1e18\n address to_,\n bool absorb_\n ) external payable returns (uint actualDebtAmt_, uint actualColAmt_);\n\n function absorb() external;\n\n function rebalance() external payable returns (int supplyAmt_, int borrowAmt_);\n\n error FluidLiquidateResult(uint256 colLiquidated, uint256 debtLiquidated);\n}\n"
|
||
},
|
||
"contracts/protocols/vault/rewards/events.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nabstract contract Events {\n /// @notice Emitted when magnifier is updated\n event LogUpdateMagnifier(address indexed vault, uint256 newMagnifier);\n\n /// @notice Emitted when rewards are started\n event LogRewardsStarted(uint256 startTime, uint256 endTime);\n}\n"
|
||
},
|
||
"contracts/protocols/vault/rewards/main.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { FluidVaultT1Admin } from \"../vaultT1/adminModule/main.sol\";\nimport { IFluidVaultT1 } from \"../interfaces/iVaultT1.sol\";\nimport { IFluidReserveContract } from \"../../../reserve/interfaces/iReserveContract.sol\";\nimport { LiquiditySlotsLink } from \"../../../libraries/liquiditySlotsLink.sol\";\nimport { Events } from \"./events.sol\";\nimport { Variables } from \"./variables.sol\";\nimport { ErrorTypes } from \"../errorTypes.sol\";\nimport { Error } from \"../error.sol\";\nimport { IFluidLiquidity } from \"../../../liquidity/interfaces/iLiquidity.sol\";\n\n/// @title VaultRewards\n/// @notice This contract is designed to adjust the supply rate magnifier for a vault based on the current collateral supply & supply rate.\n/// The adjustment aims to dynamically scale the rewards given to lenders as the TVL in the vault changes.\n///\n/// The magnifier is adjusted based on a regular most used reward type where rewardRate = totalRewardsAnnually / totalSupply.\n/// Reward rate is applied by adjusting the supply magnifier on vault.\n/// Adjustments are made via the rebalance function, which is restricted to be called by designated rebalancers only.\ncontract FluidVaultRewards is Variables, Events, Error {\n /// @dev Validates that an address is not the zero address\n modifier validAddress(address value_) {\n if (value_ == address(0)) {\n revert FluidVaultError(ErrorTypes.VaultRewards__AddressZero);\n }\n _;\n }\n\n /// @dev Validates that an address is a rebalancer (taken from reserve contract)\n modifier onlyRebalancer() {\n if (!RESERVE_CONTRACT.isRebalancer(msg.sender)) {\n revert FluidVaultError(ErrorTypes.VaultRewards__Unauthorized);\n }\n _;\n }\n\n /// @notice Constructs the FluidVaultRewards contract.\n /// @param reserveContract_ The address of the reserve contract where rebalancers are defined.\n /// @param vault_ The vault to which this contract will apply new magnifier parameter.\n /// @param liquidity_ Fluid liquidity address\n /// @param rewardsAmt_ Amounts of rewards to distribute\n /// @param duration_ rewards duration\n /// @param initiator_ address that can start rewards with `start()`\n /// @param collateralToken_ vault collateral token address\n constructor(\n IFluidReserveContract reserveContract_,\n IFluidVaultT1 vault_,\n IFluidLiquidity liquidity_,\n uint256 rewardsAmt_,\n uint256 duration_,\n address initiator_,\n address collateralToken_\n ) validAddress(address(reserveContract_)) validAddress(address(liquidity_)) validAddress(address(vault_)) validAddress(initiator_) validAddress(address(collateralToken_)){\n if (rewardsAmt_ == 0 || duration_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultRewards__InvalidParams);\n }\n RESERVE_CONTRACT = reserveContract_;\n VAULT = vault_;\n REWARDS_AMOUNT = rewardsAmt_;\n REWARDS_AMOUNT_PER_YEAR = rewardsAmt_ * SECONDS_PER_YEAR / duration_;\n DURATION = duration_;\n INITIATOR = initiator_;\n LIQUIDITY = liquidity_;\n VAULT_COLLATERAL_TOKEN = collateralToken_;\n\n LIQUIDITY_TOTAL_AMOUNTS_COLLATERAL_TOKEN_SLOT = LiquiditySlotsLink.calculateMappingStorageSlot(\n LiquiditySlotsLink.LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT,\n collateralToken_\n );\n LIQUIDITY_EXCHANGE_PRICE_COLLATERAL_TOKEN_SLOT = LiquiditySlotsLink.calculateMappingStorageSlot(\n LiquiditySlotsLink.LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT,\n collateralToken_\n );\n }\n\n /// @notice Rebalances the supply rate magnifier based on the current collateral supply.\n /// Can only be called by an authorized rebalancer.\n function rebalance() external onlyRebalancer {\n (uint256 newMagnifier_, bool ended_) = calculateMagnifier();\n if (ended_) {\n ended = true;\n }\n if (newMagnifier_ == currentMagnifier()) {\n revert FluidVaultError(ErrorTypes.VaultRewards__NewMagnifierSameAsOldMagnifier);\n }\n\n FluidVaultT1Admin(address(VAULT)).updateSupplyRateMagnifier(newMagnifier_);\n emit LogUpdateMagnifier(address(VAULT), newMagnifier_);\n }\n\n /// @notice Calculates the new supply rate magnifier based on the current collateral supply (`vaultTVL()`).\n /// @return magnifier_ The calculated magnifier value.\n function calculateMagnifier() public view returns (uint256 magnifier_, bool ended_) {\n uint256 currentTVL_ = vaultTVL();\n uint256 startTime_ = uint256(startTime);\n uint256 endTime_ = uint256(endTime);\n\n if (startTime_ == 0 || endTime_ == 0 || ended) {\n revert FluidVaultError(ErrorTypes.VaultRewards__RewardsNotStartedOrEnded);\n }\n\n if (block.timestamp > endTime_) {\n return (FOUR_DECIMALS, true);\n }\n\n uint supplyRate_ = getSupplyRate();\n uint rewardsRate_ = (REWARDS_AMOUNT_PER_YEAR * FOUR_DECIMALS) / currentTVL_;\n\n magnifier_ = FOUR_DECIMALS + (supplyRate_ == 0 ? rewardsRate_ : ((rewardsRate_ * FOUR_DECIMALS) / supplyRate_));\n if (magnifier_ > X16) {\n magnifier_ = X16;\n }\n }\n\n /// @notice returns the currently configured supply magnifier at the `VAULT`.\n function currentMagnifier() public view returns (uint256) {\n // read supply rate magnifier from Vault `vaultVariables2` located in storage slot 1, first 16 bits\n return VAULT.readFromStorage(bytes32(uint256(1))) & X16;\n }\n\n /// @notice returns the current total value locked as collateral (TVL) in the `VAULT`.\n function vaultTVL() public view returns (uint256 tvl_) {\n // read total supply raw in vault from storage slot 0 `vaultVariables`, 64 bits 82-145\n tvl_ = (VAULT.readFromStorage(bytes32(0)) >> 82) & 0xFFFFFFFFFFFFFFFF;\n\n // Converting bignumber into normal number\n tvl_ = (tvl_ >> 8) << (tvl_ & 0xFF);\n\n // get updated supply exchange price, which takes slot 1 `vaultVariables2` as input param\n (, , uint256 vaultSupplyExPrice_, ) = VAULT.updateExchangePrices(VAULT.readFromStorage(bytes32(uint256(1))));\n\n // converting raw total supply into normal amount\n tvl_ = (tvl_ * vaultSupplyExPrice_) / 1e12;\n }\n\n function getSupplyRate() public view returns (uint supplyRate_) {\n uint256 exchangePriceAndConfig_ = LIQUIDITY.readFromStorage(LIQUIDITY_EXCHANGE_PRICE_COLLATERAL_TOKEN_SLOT);\n uint256 totalAmounts_ = LIQUIDITY.readFromStorage(LIQUIDITY_TOTAL_AMOUNTS_COLLATERAL_TOKEN_SLOT);\n\n uint borrowRate_ = exchangePriceAndConfig_ & X16;\n uint fee_ = (exchangePriceAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14;\n uint supplyExchangePrice_ = ((exchangePriceAndConfig_ >>\n LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) & X64);\n uint borrowExchangePrice_ = ((exchangePriceAndConfig_ >>\n LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) & X64);\n\n // Extract supply raw interest\n uint256 supplyWithInterest_ = totalAmounts_ & X64;\n supplyWithInterest_ =\n (supplyWithInterest_ >> DEFAULT_EXPONENT_SIZE) <<\n (supplyWithInterest_ & DEFAULT_EXPONENT_MASK);\n\n // Extract borrow raw interest\n uint256 borrowWithInterest_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) &\n X64;\n borrowWithInterest_ =\n (borrowWithInterest_ >> DEFAULT_EXPONENT_SIZE) <<\n (borrowWithInterest_ & DEFAULT_EXPONENT_MASK);\n\n if (supplyWithInterest_ > 0) {\n // use old exchange prices for supply rate to be at same level as borrow rate from storage.\n // Note the rate here can be a tiny bit with higher precision because we use borrowWithInterest_ / supplyWithInterest_\n // which has higher precision than the utilization used from storage in LiquidityCalcs\n supplyWithInterest_ = (supplyWithInterest_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION; // normalized from raw\n borrowWithInterest_ = (borrowWithInterest_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION; // normalized from raw\n\n supplyRate_ =\n (borrowRate_ * (FOUR_DECIMALS - fee_) * borrowWithInterest_) /\n (supplyWithInterest_ * FOUR_DECIMALS);\n }\n }\n\n function start() external {\n if (msg.sender != INITIATOR) {\n revert FluidVaultError(ErrorTypes.VaultRewards__NotTheInitiator);\n }\n if (startTime > 0 || endTime > 0) {\n revert FluidVaultError(ErrorTypes.VaultRewards__AlreadyStarted);\n }\n startTime = uint96(block.timestamp);\n endTime = uint96(block.timestamp + DURATION);\n\n emit LogRewardsStarted(startTime, endTime);\n }\n}\n"
|
||
},
|
||
"contracts/protocols/vault/rewards/variables.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IFluidReserveContract } from \"../../../reserve/interfaces/iReserveContract.sol\";\nimport { IFluidVaultT1 } from \"../interfaces/iVaultT1.sol\";\nimport { IFluidLiquidity } from \"../../../liquidity/interfaces/iLiquidity.sol\";\n\nabstract contract Constants {\n IFluidLiquidity public immutable LIQUIDITY;\n IFluidReserveContract public immutable RESERVE_CONTRACT;\n IFluidVaultT1 public immutable VAULT;\n uint256 public immutable REWARDS_AMOUNT;\n uint256 public immutable REWARDS_AMOUNT_PER_YEAR;\n uint256 public immutable DURATION;\n address public immutable INITIATOR;\n address public immutable VAULT_COLLATERAL_TOKEN;\n\n bytes32 internal immutable LIQUIDITY_TOTAL_AMOUNTS_COLLATERAL_TOKEN_SLOT;\n bytes32 internal immutable LIQUIDITY_EXCHANGE_PRICE_COLLATERAL_TOKEN_SLOT;\n uint256 internal constant FOUR_DECIMALS = 10000;\n uint256 internal constant SECONDS_PER_YEAR = 365 days;\n uint256 internal constant DEFAULT_EXPONENT_SIZE = 8;\n uint256 internal constant DEFAULT_EXPONENT_MASK = 0xff;\n uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12;\n uint256 internal constant X14 = 0x3fff;\n uint256 internal constant X16 = 0xffff;\n uint256 internal constant X64 = 0xffffffffffffffff;\n}\n\nabstract contract Variables is Constants {\n bool public ended; // when rewards are ended\n uint96 public startTime;\n uint96 public endTime;\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/adminModule/events.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\ncontract Events {\n /// @notice emitted when the supply rate magnifier config is updated\n event LogUpdateSupplyRateMagnifier(uint supplyRateMagnifier_);\n\n /// @notice emitted when the borrow rate magnifier config is updated\n event LogUpdateBorrowRateMagnifier(uint borrowRateMagnifier_);\n\n /// @notice emitted when the collateral factor config is updated\n event LogUpdateCollateralFactor(uint collateralFactor_);\n\n /// @notice emitted when the liquidation threshold config is updated\n event LogUpdateLiquidationThreshold(uint liquidationThreshold_);\n\n /// @notice emitted when the liquidation max limit config is updated\n event LogUpdateLiquidationMaxLimit(uint liquidationMaxLimit_);\n\n /// @notice emitted when the withdrawal gap config is updated\n event LogUpdateWithdrawGap(uint withdrawGap_);\n\n /// @notice emitted when the liquidation penalty config is updated\n event LogUpdateLiquidationPenalty(uint liquidationPenalty_);\n\n /// @notice emitted when the borrow fee config is updated\n event LogUpdateBorrowFee(uint borrowFee_);\n\n /// @notice emitted when the core setting configs are updated\n event LogUpdateCoreSettings(\n uint supplyRateMagnifier_,\n uint borrowRateMagnifier_,\n uint collateralFactor_,\n uint liquidationThreshold_,\n uint liquidationMaxLimit_,\n uint withdrawGap_,\n uint liquidationPenalty_,\n uint borrowFee_\n );\n\n /// @notice emitted when the oracle is updated\n event LogUpdateOracle(address indexed newOracle_);\n\n /// @notice emitted when the allowed rebalancer is updated\n event LogUpdateRebalancer(address indexed newRebalancer_);\n\n /// @notice emitted when funds are rescued\n event LogRescueFunds(address indexed token_);\n\n /// @notice emitted when dust debt is absorbed for `nftIds_`\n event LogAbsorbDustDebt(uint256[] nftIds_, uint256 absorbedDustDebt_);\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/adminModule/main.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IERC20 } from \"@openzeppelin/contracts/token/ERC20/IERC20.sol\";\nimport { SafeERC20 } from \"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol\";\nimport { Address } from \"@openzeppelin/contracts/utils/Address.sol\";\n\nimport { Variables } from \"../common/variables.sol\";\nimport { Events } from \"./events.sol\";\nimport { ErrorTypes } from \"../../errorTypes.sol\";\nimport { Error } from \"../../error.sol\";\nimport { IFluidVaultT1 } from \"../../interfaces/iVaultT1.sol\";\nimport { BigMathMinified } from \"../../../../libraries/bigMathMinified.sol\";\nimport { TickMath } from \"../../../../libraries/tickMath.sol\";\n\n/// @notice Fluid Vault protocol Admin Module contract.\n/// Implements admin related methods to set configs such as liquidation params, rates\n/// oracle address etc.\n/// Methods are limited to be called via delegateCall only. Vault CoreModule (\"VaultT1\" contract)\n/// is expected to call the methods implemented here after checking the msg.sender is authorized.\n/// All methods update the exchange prices in storage before changing configs.\ncontract FluidVaultT1Admin is Variables, Events, Error {\n uint private constant X8 = 0xff;\n uint private constant X10 = 0x3ff;\n uint private constant X16 = 0xffff;\n uint private constant X19 = 0x7ffff;\n uint private constant X24 = 0xffffff;\n uint internal constant X64 = 0xffffffffffffffff;\n uint private constant X96 = 0xffffffffffffffffffffffff;\n address private constant NATIVE_TOKEN = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;\n\n address private immutable addressThis;\n\n constructor() {\n addressThis = address(this);\n }\n\n modifier _verifyCaller() {\n if (address(this) == addressThis) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__OnlyDelegateCallAllowed);\n }\n _;\n }\n\n /// @dev updates exchange price on storage, called on all admin methods in combination with _verifyCaller modifier so\n /// only called by authorized delegatecall\n modifier _updateExchangePrice() {\n IFluidVaultT1(address(this)).updateExchangePricesOnStorage();\n _;\n }\n\n function _checkLiquidationMaxLimitAndPenalty(uint liquidationMaxLimit_, uint liquidationPenalty_) private pure {\n // liquidation max limit with penalty should not go above 99.7%\n // As liquidation with penalty can happen from liquidation Threshold to max limit\n // If it goes above 100% than that means liquidator is getting more collateral than user's available\n if ((liquidationMaxLimit_ + liquidationPenalty_) > 9970) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n }\n }\n\n /// @notice updates the supply rate magnifier to `supplyRateMagnifier_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateSupplyRateMagnifier(uint supplyRateMagnifier_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateSupplyRateMagnifier(supplyRateMagnifier_);\n\n if (supplyRateMagnifier_ > X16) revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2 & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0000) |\n supplyRateMagnifier_;\n }\n\n /// @notice updates the borrow rate magnifier to `borrowRateMagnifier_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateBorrowRateMagnifier(uint borrowRateMagnifier_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateBorrowRateMagnifier(borrowRateMagnifier_);\n\n if (borrowRateMagnifier_ > X16) revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2 & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff0000ffff) |\n (borrowRateMagnifier_ << 16);\n }\n\n /// @notice updates the collateral factor to `collateralFactor_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateCollateralFactor(uint collateralFactor_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateCollateralFactor(collateralFactor_);\n\n uint vaultVariables2_ = vaultVariables2;\n uint liquidationThreshold_ = ((vaultVariables2_ >> 42) & X10);\n\n collateralFactor_ = collateralFactor_ / 10;\n\n if (collateralFactor_ >= liquidationThreshold_)\n revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2_ & 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffc00ffffffff) |\n (collateralFactor_ << 32);\n }\n\n /// @notice updates the liquidation threshold to `liquidationThreshold_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateLiquidationThreshold(uint liquidationThreshold_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateLiquidationThreshold(liquidationThreshold_);\n\n uint vaultVariables2_ = vaultVariables2;\n uint collateralFactor_ = ((vaultVariables2_ >> 32) & X10);\n uint liquidationMaxLimit_ = ((vaultVariables2_ >> 52) & X10);\n\n liquidationThreshold_ = liquidationThreshold_ / 10;\n\n if ((collateralFactor_ >= liquidationThreshold_) || (liquidationThreshold_ >= liquidationMaxLimit_))\n revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2_ & 0xfffffffffffffffffffffffffffffffffffffffffffffffffff003ffffffffff) |\n (liquidationThreshold_ << 42);\n }\n\n /// @notice updates the liquidation max limit to `liquidationMaxLimit_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateLiquidationMaxLimit(uint liquidationMaxLimit_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateLiquidationMaxLimit(liquidationMaxLimit_);\n\n uint vaultVariables2_ = vaultVariables2;\n uint liquidationThreshold_ = ((vaultVariables2_ >> 42) & X10);\n uint liquidationPenalty_ = ((vaultVariables2_ >> 72) & X10);\n\n // both are in 1e2 decimals (1e2 = 1%)\n _checkLiquidationMaxLimitAndPenalty(liquidationMaxLimit_, liquidationPenalty_);\n\n liquidationMaxLimit_ = liquidationMaxLimit_ / 10;\n\n if (liquidationThreshold_ >= liquidationMaxLimit_)\n revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2_ & 0xffffffffffffffffffffffffffffffffffffffffffffffffc00fffffffffffff) |\n (liquidationMaxLimit_ << 52);\n }\n\n /// @notice updates the withdrawal gap to `withdrawGap_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateWithdrawGap(uint withdrawGap_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateWithdrawGap(withdrawGap_);\n\n withdrawGap_ = withdrawGap_ / 10;\n\n // withdrawGap must not be > 100%\n if (withdrawGap_ > 1000) revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2 & 0xffffffffffffffffffffffffffffffffffffffffffffff003fffffffffffffff) |\n (withdrawGap_ << 62);\n }\n\n /// @notice updates the liquidation penalty to `liquidationPenalty_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateLiquidationPenalty(uint liquidationPenalty_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateLiquidationPenalty(liquidationPenalty_);\n\n uint vaultVariables2_ = vaultVariables2;\n uint liquidationMaxLimit_ = ((vaultVariables2_ >> 52) & X10);\n\n // Converting liquidationMaxLimit_ in 1e2 decimals (1e2 = 1%)\n _checkLiquidationMaxLimitAndPenalty((liquidationMaxLimit_ * 10), liquidationPenalty_);\n\n if (liquidationPenalty_ > X10) revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2_ & 0xfffffffffffffffffffffffffffffffffffffffffffc00ffffffffffffffffff) |\n (liquidationPenalty_ << 72);\n }\n\n /// @notice updates the borrow fee to `borrowFee_`. Input in 1e2 (1% = 100, 100% = 10_000).\n function updateBorrowFee(uint borrowFee_) public _updateExchangePrice _verifyCaller {\n emit LogUpdateBorrowFee(borrowFee_);\n\n if (borrowFee_ > X10) revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n\n vaultVariables2 =\n (vaultVariables2 & 0xfffffffffffffffffffffffffffffffffffffffff003ffffffffffffffffffff) |\n (borrowFee_ << 82);\n }\n\n /// @notice updates the all Vault core settings according to input params.\n /// All input values are expected in 1e2 (1% = 100, 100% = 10_000).\n function updateCoreSettings(\n uint256 supplyRateMagnifier_,\n uint256 borrowRateMagnifier_,\n uint256 collateralFactor_,\n uint256 liquidationThreshold_,\n uint256 liquidationMaxLimit_,\n uint256 withdrawGap_,\n uint256 liquidationPenalty_,\n uint256 borrowFee_\n ) public _updateExchangePrice _verifyCaller {\n // emitting the event at the start as then we are updating numbers to store in a more optimized way\n emit LogUpdateCoreSettings(\n supplyRateMagnifier_,\n borrowRateMagnifier_,\n collateralFactor_,\n liquidationThreshold_,\n liquidationMaxLimit_,\n withdrawGap_,\n liquidationPenalty_,\n borrowFee_\n );\n\n _checkLiquidationMaxLimitAndPenalty(liquidationMaxLimit_, liquidationPenalty_);\n\n collateralFactor_ = collateralFactor_ / 10;\n liquidationThreshold_ = liquidationThreshold_ / 10;\n liquidationMaxLimit_ = liquidationMaxLimit_ / 10;\n withdrawGap_ = withdrawGap_ / 10;\n\n if (\n (supplyRateMagnifier_ > X16) ||\n (borrowRateMagnifier_ > X16) ||\n (collateralFactor_ >= liquidationThreshold_) ||\n (liquidationThreshold_ >= liquidationMaxLimit_) ||\n (withdrawGap_ > X10) ||\n (liquidationPenalty_ > X10) ||\n (borrowFee_ > X10)\n ) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__ValueAboveLimit);\n }\n\n vaultVariables2 =\n (vaultVariables2 & 0xfffffffffffffffffffffffffffffffffffffffff00000000000000000000000) |\n supplyRateMagnifier_ |\n (borrowRateMagnifier_ << 16) |\n (collateralFactor_ << 32) |\n (liquidationThreshold_ << 42) |\n (liquidationMaxLimit_ << 52) |\n (withdrawGap_ << 62) |\n (liquidationPenalty_ << 72) |\n (borrowFee_ << 82);\n }\n\n /// @notice updates the Vault oracle to `newOracle_`. Must implement the FluidOracle interface.\n function updateOracle(address newOracle_) public _updateExchangePrice _verifyCaller {\n if (newOracle_ == address(0)) revert FluidVaultError(ErrorTypes.VaultT1Admin__AddressZeroNotAllowed);\n\n // Removing current oracle by masking only first 96 bits then inserting new oracle as bits\n vaultVariables2 = (vaultVariables2 & X96) | (uint256(uint160(newOracle_)) << 96);\n\n emit LogUpdateOracle(newOracle_);\n }\n\n /// @notice updates the allowed rebalancer to `newRebalancer_`.\n function updateRebalancer(address newRebalancer_) public _updateExchangePrice _verifyCaller {\n if (newRebalancer_ == address(0)) revert FluidVaultError(ErrorTypes.VaultT1Admin__AddressZeroNotAllowed);\n\n rebalancer = newRebalancer_;\n\n emit LogUpdateRebalancer(newRebalancer_);\n }\n\n /// @notice sends any potentially stuck funds to Liquidity contract.\n /// @dev this contract never holds any funds as all operations send / receive funds from user <-> Liquidity.\n function rescueFunds(address token_) external _verifyCaller {\n if (token_ == NATIVE_TOKEN) {\n Address.sendValue(payable(IFluidVaultT1(address(this)).LIQUIDITY()), address(this).balance);\n } else {\n SafeERC20.safeTransfer(\n IERC20(token_),\n IFluidVaultT1(address(this)).LIQUIDITY(),\n IERC20(token_).balanceOf(address(this))\n );\n }\n\n emit LogRescueFunds(token_);\n }\n\n /// @notice absorbs accumulated dust debt\n /// @dev in decades if a lot of positions are 100% liquidated (aka absorbed) then dust debt can mount up\n /// which is basically sort of an extra revenue for the protocol.\n //\n // this function might never come in use that's why adding it in admin module\n function absorbDustDebt(uint[] memory nftIds_) public _verifyCaller {\n uint256 vaultVariables_ = vaultVariables;\n // re-entrancy check\n if (vaultVariables_ & 1 == 0) {\n // Updating on storage\n vaultVariables = vaultVariables_ | 1;\n } else {\n revert FluidVaultError(ErrorTypes.VaultT1__AlreadyEntered);\n }\n\n uint nftId_;\n uint posData_;\n int posTick_;\n uint tickId_;\n uint posCol_;\n uint posDebt_;\n uint posDustDebt_;\n uint tickData_;\n\n uint absorbedDustDebt_ = absorbedDustDebt;\n\n for (uint i = 0; i < nftIds_.length; ) {\n nftId_ = nftIds_[i];\n if (nftId_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__NftIdShouldBeNonZero);\n }\n\n // user's position data\n posData_ = positionData[nftId_];\n\n if (posData_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__NftNotOfThisVault);\n }\n\n posCol_ = (posData_ >> 45) & X64;\n // Converting big number into normal number\n posCol_ = (posCol_ >> 8) << (posCol_ & X8);\n\n posDustDebt_ = (posData_ >> 109) & X64;\n // Converting big number into normal number\n posDustDebt_ = (posDustDebt_ >> 8) << (posDustDebt_ & X8);\n\n if (posDustDebt_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__DustDebtIsZero);\n }\n\n // borrow position (has collateral & debt)\n posTick_ = posData_ & 2 == 2 ? int((posData_ >> 2) & X19) : -int((posData_ >> 2) & X19);\n tickId_ = (posData_ >> 21) & X24;\n\n posDebt_ = (TickMath.getRatioAtTick(int24(posTick_)) * posCol_) >> 96;\n\n // Tick data from user's tick\n tickData_ = tickData[posTick_];\n\n // Checking if tick is liquidated OR if the total IDs of tick is greater than user's tick ID\n if (((tickData_ & 1) == 1) || (((tickData_ >> 1) & X24) > tickId_)) {\n // User got liquidated\n (, posDebt_, , , ) = IFluidVaultT1(address(this)).fetchLatestPosition(\n posTick_,\n tickId_,\n posDebt_,\n tickData_\n );\n if (posDebt_ > 0) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__FinalDebtShouldBeZero);\n }\n // absorbing user's debt as it's 100% or almost 100% liquidated\n absorbedDustDebt_ = absorbedDustDebt_ + posDustDebt_;\n // making position as supply only\n positionData[nftId_] = 1;\n } else {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__NftNotLiquidated);\n }\n\n unchecked {\n i++;\n }\n }\n\n if (absorbedDustDebt_ == 0) {\n revert FluidVaultError(ErrorTypes.VaultT1Admin__AbsorbedDustDebtIsZero);\n }\n\n uint totalBorrow_ = (vaultVariables_ >> 146) & X64;\n // Converting big number into normal number\n totalBorrow_ = (totalBorrow_ >> 8) << (totalBorrow_ & X8);\n // note: by default dust debt is not added into total borrow but on 100% liquidation (aka absorb) dust debt equivalent\n // is removed from total borrow so adding it back again here\n totalBorrow_ = totalBorrow_ + absorbedDustDebt_;\n totalBorrow_ = BigMathMinified.toBigNumber(totalBorrow_, 56, 8, BigMathMinified.ROUND_UP);\n\n // adding absorbed dust debt to total borrow so it will get included in the next rebalancing.\n // there is some fuzziness here as when the position got fully liquidated (aka absorbed) the exchange price was different\n // than what it'll be now. The fuzziness which will be extremely small so we can ignore it\n // updating on storage\n vaultVariables =\n (vaultVariables_ & 0xfffffffffffc0000000000000003ffffffffffffffffffffffffffffffffffff) |\n (totalBorrow_ << 146);\n\n // updating on storage\n absorbedDustDebt = 0;\n\n emit LogAbsorbDustDebt(nftIds_, absorbedDustDebt_);\n }\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/common/variables.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\ncontract Variables {\n /***********************************|\n | Storage Variables |\n |__________________________________*/\n\n /// note: in all variables. For tick >= 0 are represented with bit as 1, tick < 0 are represented with bit as 0\n /// note: read all the variables through storageRead.sol\n\n /// note: vaultVariables contains vault variables which need regular updates through transactions\n /// First 1 bit => 0 => re-entrancy. If 0 then allow transaction to go, else throw.\n /// Next 1 bit => 1 => Is the current active branch liquidated? If true then check the branch's minima tick before creating a new position\n /// If the new tick is greater than minima tick then initialize a new branch, make that as current branch & do proper linking\n /// Next 1 bit => 2 => sign of topmost tick (0 -> negative; 1 -> positive)\n /// Next 19 bits => 3-21 => absolute value of topmost tick\n /// Next 30 bits => 22-51 => current branch ID\n /// Next 30 bits => 52-81 => total branch ID\n /// Next 64 bits => 82-145 => Total supply\n /// Next 64 bits => 146-209 => Total borrow\n /// Next 32 bits => 210-241 => Total positions\n uint256 internal vaultVariables;\n\n /// note: vaultVariables2 contains variables which do not update on every transaction. So mainly admin/auth set amount\n /// First 16 bits => 0-15 => supply rate magnifier; 10000 = 1x (Here 16 bits should be more than enough)\n /// Next 16 bits => 16-31 => borrow rate magnifier; 10000 = 1x (Here 16 bits should be more than enough)\n /// Next 10 bits => 32-41 => collateral factor. 800 = 0.8 = 80% (max precision of 0.1%)\n /// Next 10 bits => 42-51 => liquidation Threshold. 900 = 0.9 = 90% (max precision of 0.1%)\n /// Next 10 bits => 52-61 => liquidation Max Limit. 950 = 0.95 = 95% (max precision of 0.1%) (above this 100% liquidation can happen)\n /// Next 10 bits => 62-71 => withdraw gap. 100 = 0.1 = 10%. (max precision of 0.1%) (max 7 bits can also suffice for the requirement here of 0.1% to 10%). Needed to save some limits on withdrawals so liquidate can work seamlessly.\n /// Next 10 bits => 72-81 => liquidation penalty. 100 = 0.01 = 1%. (max precision of 0.01%) (max liquidation penantly can be 10.23%). Applies when tick is in between liquidation Threshold & liquidation Max Limit.\n /// Next 10 bits => 82-91 => borrow fee. 100 = 0.01 = 1%. (max precision of 0.01%) (max borrow fee can be 10.23%). Fees on borrow.\n /// Next 4 bits => 92-95 => empty\n /// Next 160 bits => 96-255 => Oracle address\n uint256 internal vaultVariables2;\n\n /// note: stores absorbed liquidity\n /// First 128 bits raw debt amount\n /// last 128 bits raw col amount\n uint256 internal absorbedLiquidity;\n\n /// position index => position data uint\n /// if the entire variable is 0 (meaning not initialized) at the start that means no position at all\n /// First 1 bit => 0 => position type (0 => borrow position; 1 => supply position)\n /// Next 1 bit => 1 => sign of user's tick (0 => negative; 1 => positive)\n /// Next 19 bits => 2-20 => absolute value of user's tick\n /// Next 24 bits => 21-44 => user's tick's id\n /// Below we are storing user's collateral & not debt, because the position can also be only collateral with no tick but it can never be only debt\n /// Next 64 bits => 45-108 => user's supply amount. Debt will be calculated through supply & ratio.\n /// Next 64 bits => 109-172 => user's dust debt amount. User's net debt = total debt - dust amount. Total debt is calculated through supply & ratio\n /// User won't pay any extra interest on dust debt & hence we will not show it as a debt on UI. For user's there's no dust.\n mapping(uint256 => uint256) internal positionData;\n\n /// Tick has debt only keeps data of non liquidated positions. liquidated tick's data stays in branch itself\n /// tick parent => uint (represents bool for 256 children)\n /// parent of (i)th tick:-\n /// if (i>=0) (i / 256);\n /// else ((i + 1) / 256) - 1\n /// first bit of the variable is the smallest tick & last bit is the biggest tick of that slot\n mapping(int256 => uint256) internal tickHasDebt;\n\n /// mapping tickId => tickData\n /// Tick related data. Total debt & other things\n /// First bit => 0 => If 1 then liquidated else not liquidated\n /// Next 24 bits => 1-24 => Total IDs. ID should start from 1.\n /// If not liquidated:\n /// Next 64 bits => 25-88 => raw debt\n /// If liquidated\n /// The below 3 things are of last ID. This is to be updated when user creates a new position\n /// Next 1 bit => 25 => Is 100% liquidated? If this is 1 meaning it was above max tick when it got liquidated (100% liquidated)\n /// Next 30 bits => 26-55 => branch ID where this tick got liquidated\n /// Next 50 bits => 56-105 => debt factor 50 bits (35 bits coefficient | 15 bits expansion)\n mapping(int256 => uint256) internal tickData;\n\n /// tick id => previous tick id liquidation data. ID starts from 1\n /// One tick ID contains 3 IDs of 80 bits in it, holding liquidation data of previously active but liquidated ticks\n /// 81 bits data below\n /// #### First 85 bits ####\n /// 1st bit => 0 => Is 100% liquidated? If this is 1 meaning it was above max tick when it got liquidated\n /// Next 30 bits => 1-30 => branch ID where this tick got liquidated\n /// Next 50 bits => 31-80 => debt factor 50 bits (35 bits coefficient | 15 bits expansion)\n /// #### Second 85 bits ####\n /// 85th bit => 85 => Is 100% liquidated? If this is 1 meaning it was above max tick when it got liquidated\n /// Next 30 bits => 86-115 => branch ID where this tick got liquidated\n /// Next 50 bits => 116-165 => debt factor 50 bits (35 bits coefficient | 15 bits expansion)\n /// #### Third 85 bits ####\n /// 170th bit => 170 => Is 100% liquidated? If this is 1 meaning it was above max tick when it got liquidated\n /// Next 30 bits => 171-200 => branch ID where this tick got liquidated\n /// Next 50 bits => 201-250 => debt factor 50 bits (35 bits coefficient | 15 bits expansion)\n mapping(int256 => mapping(uint256 => uint256)) internal tickId;\n\n /// mapping branchId => branchData\n /// First 2 bits => 0-1 => if 0 then not liquidated, if 1 then liquidated, if 2 then merged, if 3 then closed\n /// merged means the branch is merged into it's base branch\n /// closed means all the users are 100% liquidated\n /// Next 1 bit => 2 => minima tick sign of this branch. Will only be there if any liquidation happened.\n /// Next 19 bits => 3-21 => minima tick of this branch. Will only be there if any liquidation happened.\n /// Next 30 bits => 22-51 => Partials of minima tick of branch this is connected to. 0 if master branch.\n /// Next 64 bits => 52-115 Debt liquidity at this branch. Similar to last's top tick data. Remaining debt will move here from tickData after first liquidation\n /// If not merged\n /// Next 50 bits => 116-165 => Debt factor or of this branch. (35 bits coefficient | 15 bits expansion)\n /// If merged\n /// Next 50 bits => 116-165 => Connection/adjustment debt factor of this branch with the next branch.\n /// If closed\n /// Next 50 bits => 116-165 => Debt factor as 0. As all the user's positions are now fully gone\n /// following values are present always again (merged / not merged / closed)\n /// Next 30 bits => 166-195 => Branch's ID with which this branch is connected. If 0 then that means this is the master branch\n /// Next 1 bit => 196 => sign of minima tick of branch this is connected to. 0 if master branch.\n /// Next 19 bits => 197-215 => minima tick of branch this is connected to. 0 if master branch.\n mapping(uint256 => uint256) internal branchData;\n\n /// Exchange prices are in 1e12\n /// First 64 bits => 0-63 => Liquidity's collateral token supply exchange price\n /// First 64 bits => 64-127 => Liquidity's debt token borrow exchange price\n /// First 64 bits => 128-191 => Vault's collateral token supply exchange price\n /// First 64 bits => 192-255 => Vault's debt token borrow exchange price\n uint256 internal rates;\n\n /// address of rebalancer\n address internal rebalancer;\n\n uint256 internal absorbedDustDebt;\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/coreModule/constantVariables.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IFluidVaultFactory } from \"../../interfaces/iVaultFactory.sol\";\nimport { IFluidLiquidity } from \"../../../../liquidity/interfaces/iLiquidity.sol\";\nimport { StorageRead } from \"../../../../libraries/storageRead.sol\";\n\nimport { Structs } from \"./structs.sol\";\n\ninterface TokenInterface {\n function decimals() external view returns (uint8);\n}\n\ncontract ConstantVariables is StorageRead, Structs {\n /***********************************|\n | Constant Variables |\n |__________________________________*/\n\n address internal constant NATIVE_TOKEN = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;\n /// @dev collateral token address\n address internal immutable SUPPLY_TOKEN;\n /// @dev borrow token address\n address internal immutable BORROW_TOKEN;\n\n /// @dev Token decimals. For example wETH is 18 decimals\n uint8 internal immutable SUPPLY_DECIMALS;\n /// @dev Token decimals. For example USDC is 6 decimals\n uint8 internal immutable BORROW_DECIMALS;\n\n /// @dev VaultT1 AdminModule implemenation address\n address internal immutable ADMIN_IMPLEMENTATION;\n\n /// @dev VaultT1 Secondary implemenation (main2.sol) address\n address internal immutable SECONDARY_IMPLEMENTATION;\n\n /// @dev liquidity proxy contract address\n IFluidLiquidity public immutable LIQUIDITY;\n\n /// @dev vault factory contract address\n IFluidVaultFactory public immutable VAULT_FACTORY;\n\n uint public immutable VAULT_ID;\n\n uint internal constant X8 = 0xff;\n uint internal constant X10 = 0x3ff;\n uint internal constant X16 = 0xffff;\n uint internal constant X19 = 0x7ffff;\n uint internal constant X20 = 0xfffff;\n uint internal constant X24 = 0xffffff;\n uint internal constant X25 = 0x1ffffff;\n uint internal constant X30 = 0x3fffffff;\n uint internal constant X35 = 0x7ffffffff;\n uint internal constant X50 = 0x3ffffffffffff;\n uint internal constant X64 = 0xffffffffffffffff;\n uint internal constant X96 = 0xffffffffffffffffffffffff;\n uint internal constant X128 = 0xffffffffffffffffffffffffffffffff;\n\n uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12;\n\n /// @dev slot ids in Liquidity contract. Helps in low gas fetch from liquidity contract by skipping delegate call\n bytes32 internal immutable LIQUIDITY_SUPPLY_EXCHANGE_PRICE_SLOT;\n bytes32 internal immutable LIQUIDITY_BORROW_EXCHANGE_PRICE_SLOT;\n bytes32 internal immutable LIQUIDITY_USER_SUPPLY_SLOT;\n bytes32 internal immutable LIQUIDITY_USER_BORROW_SLOT;\n\n /// @notice returns all Vault constants\n function constantsView() external view returns (ConstantViews memory constantsView_) {\n constantsView_.liquidity = address(LIQUIDITY);\n constantsView_.factory = address(VAULT_FACTORY);\n constantsView_.adminImplementation = ADMIN_IMPLEMENTATION;\n constantsView_.secondaryImplementation = SECONDARY_IMPLEMENTATION;\n constantsView_.supplyToken = SUPPLY_TOKEN;\n constantsView_.borrowToken = BORROW_TOKEN;\n constantsView_.supplyDecimals = SUPPLY_DECIMALS;\n constantsView_.borrowDecimals = BORROW_DECIMALS;\n constantsView_.vaultId = VAULT_ID;\n constantsView_.liquiditySupplyExchangePriceSlot = LIQUIDITY_SUPPLY_EXCHANGE_PRICE_SLOT;\n constantsView_.liquidityBorrowExchangePriceSlot = LIQUIDITY_BORROW_EXCHANGE_PRICE_SLOT;\n constantsView_.liquidityUserSupplySlot = LIQUIDITY_USER_SUPPLY_SLOT;\n constantsView_.liquidityUserBorrowSlot = LIQUIDITY_USER_BORROW_SLOT;\n }\n\n constructor(ConstantViews memory constants_) {\n LIQUIDITY = IFluidLiquidity(constants_.liquidity);\n VAULT_FACTORY = IFluidVaultFactory(constants_.factory);\n VAULT_ID = constants_.vaultId;\n\n SUPPLY_TOKEN = constants_.supplyToken;\n BORROW_TOKEN = constants_.borrowToken;\n SUPPLY_DECIMALS = constants_.supplyDecimals;\n BORROW_DECIMALS = constants_.borrowDecimals;\n\n // @dev those slots are calculated in the deploymentLogics / VaultFactory\n LIQUIDITY_SUPPLY_EXCHANGE_PRICE_SLOT = constants_.liquiditySupplyExchangePriceSlot;\n LIQUIDITY_BORROW_EXCHANGE_PRICE_SLOT = constants_.liquidityBorrowExchangePriceSlot;\n LIQUIDITY_USER_SUPPLY_SLOT = constants_.liquidityUserSupplySlot;\n LIQUIDITY_USER_BORROW_SLOT = constants_.liquidityUserBorrowSlot;\n\n ADMIN_IMPLEMENTATION = constants_.adminImplementation;\n SECONDARY_IMPLEMENTATION = constants_.secondaryImplementation;\n }\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/coreModule/events.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\ncontract Events {\n /// @notice emitted when an operate() method is executed that changes collateral (`colAmt_`) / debt (debtAmt_`)\n /// amount for a `user_` position with `nftId_`. Receiver of any funds is the address `to_`.\n event LogOperate(address user_, uint256 nftId_, int256 colAmt_, int256 debtAmt_, address to_);\n\n /// @notice emitted when the exchange prices are updated in storage.\n event LogUpdateExchangePrice(uint256 supplyExPrice_, uint256 borrowExPrice_);\n\n /// @notice emitted when a liquidation has been executed.\n event LogLiquidate(address liquidator_, uint256 colAmt_, uint256 debtAmt_, address to_);\n\n /// @notice emitted when `absorb()` was executed to absorb bad debt.\n event LogAbsorb(uint colAbsorbedRaw_, uint debtAbsorbedRaw_);\n\n /// @notice emitted when a `rebalance()` has been executed, balancing out total supply / borrow between Vault\n /// and Fluid Liquidity pools.\n /// if `colAmt_` is positive then loss, meaning transfer from rebalancer address to vault and deposit.\n /// if `colAmt_` is negative then profit, meaning withdrawn from vault and sent to rebalancer address.\n /// if `debtAmt_` is positive then profit, meaning borrow from vault and sent to rebalancer address.\n /// if `debtAmt_` is negative then loss, meaning transfer from rebalancer address to vault and payback.\n event LogRebalance(int colAmt_, int debtAmt_);\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/coreModule/helpers.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { Variables } from \"../common/variables.sol\";\nimport { ConstantVariables } from \"./constantVariables.sol\";\nimport { Events } from \"./events.sol\";\nimport { TickMath } from \"../../../../libraries/tickMath.sol\";\nimport { BigMathMinified } from \"../../../../libraries/bigMathMinified.sol\";\nimport { BigMathVault } from \"../../../../libraries/bigMathVault.sol\";\nimport { LiquidityCalcs } from \"../../../../libraries/liquidityCalcs.sol\";\n\nimport { ErrorTypes } from \"../../errorTypes.sol\";\nimport { Error } from \"../../error.sol\";\n\n/// @dev Fluid vault protocol helper methods. Mostly used for `operate()` and `liquidate()` methods of CoreModule.\nabstract contract Helpers is Variables, ConstantVariables, Events, Error {\n using BigMathMinified for uint256;\n using BigMathVault for uint256;\n\n /// @notice Calculates new vault exchange prices. Does not update values in storage.\n /// @param vaultVariables2_ exactly same as vaultVariables2 from storage\n /// @return liqSupplyExPrice_ latest liquidity's supply token supply exchange price\n /// @return liqBorrowExPrice_ latest liquidity's borrow token borrow exchange price\n /// @return vaultSupplyExPrice_ latest vault's supply token exchange price\n /// @return vaultBorrowExPrice_ latest vault's borrow token exchange price\n function updateExchangePrices(\n uint256 vaultVariables2_\n )\n public\n view\n returns (\n uint256 liqSupplyExPrice_,\n uint256 liqBorrowExPrice_,\n uint256 vaultSupplyExPrice_,\n uint256 vaultBorrowExPrice_\n )\n {\n // Fetching last stored rates\n uint rates_ = rates;\n\n (liqSupplyExPrice_, ) = LiquidityCalcs.calcExchangePrices(\n LIQUIDITY.readFromStorage(LIQUIDITY_SUPPLY_EXCHANGE_PRICE_SLOT)\n );\n (, liqBorrowExPrice_) = LiquidityCalcs.calcExchangePrices(\n LIQUIDITY.readFromStorage(LIQUIDITY_BORROW_EXCHANGE_PRICE_SLOT)\n );\n\n uint256 oldLiqSupplyExPrice_ = (rates_ & X64);\n uint256 oldLiqBorrowExPrice_ = ((rates_ >> 64) & X64);\n if (liqSupplyExPrice_ < oldLiqSupplyExPrice_ || liqBorrowExPrice_ < oldLiqBorrowExPrice_) {\n // new liquidity exchange price is < than the old one. liquidity exchange price should only ever increase.\n // If not, something went wrong and avoid proceeding with unknown outcome.\n revert FluidVaultError(ErrorTypes.VaultT1__LiquidityExchangePriceUnexpected);\n }\n\n // liquidity Exchange Prices always increases in next block. Hence substraction with old will never be negative\n // uint64 * 1e18 is the max the number that could be\n unchecked {\n // Calculating increase in supply exchange price w.r.t last stored liquidity's exchange price\n // vaultSupplyExPrice_ => supplyIncreaseInPercent_\n vaultSupplyExPrice_ = ((((liqSupplyExPrice_ * 1e18) / oldLiqSupplyExPrice_) - 1e18) *\n (vaultVariables2_ & X16)) / 10000; // supply rate magnifier\n\n // Calculating increase in borrow exchange price w.r.t last stored liquidity's exchange price\n // vaultBorrowExPrice_ => borrowIncreaseInPercent_\n vaultBorrowExPrice_ = ((((liqBorrowExPrice_ * 1e18) / oldLiqBorrowExPrice_) - 1e18) *\n ((vaultVariables2_ >> 16) & X16)) / 10000; // borrow rate magnifier\n\n // It's extremely hard the exchange prices to overflow even in 100 years but if it does it's not an\n // issue here as we are not updating on storage\n // (rates_ >> 128) & X64) -> last stored vault's supply token exchange price\n vaultSupplyExPrice_ = (((rates_ >> 128) & X64) * (1e18 + vaultSupplyExPrice_)) / 1e18;\n // (rates_ >> 192) -> last stored vault's borrow token exchange price (no need to mask with & X64 as it is anyway max 64 bits)\n vaultBorrowExPrice_ = ((rates_ >> 192) * (1e18 + vaultBorrowExPrice_)) / 1e18;\n }\n }\n\n /// note admin module is also calling this function self call\n /// @dev updating exchange price on storage. Only need to update on storage when changing supply or borrow magnifier\n function updateExchangePricesOnStorage()\n public\n returns (\n uint256 liqSupplyExPrice_,\n uint256 liqBorrowExPrice_,\n uint256 vaultSupplyExPrice_,\n uint256 vaultBorrowExPrice_\n )\n {\n (liqSupplyExPrice_, liqBorrowExPrice_, vaultSupplyExPrice_, vaultBorrowExPrice_) = updateExchangePrices(\n vaultVariables2\n );\n\n if (\n liqSupplyExPrice_ > X64 || liqBorrowExPrice_ > X64 || vaultSupplyExPrice_ > X64 || vaultBorrowExPrice_ > X64\n ) {\n revert FluidVaultError(ErrorTypes.VaultT1__ExchangePriceOverFlow);\n }\n\n // Updating in storage\n rates =\n liqSupplyExPrice_ |\n (liqBorrowExPrice_ << 64) |\n (vaultSupplyExPrice_ << 128) |\n (vaultBorrowExPrice_ << 192);\n\n emit LogUpdateExchangePrice(vaultSupplyExPrice_, vaultBorrowExPrice_);\n }\n\n /// @dev fetches new user's position after liquidation. The new liquidated position's debt is decreased by 0.01%\n /// to make sure that branch's liquidity never becomes 0 as if it would have gotten 0 then there will be multiple cases that we would need to tackle.\n /// @param positionTick_ position's tick when it was last updated through operate\n /// @param positionTickId_ position's tick Id. This stores the debt factor and branch to make the first connection\n /// @param positionRawDebt_ position's raw debt when it was last updated through operate\n /// @param tickData_ position's tick's tickData just for minor comparison to know if data is moved to tick Id or is still in tick data\n /// @return final tick position after all the liquidation\n /// @return final debt of position after all the liquidation\n /// @return positionRawCol_ final collateral of position after all the liquidation\n /// @return branchId_ final branch's ID where the position is at currently\n /// @return branchData_ final branch's data where the position is at currently\n function fetchLatestPosition(\n int256 positionTick_,\n uint256 positionTickId_,\n uint256 positionRawDebt_,\n uint256 tickData_\n )\n public\n view\n returns (\n int256, // positionTick_\n uint256, // positionRawDebt_\n uint256 positionRawCol_,\n uint256 branchId_,\n uint256 branchData_\n )\n {\n uint256 initialPositionRawDebt_ = positionRawDebt_;\n uint256 connectionFactor_;\n bool isFullyLiquidated_;\n\n // Checking if tick's total ID = user's tick ID\n if (((tickData_ >> 1) & X24) == positionTickId_) {\n // fetching from tick data itself\n isFullyLiquidated_ = ((tickData_ >> 25) & 1) == 1;\n branchId_ = (tickData_ >> 26) & X30;\n connectionFactor_ = (tickData_ >> 56) & X50;\n } else {\n {\n uint256 tickLiquidationData_;\n unchecked {\n // Fetching tick's liquidation data. One variable contains data of 3 IDs. Tick Id mapping is starting from 1.\n tickLiquidationData_ =\n tickId[positionTick_][(positionTickId_ + 2) / 3] >>\n (((positionTickId_ + 2) % 3) * 85);\n }\n\n isFullyLiquidated_ = (tickLiquidationData_ & 1) == 1;\n branchId_ = (tickLiquidationData_ >> 1) & X30;\n connectionFactor_ = (tickLiquidationData_ >> 31) & X50;\n }\n }\n\n // data of branch\n branchData_ = branchData[branchId_];\n\n if (isFullyLiquidated_) {\n positionTick_ = type(int).min;\n positionRawDebt_ = 0;\n } else {\n // Below information about connection debt factor\n // If branch is merged, Connection debt factor is used to multiply in order to get perfect liquidation of user\n // For example: Considering user was at the top.\n // In first branch, the user liquidated to debt factor 0.5 and then branch got merged (branching starting from 1)\n // In second branch, it got liquidated to 0.4 but when the above branch merged the debt factor on this branch was 0.6\n // Meaning on 1st branch, user got liquidated by 50% & on 2nd by 33.33%. So a total of 66.6%.\n // What we will set a connection factor will be 0.6/0.5 = 1.2\n // So now to get user's position, this is what we'll do:\n // finalDebt = (0.4 / (1 * 1.2)) * debtBeforeLiquidation\n // 0.4 is current active branch's minima debt factor\n // 1 is debt factor from where user started\n // 1.2 is connection factor which we found out through 0.6 / 0.5\n while ((branchData_ & 3) == 2) {\n // If true then the branch is merged\n\n // userTickDebtFactor * connectionDebtFactor *... connectionDebtFactor aka adjustmentDebtFactor\n connectionFactor_ = connectionFactor_.mulBigNumber(((branchData_ >> 116) & X50));\n if (connectionFactor_ == BigMathVault.MAX_MASK_DEBT_FACTOR) break; // user ~100% liquidated\n // Note we don't need updated branch data in case of 100% liquidated so saving gas for fetching it\n\n // Fetching new branch data\n branchId_ = (branchData_ >> 166) & X30; // Link to base branch of current branch\n branchData_ = branchData[branchId_];\n }\n // When the while loop breaks meaning the branch now has minima Debt Factor or is a closed branch;\n\n if (((branchData_ & 3) == 3) || (connectionFactor_ == BigMathVault.MAX_MASK_DEBT_FACTOR)) {\n // Branch got closed (or user liquidated ~100%). Hence make the user's position 0\n // Rare cases to get into this situation\n // Branch can get close often but once closed it's tricky that some user might come iterating through there\n // If a user comes then that user will be very mini user like some cents probably\n positionTick_ = type(int).min;\n positionRawDebt_ = 0;\n } else {\n // If branch is not merged, the main branch it's connected to then it'll have minima debt factor\n\n // position debt = debt * base branch minimaDebtFactor / connectionFactor\n positionRawDebt_ = positionRawDebt_.mulDivNormal(\n (branchData_ >> 116) & X50, // minimaDebtFactor\n connectionFactor_\n );\n\n unchecked {\n // Reducing user's liquidity by 0.01% if user got liquidated.\n // As this will make sure that the branch always have some debt even if all liquidated user left\n // This saves a lot more logics & consideration on Operate function\n // if we don't do this then we have to add logics related to closing the branch and factor connections accordingly.\n if (positionRawDebt_ > (initialPositionRawDebt_ / 100)) {\n positionRawDebt_ = (positionRawDebt_ * 9999) / 10000;\n } else {\n // if user debt reduced by more than 99% in liquidation then making user as fully liquidated\n positionRawDebt_ = 0;\n }\n }\n\n {\n if (positionRawDebt_ > 0) {\n // positionTick_ -> read minima tick of branch\n unchecked {\n positionTick_ = branchData_ & 4 == 4\n ? int((branchData_ >> 3) & X19)\n : -int((branchData_ >> 3) & X19);\n }\n // Calculating user's collateral\n uint256 ratioAtTick_ = TickMath.getRatioAtTick(int24(positionTick_));\n uint256 ratioOneLess_;\n unchecked {\n ratioOneLess_ = (ratioAtTick_ * 10000) / 10015;\n }\n // formula below for better readability:\n // length = ratioAtTick_ - ratioOneLess_\n // ratio = ratioOneLess_ + (length * positionPartials_) / X30\n // positionRawCol_ = (positionRawDebt_ * (1 << 96)) / ratio_\n positionRawCol_ =\n (positionRawDebt_ * TickMath.ZERO_TICK_SCALED_RATIO) /\n (ratioOneLess_ + ((ratioAtTick_ - ratioOneLess_) * ((branchData_ >> 22) & X30)) / X30);\n } else {\n positionTick_ = type(int).min;\n }\n }\n }\n }\n return (positionTick_, positionRawDebt_, positionRawCol_, branchId_, branchData_);\n }\n\n /// @dev sets `tick_` as having debt or no debt in storage `tickHasDebt` depending on `addOrRemove_`\n /// @param tick_ tick to add or remove from tickHasDebt\n /// @param addOrRemove_ if true then add else remove\n function _updateTickHasDebt(int tick_, bool addOrRemove_) internal {\n // Positive mapID_ starts from 0 & above and negative starts below 0.\n // tick 0 to 255 will have mapId_ as 0 while tick -256 to -1 will have mapId_ as -1.\n unchecked {\n int mapId_ = tick_ < 0 ? ((tick_ + 1) / 256) - 1 : tick_ / 256;\n\n // in case of removing:\n // (tick == 255) tickHasDebt[mapId_] - 1 << 255\n // (tick == 0) tickHasDebt[mapId_] - 1 << 0\n // (tick == -1) tickHasDebt[mapId_] - 1 << 255\n // (tick == -256) tickHasDebt[mapId_] - 1 << 0\n // in case of adding:\n // (tick == 255) tickHasDebt[mapId_] - 1 << 255\n // (tick == 0) tickHasDebt[mapId_] - 1 << 0\n // (tick == -1) tickHasDebt[mapId_] - 1 << 255\n // (tick == -256) tickHasDebt[mapId_] - 1 << 0\n uint position_ = uint(tick_ - (mapId_ * 256));\n\n tickHasDebt[mapId_] = addOrRemove_\n ? tickHasDebt[mapId_] | (1 << position_)\n : tickHasDebt[mapId_] & ~(1 << position_);\n }\n }\n\n /// @dev gets next perfect top tick (tick which is not liquidated)\n /// @param topTick_ current top tick which will no longer be top tick\n /// @return nextTick_ next top tick which will become the new top tick\n function _fetchNextTopTick(int topTick_) internal view returns (int nextTick_) {\n int mapId_;\n uint tickHasDebt_;\n\n unchecked {\n mapId_ = topTick_ < 0 ? ((topTick_ + 1) / 256) - 1 : topTick_ / 256;\n uint bitsToRemove_ = uint(-topTick_ + (mapId_ * 256 + 256));\n // Removing current top tick from tickHasDebt\n tickHasDebt_ = (tickHasDebt[mapId_] << bitsToRemove_) >> bitsToRemove_;\n\n // For last user remaining in vault there could be a lot of iterations in the while loop.\n // Chances of this to happen is extremely low (like ~0%)\n while (true) {\n if (tickHasDebt_ > 0) {\n nextTick_ = mapId_ * 256 + int(tickHasDebt_.mostSignificantBit()) - 1;\n break;\n }\n\n // Reducing mapId_ by 1 in every loop; if it reaches to -129 then no filled tick exist, meaning it's the last tick\n if (--mapId_ == -129) {\n nextTick_ = type(int).min;\n break;\n }\n\n tickHasDebt_ = tickHasDebt[mapId_];\n }\n }\n }\n\n /// @dev adding debt to a particular tick\n /// @param totalColRaw_ total raw collateral of position\n /// @param netDebtRaw_ net raw debt (total debt - dust debt)\n /// @return tick_ tick where the debt is being added\n /// @return tickId_ tick current id\n /// @return userRawDebt_ user's total raw debt\n /// @return rawDust_ dust debt used for adjustment\n function _addDebtToTickWrite(\n uint256 totalColRaw_,\n uint256 netDebtRaw_ // debtRaw - dust\n ) internal returns (int256 tick_, uint256 tickId_, uint256 userRawDebt_, uint256 rawDust_) {\n if (netDebtRaw_ < 10000) {\n // thrown if user's debt is too low\n revert FluidVaultError(ErrorTypes.VaultT1__UserDebtTooLow);\n }\n // tick_ & ratio_ returned from library is round down. Hence increasing it by 1 and increasing ratio by 1 tick.\n uint ratio_ = (netDebtRaw_ * TickMath.ZERO_TICK_SCALED_RATIO) / totalColRaw_;\n (tick_, ratio_) = TickMath.getTickAtRatio(ratio_);\n unchecked {\n ++tick_;\n ratio_ = (ratio_ * 10015) / 10000;\n }\n userRawDebt_ = (ratio_ * totalColRaw_) >> 96;\n rawDust_ = userRawDebt_ - netDebtRaw_;\n\n // Current state of tick\n uint256 tickData_ = tickData[tick_];\n tickId_ = (tickData_ >> 1) & X24;\n\n uint tickNewDebt_;\n if (tickId_ > 0 && tickData_ & 1 == 0) {\n // Current debt in the tick\n uint256 tickExistingRawDebt_ = (tickData_ >> 25) & X64;\n tickExistingRawDebt_ = (tickExistingRawDebt_ >> 8) << (tickExistingRawDebt_ & X8);\n\n // Tick's already initialized and not liquidated. Hence simply add the debt\n tickNewDebt_ = tickExistingRawDebt_ + userRawDebt_;\n if (tickExistingRawDebt_ == 0) {\n // Adding tick into tickHasDebt\n _updateTickHasDebt(tick_, true);\n }\n } else {\n // Liquidation happened or tick getting initialized for the very first time.\n if (tickId_ > 0) {\n // Meaning a liquidation happened. Hence move the data to tickID\n unchecked {\n uint tickMap_ = (tickId_ + 2) / 3;\n // Adding 2 in ID so we can get right mapping ID. For example for ID 1, 2 & 3 mapping should be 1 and so on..\n // For example shift for id 1 should be 0, for id 2 should be 85, for id 3 it should be 170 and so on..\n tickId[tick_][tickMap_] =\n tickId[tick_][tickMap_] |\n ((tickData_ >> 25) << (((tickId_ + 2) % 3) * 85));\n }\n }\n // Increasing total ID by one\n unchecked {\n ++tickId_;\n }\n tickNewDebt_ = userRawDebt_;\n\n // Adding tick into tickHasDebt\n _updateTickHasDebt(tick_, true);\n }\n if (tickNewDebt_ < 10000) {\n // thrown if tick's debt/liquidity is too low\n revert FluidVaultError(ErrorTypes.VaultT1__TickDebtTooLow);\n }\n tickData[tick_] = (tickId_ << 1) | (tickNewDebt_.toBigNumber(56, 8, BigMathMinified.ROUND_DOWN) << 25);\n }\n\n /// @dev sets new top tick. If it comes to this function then that means current top tick is perfect tick.\n /// if next top tick is liquidated then unitializes the current non liquidated branch and make the liquidated branch as current branch\n /// @param topTick_ current top tick\n /// @param vaultVariables_ vaultVariables of storage but with newer updates\n /// @return newVaultVariables_ newVaultVariables_ updated vault variable internally to this function\n /// @return newTopTick_ new top tick\n function _setNewTopTick(\n int topTick_,\n uint vaultVariables_\n ) internal returns (uint newVaultVariables_, int newTopTick_) {\n // This function considers that the current top tick was not liquidated\n // Overall flow of function:\n // if new top tick liquidated (aka base branch's minima tick) -> Close the current branch and make base branch as current branch\n // if new top tick not liquidated -> update things in current branch.\n // if new top tick is not liquidated and same tick exist in base branch then tick is considered as not liquidated.\n\n uint branchId_ = (vaultVariables_ >> 22) & X30; // branch id of current branch\n\n uint256 branchData_ = branchData[branchId_];\n int256 baseBranchMinimaTick_;\n if ((branchData_ >> 196) & 1 == 1) {\n baseBranchMinimaTick_ = int((branchData_ >> 197) & X19);\n } else {\n unchecked {\n baseBranchMinimaTick_ = -int((branchData_ >> 197) & X19);\n }\n if (baseBranchMinimaTick_ == 0) {\n // meaning the current branch is the master branch\n baseBranchMinimaTick_ = type(int).min;\n }\n }\n\n // Returns type(int).min if no top tick exist\n int nextTopTickNotLiquidated_ = _fetchNextTopTick(topTick_);\n\n newTopTick_ = baseBranchMinimaTick_ > nextTopTickNotLiquidated_\n ? baseBranchMinimaTick_\n : nextTopTickNotLiquidated_;\n\n if (newTopTick_ == type(int).min) {\n // if this happens that means this was the last user of the vault :(\n vaultVariables_ = vaultVariables_ & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc00001;\n } else if (newTopTick_ == nextTopTickNotLiquidated_) {\n // New top tick exist in current non liquidated branch\n if (newTopTick_ < 0) {\n unchecked {\n vaultVariables_ =\n (vaultVariables_ & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc00001) |\n (uint(-newTopTick_) << 3);\n }\n } else {\n vaultVariables_ =\n (vaultVariables_ & 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc00001) |\n 4 | // setting top tick as positive\n (uint(newTopTick_) << 3);\n }\n } else {\n // if this happens that means base branch exists & is the next top tick\n // Remove current non liquidated branch as active.\n // Not deleting here as it's going to get initialize again whenever a new top tick comes\n branchData[branchId_] = 0;\n // Inserting liquidated branch's minima tick\n unchecked {\n vaultVariables_ =\n (vaultVariables_ & 0xfffffffffffffffffffffffffffffffffffffffffffc00000000000000000001) |\n 2 | // Setting top tick as liquidated\n (((branchData_ >> 196) & X20) << 2) | // new current top tick = base branch minima tick\n (((branchData_ >> 166) & X30) << 22) | // new current branch id = base branch id\n ((branchId_ - 1) << 52); // reduce total branch id by 1\n }\n }\n\n newVaultVariables_ = vaultVariables_;\n }\n\n constructor(ConstantViews memory constants_) ConstantVariables(constants_) {}\n}\n"
|
||
},
|
||
"contracts/protocols/vault/vaultT1/coreModule/structs.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\ncontract Structs {\n // structs are used to mitigate Stack too deep errors\n\n struct OperateMemoryVars {\n // ## User's position before update ##\n uint oldColRaw;\n uint oldNetDebtRaw; // total debt - dust debt\n int oldTick;\n // ## User's position after update ##\n uint colRaw;\n uint debtRaw;\n uint dustDebtRaw;\n int tick;\n uint tickId;\n // others\n uint256 vaultVariables2;\n uint256 branchId;\n int256 topTick;\n uint liquidityExPrice;\n uint supplyExPrice;\n uint borrowExPrice;\n uint branchData;\n // user's supply slot data in liquidity\n uint userSupplyLiquidityData;\n }\n\n struct BranchData {\n uint id;\n uint data;\n uint ratio;\n uint debtFactor;\n int minimaTick;\n uint baseBranchData;\n }\n\n struct TickData {\n int tick;\n uint data;\n uint ratio;\n uint ratioOneLess;\n uint length;\n uint currentRatio; // current tick is ratio with partials.\n uint partials;\n }\n\n // note: All the below token amounts are in raw form.\n struct CurrentLiquidity {\n uint256 debtRemaining; // Debt remaining to liquidate\n uint256 debt; // Current liquidatable debt before reaching next check point\n uint256 col; // Calculate using debt & ratioCurrent\n uint256 colPerDebt; // How much collateral to liquidate per unit of Debt\n uint256 totalDebtLiq; // Total debt liquidated till now\n uint256 totalColLiq; // Total collateral liquidated till now\n int tick; // Current tick to liquidate\n uint ratio; // Current ratio to liquidate\n uint tickStatus; // if 1 then it's a perfect tick, if 2 that means it's a liquidated tick\n int refTick; // ref tick to liquidate\n uint refRatio; // ratio at ref tick\n uint refTickStatus; // if 1 then it's a perfect tick, if 2 that means it's a liquidated tick, if 3 that means it's a liquidation threshold\n }\n\n struct TickHasDebt {\n int tick; // current tick\n int nextTick; // next tick with liquidity\n int mapId; // mapping ID of tickHasDebt\n uint bitsToRemove; // liquidity to remove till tick_ so we can search for next tick\n uint tickHasDebt; // getting tickHasDebt_ from tickHasDebt[mapId_]\n uint mostSigBit; // most significant bit in tickHasDebt_ to get the next tick\n }\n\n struct LiquidateMemoryVars {\n uint256 vaultVariables2;\n int liquidationTick;\n int maxTick;\n uint256 supplyExPrice;\n uint256 borrowExPrice;\n }\n\n struct AbsorbMemoryVariables {\n uint256 debtAbsorbed;\n uint256 colAbsorbed;\n int256 startingTick;\n uint256 mostSigBit;\n }\n\n struct ConstantViews {\n address liquidity;\n address factory;\n address adminImplementation;\n address secondaryImplementation;\n address supplyToken;\n address borrowToken;\n uint8 supplyDecimals;\n uint8 borrowDecimals;\n uint vaultId;\n bytes32 liquiditySupplyExchangePriceSlot;\n bytes32 liquidityBorrowExchangePriceSlot;\n bytes32 liquidityUserSupplySlot;\n bytes32 liquidityUserBorrowSlot;\n }\n\n struct RebalanceMemoryVariables {\n uint256 liqSupplyExPrice;\n uint256 liqBorrowExPrice;\n uint256 vaultSupplyExPrice;\n uint256 vaultBorrowExPrice;\n }\n}\n"
|
||
},
|
||
"contracts/reserve/interfaces/iReserveContract.sol": {
|
||
"content": "// SPDX-License-Identifier: BUSL-1.1\npragma solidity 0.8.21;\n\nimport { IFluidLiquidity } from \"../../liquidity/interfaces/iLiquidity.sol\";\n\ninterface IFluidReserveContract {\n function isRebalancer(address user) external returns (bool);\n\n function initialize(\n address[] memory _auths,\n address[] memory _rebalancers,\n IFluidLiquidity liquidity_,\n address owner_\n ) external;\n\n function rebalanceFToken(address protocol_) external;\n\n function rebalanceVault(address protocol_) external;\n\n function transferFunds(address token_) external;\n\n function getProtocolTokens(address protocol_) external;\n\n function updateAuth(address auth_, bool isAuth_) external;\n\n function updateRebalancer(address rebalancer_, bool isRebalancer_) external;\n\n function approve(address[] memory protocols_, address[] memory tokens_, uint256[] memory amounts_) external;\n\n function revoke(address[] memory protocols_, address[] memory tokens_) external;\n}\n"
|
||
},
|
||
"solmate/src/auth/Owned.sol": {
|
||
"content": "// SPDX-License-Identifier: AGPL-3.0-only\npragma solidity >=0.8.0;\n\n/// @notice Simple single owner authorization mixin.\n/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol)\nabstract contract Owned {\n /*//////////////////////////////////////////////////////////////\n EVENTS\n //////////////////////////////////////////////////////////////*/\n\n event OwnershipTransferred(address indexed user, address indexed newOwner);\n\n /*//////////////////////////////////////////////////////////////\n OWNERSHIP STORAGE\n //////////////////////////////////////////////////////////////*/\n\n address public owner;\n\n modifier onlyOwner() virtual {\n require(msg.sender == owner, \"UNAUTHORIZED\");\n\n _;\n }\n\n /*//////////////////////////////////////////////////////////////\n CONSTRUCTOR\n //////////////////////////////////////////////////////////////*/\n\n constructor(address _owner) {\n owner = _owner;\n\n emit OwnershipTransferred(address(0), _owner);\n }\n\n /*//////////////////////////////////////////////////////////////\n OWNERSHIP LOGIC\n //////////////////////////////////////////////////////////////*/\n\n function transferOwnership(address newOwner) public virtual onlyOwner {\n owner = newOwner;\n\n emit OwnershipTransferred(msg.sender, newOwner);\n }\n}\n"
|
||
}
|
||
},
|
||
"settings": {
|
||
"optimizer": {
|
||
"enabled": true,
|
||
"runs": 10000000
|
||
},
|
||
"evmVersion": "paris",
|
||
"outputSelection": {
|
||
"*": {
|
||
"*": [
|
||
"abi",
|
||
"evm.bytecode",
|
||
"evm.deployedBytecode",
|
||
"evm.methodIdentifiers",
|
||
"metadata",
|
||
"devdoc",
|
||
"userdoc",
|
||
"storageLayout",
|
||
"evm.gasEstimates"
|
||
],
|
||
"": [
|
||
"ast"
|
||
]
|
||
}
|
||
},
|
||
"metadata": {
|
||
"useLiteralContent": true
|
||
}
|
||
}
|
||
} |