pragma solidity ^0.6.0; pragma experimental ABIEncoderV2; interface IUniswapV2Router02 { function factory() external pure returns (address); function WETH() external pure returns (address); function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts); function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts); function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB); } interface IUniswapV2Factory { function getPair(address tokenA, address tokenB) external view returns (address pair); } interface TokenInterface { function allowance(address, address) external view returns (uint); function balanceOf(address) external view returns (uint); function approve(address, uint) external; function transfer(address, uint) external returns (bool); function decimals() external view returns (uint); function totalSupply() external view returns (uint); } interface IUniswapV2Pair { function balanceOf(address owner) external view returns (uint); function totalSupply() external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); } /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } library Babylonian { // credit for this implementation goes to // https://github.com/abdk-consulting/abdk-libraries-solidity/blob/master/ABDKMath64x64.sol#L687 function sqrt(uint256 x) internal pure returns (uint256) { if (x == 0) return 0; // this block is equivalent to r = uint256(1) << (BitMath.mostSignificantBit(x) / 2); // however that code costs significantly more gas uint256 xx = x; uint256 r = 1; if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; } if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; } if (xx >= 0x100000000) { xx >>= 32; r <<= 16; } if (xx >= 0x10000) { xx >>= 16; r <<= 8; } if (xx >= 0x100) { xx >>= 8; r <<= 4; } if (xx >= 0x10) { xx >>= 4; r <<= 2; } if (xx >= 0x8) { r <<= 1; } r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; // Seven iterations should be enough uint256 r1 = x / r; return (r < r1 ? r : r1); } } contract DSMath { function add(uint x, uint y) internal pure returns (uint z) { require((z = x + y) >= x, "math-not-safe"); } function mul(uint x, uint y) internal pure returns (uint z) { require(y == 0 || (z = x * y) / y == x, "math-not-safe"); } function sub(uint x, uint y) internal pure returns (uint z) { require((z = x - y) <= x, "sub-overflow"); } uint constant WAD = 10 ** 18; function wmul(uint x, uint y) internal pure returns (uint z) { z = add(mul(x, y), WAD / 2) / WAD; } function wdiv(uint x, uint y) internal pure returns (uint z) { z = add(mul(x, WAD), y / 2) / y; } } contract Helpers is DSMath { /** * @dev get Ethereum address */ function getEthAddr() public pure returns (address) { return 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; } } contract UniswapHelpers is Helpers { using SafeMath for uint256; /** * @dev Return WETH address */ function getAddressWETH() internal pure returns (address) { return 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; // mainnet // return 0xd0A1E359811322d97991E03f863a0C30C2cF029C; // kovan } /** * @dev Return uniswap v2 router02 Address */ function getUniswapAddr() internal pure returns (address) { return 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; } function convert18ToDec(uint _dec, uint256 _amt) internal pure returns (uint256 amt) { amt = (_amt / 10 ** (18 - _dec)); } function convertTo18(uint _dec, uint256 _amt) internal pure returns (uint256 amt) { amt = mul(_amt, 10 ** (18 - _dec)); } function changeEthAddress(address buy, address sell) internal pure returns(TokenInterface _buy, TokenInterface _sell){ _buy = buy == getEthAddr() ? TokenInterface(getAddressWETH()) : TokenInterface(buy); _sell = sell == getEthAddr() ? TokenInterface(getAddressWETH()) : TokenInterface(sell); } function getExpectedBuyAmt( address buyAddr, address sellAddr, uint sellAmt ) internal view returns(uint buyAmt) { IUniswapV2Router02 router = IUniswapV2Router02(getUniswapAddr()); address[] memory paths = new address[](2); paths[0] = address(sellAddr); paths[1] = address(buyAddr); uint[] memory amts = router.getAmountsOut( sellAmt, paths ); buyAmt = amts[1]; } function getExpectedSellAmt( address buyAddr, address sellAddr, uint buyAmt ) internal view returns(uint sellAmt) { IUniswapV2Router02 router = IUniswapV2Router02(getUniswapAddr()); address[] memory paths = new address[](2); paths[0] = address(sellAddr); paths[1] = address(buyAddr); uint[] memory amts = router.getAmountsIn( buyAmt, paths ); sellAmt = amts[0]; } function getBuyUnitAmt( TokenInterface buyAddr, uint expectedAmt, TokenInterface sellAddr, uint sellAmt, uint slippage ) internal view returns (uint unitAmt) { uint _sellAmt = convertTo18((sellAddr).decimals(), sellAmt); uint _buyAmt = convertTo18(buyAddr.decimals(), expectedAmt); unitAmt = wdiv(_buyAmt, _sellAmt); unitAmt = wmul(unitAmt, sub(WAD, slippage)); } function getSellUnitAmt( TokenInterface sellAddr, uint expectedAmt, TokenInterface buyAddr, uint buyAmt, uint slippage ) internal view returns (uint unitAmt) { uint _buyAmt = convertTo18(buyAddr.decimals(), buyAmt); uint _sellAmt = convertTo18(sellAddr.decimals(), expectedAmt); unitAmt = wdiv(_sellAmt, _buyAmt); unitAmt = wmul(unitAmt, add(WAD, slippage)); } function _getWithdrawUnitAmts( TokenInterface tokenA, TokenInterface tokenB, uint amtA, uint amtB, uint uniAmt, uint slippage ) internal view returns (uint unitAmtA, uint unitAmtB) { uint _amtA = convertTo18(tokenA.decimals(), amtA); uint _amtB = convertTo18(tokenB.decimals(), amtB); unitAmtA = wdiv(_amtA, uniAmt); unitAmtA = wmul(unitAmtA, sub(WAD, slippage)); unitAmtB = wdiv(_amtB, uniAmt); unitAmtB = wmul(unitAmtB, sub(WAD, slippage)); } function _getWithdrawAmts( TokenInterface _tokenA, TokenInterface _tokenB, uint uniAmt ) internal view returns (uint amtA, uint amtB) { IUniswapV2Router02 router = IUniswapV2Router02(getUniswapAddr()); address exchangeAddr = IUniswapV2Factory(router.factory()).getPair(address(_tokenA), address(_tokenB)); require(exchangeAddr != address(0), "pair-not-found."); TokenInterface uniToken = TokenInterface(exchangeAddr); uint share = wdiv(uniAmt, uniToken.totalSupply()); amtA = wmul(_tokenA.balanceOf(exchangeAddr), share); amtB = wmul(_tokenB.balanceOf(exchangeAddr), share); } function calculateSwapInAmount(uint256 reserveIn, uint256 userIn) internal pure returns (uint256) { return Babylonian .sqrt( reserveIn.mul( userIn.mul(3988000).add(reserveIn.mul(3988009)) ) ).sub(reserveIn.mul(1997)) / 1994; } } contract Resolver is UniswapHelpers { function getBuyAmount(address buyAddr, address sellAddr, uint sellAmt, uint slippage) public view returns (uint buyAmt, uint unitAmt) { (TokenInterface _buyAddr, TokenInterface _sellAddr) = changeEthAddress(buyAddr, sellAddr); buyAmt = getExpectedBuyAmt(address(_buyAddr), address(_sellAddr), sellAmt); unitAmt = getBuyUnitAmt(_buyAddr, buyAmt, _sellAddr, sellAmt, slippage); } function getSellAmount(address buyAddr, address sellAddr, uint buyAmt, uint slippage) public view returns (uint sellAmt, uint unitAmt) { (TokenInterface _buyAddr, TokenInterface _sellAddr) = changeEthAddress(buyAddr, sellAddr); sellAmt = getExpectedSellAmt(address(_buyAddr), address(_sellAddr), buyAmt); unitAmt = getSellUnitAmt(_sellAddr, sellAmt, _buyAddr, buyAmt, slippage); } function getDepositAmount( address tokenA, address tokenB, uint amountA, uint slippageA, uint slippageB ) public view returns (uint amountB, uint uniAmount, uint amountAMin, uint amountBMin) { (TokenInterface _tokenA, TokenInterface _tokenB) = changeEthAddress(tokenA, tokenB); IUniswapV2Router02 router = IUniswapV2Router02(getUniswapAddr()); IUniswapV2Factory factory = IUniswapV2Factory(router.factory()); IUniswapV2Pair lpToken = IUniswapV2Pair(factory.getPair(address(_tokenA), address(_tokenB))); require(address(lpToken) != address(0), "No-exchange-address"); (uint256 reserveA, uint256 reserveB, ) = lpToken.getReserves(); (reserveA, reserveB) = lpToken.token0() == address(_tokenA) ? (reserveA, reserveB) : (reserveB, reserveA); amountB = router.quote(amountA, reserveA, reserveB); uniAmount= mul(amountA, lpToken.totalSupply()); uniAmount= uniAmount / reserveA; amountAMin = wmul(sub(WAD, slippageA), amountA); amountBMin = wmul(sub(WAD, slippageB), amountB); } function getSingleDepositAmount( address tokenA, address tokenB, uint amountA, uint slippage ) public view returns (uint amtA, uint amtB, uint uniAmt, uint minUniAmt) { (TokenInterface _tokenA, TokenInterface _tokenB) = changeEthAddress(tokenA, tokenB); IUniswapV2Router02 router = IUniswapV2Router02(getUniswapAddr()); IUniswapV2Factory factory = IUniswapV2Factory(router.factory()); IUniswapV2Pair lpToken = IUniswapV2Pair(factory.getPair(address(_tokenA), address(_tokenB))); require(address(lpToken) != address(0), "No-exchange-address"); (uint256 reserveA, uint256 reserveB, ) = lpToken.getReserves(); (reserveA, reserveB) = lpToken.token0() == address(_tokenA) ? (reserveA, reserveB) : (reserveB, reserveA); uint256 swapAmtA = calculateSwapInAmount(reserveA, amountA); amtB = getExpectedBuyAmt(address(_tokenB), address(_tokenA), swapAmtA); amtA = sub(amountA, swapAmtA); uniAmt = mul(amtA, lpToken.totalSupply()); uniAmt = uniAmt / add(reserveA, swapAmtA); minUniAmt = wmul(sub(WAD, slippage), uniAmt); } function getDepositAmountNewPool( address tokenA, address tokenB, uint amtA, uint amtB ) public view returns (uint unitAmt) { (TokenInterface _tokenA, TokenInterface _tokenB) = changeEthAddress(tokenA, tokenB); IUniswapV2Router02 router = IUniswapV2Router02(getUniswapAddr()); address exchangeAddr = IUniswapV2Factory(router.factory()).getPair(address(_tokenA), address(_tokenB)); require(exchangeAddr == address(0), "pair-found."); uint _amtA18 = convertTo18(_tokenA.decimals(), amtA); uint _amtB18 = convertTo18(_tokenB.decimals(), amtB); unitAmt = wdiv(_amtB18, _amtA18); } function getWithdrawAmounts( address tokenA, address tokenB, uint uniAmt, uint slippage ) public view returns (uint amtA, uint amtB, uint unitAmtA, uint unitAmtB) { (TokenInterface _tokenA, TokenInterface _tokenB) = changeEthAddress(tokenA, tokenB); (amtA, amtB) = _getWithdrawAmts( _tokenA, _tokenB, uniAmt ); (unitAmtA, unitAmtB) = _getWithdrawUnitAmts( _tokenA, _tokenB, amtA, amtB, uniAmt, slippage ); } struct TokenPair { address tokenA; address tokenB; } struct PoolData { address tokenA; address tokenB; address lpAddress; uint reserveA; uint reserveB; uint tokenAShareAmt; uint tokenBShareAmt; uint tokenABalance; uint tokenBBalance; uint lpAmount; uint totalSupply; } function getPositionByPair( address owner, TokenPair[] memory tokenPairs ) public view returns (PoolData[] memory) { IUniswapV2Router02 router = IUniswapV2Router02(getUniswapAddr()); uint _len = tokenPairs.length; PoolData[] memory poolData = new PoolData[](_len); for (uint i = 0; i < _len; i++) { (TokenInterface tokenA, TokenInterface tokenB) = changeEthAddress(tokenPairs[i].tokenA, tokenPairs[i].tokenB); address exchangeAddr = IUniswapV2Factory(router.factory()).getPair( address(tokenA), address(tokenB) ); if (exchangeAddr != address(0)) { IUniswapV2Pair lpToken = IUniswapV2Pair(exchangeAddr); (uint256 reserveA, uint256 reserveB, ) = lpToken.getReserves(); (reserveA, reserveB) = lpToken.token0() == address(tokenA) ? (reserveA, reserveB) : (reserveB, reserveA); uint lpAmount = lpToken.balanceOf(owner); uint totalSupply = lpToken.totalSupply(); uint share = wdiv(lpAmount, totalSupply); uint amtA = wmul(reserveA, share); uint amtB = wmul(reserveB, share); poolData[i] = PoolData( address(0), address(0), address(lpToken), reserveA, reserveB, amtA, amtB, 0, 0, lpAmount, totalSupply ); } poolData[i].tokenA = tokenPairs[i].tokenA; poolData[i].tokenB = tokenPairs[i].tokenB; poolData[i].tokenABalance = tokenPairs[i].tokenA == getEthAddr() ? owner.balance : tokenA.balanceOf(owner); poolData[i].tokenBBalance = tokenPairs[i].tokenB == getEthAddr() ? owner.balance : tokenB.balanceOf(owner); } return poolData; } function getPosition( address owner, address[] memory lpTokens ) public view returns (PoolData[] memory) { uint _len = lpTokens.length; PoolData[] memory poolData = new PoolData[](_len); address wethAddr = getAddressWETH(); address ethAddr = getEthAddr(); for (uint i = 0; i < _len; i++) { IUniswapV2Pair lpToken = IUniswapV2Pair(lpTokens[i]); (uint256 reserveA, uint256 reserveB, ) = lpToken.getReserves(); (address tokenA, address tokenB) = (lpToken.token0(), lpToken.token1()); uint lpAmount = lpToken.balanceOf(owner); uint totalSupply = lpToken.totalSupply(); uint share = wdiv(lpAmount, totalSupply); uint amtA = wmul(reserveA, share); uint amtB = wmul(reserveB, share); poolData[i] = PoolData( tokenA == wethAddr ? ethAddr : tokenA, tokenB == wethAddr ? ethAddr : tokenB, address(lpToken), reserveA, reserveB, amtA, amtB, tokenA == wethAddr ? owner.balance : TokenInterface(tokenA).balanceOf(owner), tokenB == wethAddr ? owner.balance : TokenInterface(tokenB).balanceOf(owner), lpAmount, totalSupply ); } return poolData; } } contract InstaUniswapV2Resolver is Resolver { string public constant name = "UniswapV2-Resolver-v1.1"; }