// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; /// @title library that represents a number in BigNumber(coefficient and exponent) format to store in smaller bits. /// @notice the number is divided into two parts: a coefficient and an exponent. This comes at a cost of losing some precision /// at the end of the number because the exponent simply fills it with zeroes. This precision is oftentimes negligible and can /// result in significant gas cost reduction due to storage space reduction. /// Also note, a valid big number is as follows: if the exponent is > 0, then coefficient last bits should be occupied to have max precision. /// @dev roundUp is more like a increase 1, which happens everytime for the same number. /// roundDown simply sets trailing digits after coefficientSize to zero (floor), only once for the same number. library BigMathMinified { /// @dev constants to use for `roundUp` input param to increase readability bool internal constant ROUND_DOWN = false; bool internal constant ROUND_UP = true; /// @dev converts `normal` number to BigNumber with `exponent` and `coefficient` (or precision). /// e.g.: /// 5035703444687813576399599 (normal) = (coefficient[32bits], exponent[8bits])[40bits] /// 5035703444687813576399599 (decimal) => 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 (binary) /// => 10000101010010110100000011111011000000000000000000000000000000000000000000000000000 /// ^-------------------- 51(exponent) -------------- ^ /// coefficient = 1000,0101,0100,1011,0100,0000,1111,1011 (2236301563) /// exponent = 0011,0011 (51) /// bigNumber = 1000,0101,0100,1011,0100,0000,1111,1011,0011,0011 (572493200179) /// /// @param normal number which needs to be converted into Big Number /// @param coefficientSize at max how many bits of precision there should be (64 = uint64 (64 bits precision)) /// @param exponentSize at max how many bits of exponent there should be (8 = uint8 (8 bits exponent)) /// @param roundUp signals if result should be rounded down or up /// @return bigNumber converted bigNumber (coefficient << exponent) function toBigNumber( uint256 normal, uint256 coefficientSize, uint256 exponentSize, bool roundUp ) internal pure returns (uint256 bigNumber) { assembly { let lastBit_ let number_ := normal if gt(number_, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) { number_ := shr(0x80, number_) lastBit_ := 0x80 } if gt(number_, 0xFFFFFFFFFFFFFFFF) { number_ := shr(0x40, number_) lastBit_ := add(lastBit_, 0x40) } if gt(number_, 0xFFFFFFFF) { number_ := shr(0x20, number_) lastBit_ := add(lastBit_, 0x20) } if gt(number_, 0xFFFF) { number_ := shr(0x10, number_) lastBit_ := add(lastBit_, 0x10) } if gt(number_, 0xFF) { number_ := shr(0x8, number_) lastBit_ := add(lastBit_, 0x8) } if gt(number_, 0xF) { number_ := shr(0x4, number_) lastBit_ := add(lastBit_, 0x4) } if gt(number_, 0x3) { number_ := shr(0x2, number_) lastBit_ := add(lastBit_, 0x2) } if gt(number_, 0x1) { lastBit_ := add(lastBit_, 1) } if gt(number_, 0) { lastBit_ := add(lastBit_, 1) } if lt(lastBit_, coefficientSize) { // for throw exception lastBit_ := coefficientSize } let exponent := sub(lastBit_, coefficientSize) let coefficient := shr(exponent, normal) if and(roundUp, gt(exponent, 0)) { // rounding up is only needed if exponent is > 0, as otherwise the coefficient fully holds the original number coefficient := add(coefficient, 1) if eq(shl(coefficientSize, 1), coefficient) { // case were coefficient was e.g. 111, with adding 1 it became 1000 (in binary) and coefficientSize 3 bits // final coefficient would exceed it's size. -> reduce coefficent to 100 and increase exponent by 1. coefficient := shl(sub(coefficientSize, 1), 1) exponent := add(exponent, 1) } } if iszero(lt(exponent, shl(exponentSize, 1))) { // if exponent is >= exponentSize, the normal number is too big to fit within // BigNumber with too small sizes for coefficient and exponent revert(0, 0) } bigNumber := shl(exponentSize, coefficient) bigNumber := add(bigNumber, exponent) } } /// @dev get `normal` number from `bigNumber`, `exponentSize` and `exponentMask` function fromBigNumber( uint256 bigNumber, uint256 exponentSize, uint256 exponentMask ) internal pure returns (uint256 normal) { assembly { let coefficient := shr(exponentSize, bigNumber) let exponent := and(bigNumber, exponentMask) normal := shl(exponent, coefficient) } } /// @dev gets the most significant bit `lastBit` of a `normal` number (length of given number of binary format). /// e.g. /// 5035703444687813576399599 = 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 /// lastBit = ^--------------------------------- 83 ----------------------------------------^ function mostSignificantBit(uint256 normal) internal pure returns (uint lastBit) { assembly { let number_ := normal if gt(normal, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) { number_ := shr(0x80, number_) lastBit := 0x80 } if gt(number_, 0xFFFFFFFFFFFFFFFF) { number_ := shr(0x40, number_) lastBit := add(lastBit, 0x40) } if gt(number_, 0xFFFFFFFF) { number_ := shr(0x20, number_) lastBit := add(lastBit, 0x20) } if gt(number_, 0xFFFF) { number_ := shr(0x10, number_) lastBit := add(lastBit, 0x10) } if gt(number_, 0xFF) { number_ := shr(0x8, number_) lastBit := add(lastBit, 0x8) } if gt(number_, 0xF) { number_ := shr(0x4, number_) lastBit := add(lastBit, 0x4) } if gt(number_, 0x3) { number_ := shr(0x2, number_) lastBit := add(lastBit, 0x2) } if gt(number_, 0x1) { lastBit := add(lastBit, 1) } if gt(number_, 0) { lastBit := add(lastBit, 1) } } } }