mirror of
https://github.com/Instadapp/dsa-governance.git
synced 2024-07-29 22:27:52 +00:00
fixes
This commit is contained in:
parent
aac53cc82c
commit
bcc820c992
|
|
@ -3,6 +3,7 @@ pragma experimental ABIEncoderV2;
|
|||
|
||||
import { BigMathMinified } from "./libraries/bigMathMinified.sol";
|
||||
import { LiquiditySlotsLink } from "./libraries/liquiditySlotsLink.sol";
|
||||
import { LiquidityCalcs } from "./libraries/liquidityCalcs.sol";
|
||||
|
||||
interface IGovernorBravo {
|
||||
function _acceptAdmin() external;
|
||||
|
|
@ -360,6 +361,33 @@ interface IFluidOracle {
|
|||
function getExchangeRateLiquidate() external view returns (uint256 exchangeRate_);
|
||||
}
|
||||
|
||||
interface IFluidReserveContract {
|
||||
function isRebalancer(address user) external returns (bool);
|
||||
|
||||
function rebalanceFToken(address protocol_) external;
|
||||
|
||||
function rebalanceVault(address protocol_) external;
|
||||
|
||||
function transferFunds(address token_) external;
|
||||
|
||||
function getProtocolTokens(address protocol_) external;
|
||||
|
||||
function updateAuth(address auth_, bool isAuth_) external;
|
||||
|
||||
function updateRebalancer(address rebalancer_, bool isRebalancer_) external;
|
||||
|
||||
function approve(
|
||||
address[] memory protocols_,
|
||||
address[] memory tokens_,
|
||||
uint256[] memory amounts_
|
||||
) external;
|
||||
|
||||
function revoke(
|
||||
address[] memory protocols_,
|
||||
address[] memory tokens_
|
||||
) external;
|
||||
}
|
||||
|
||||
contract PayloadIGP26 {
|
||||
uint256 public constant PROPOSAL_ID = 26;
|
||||
|
||||
|
|
@ -386,6 +414,8 @@ contract PayloadIGP26 {
|
|||
IFluidLiquidityAdmin(0x52Aa899454998Be5b000Ad077a46Bbe360F4e497);
|
||||
IFluidVaultT1Factory public constant VAULT_T1_FACTORY =
|
||||
IFluidVaultT1Factory(0x324c5Dc1fC42c7a4D43d92df1eBA58a54d13Bf2d);
|
||||
IFluidReserveContract public constant FLUID_RESERVE =
|
||||
IFluidReserveContract(0x264786EF916af64a1DB19F513F24a3681734ce92);
|
||||
|
||||
uint256 internal constant X8 = 0xff;
|
||||
uint256 internal constant X10 = 0x3ff;
|
||||
|
|
@ -471,17 +501,27 @@ contract PayloadIGP26 {
|
|||
| Proposal Payload Helpers |
|
||||
|__________________________________*/
|
||||
|
||||
function getUserSupplyData(
|
||||
function getUserSupplyDataAndSetLimits(
|
||||
address token_,
|
||||
address user_
|
||||
address user_,
|
||||
uint256 withdrawalLimit
|
||||
) internal view returns(AdminModuleStructs.UserSupplyConfig memory config_) {
|
||||
bytes32 _LIQUDITY_PROTOCOL_SUPPLY_SLOT = LiquiditySlotsLink.calculateDoubleMappingStorageSlot(
|
||||
LiquiditySlotsLink.LIQUIDITY_USER_SUPPLY_DOUBLE_MAPPING_SLOT,
|
||||
user_,
|
||||
token_
|
||||
uint256 userSupplyData_ = LIQUIDITY.readFromStorage(
|
||||
LiquiditySlotsLink.calculateDoubleMappingStorageSlot(
|
||||
LiquiditySlotsLink.LIQUIDITY_USER_SUPPLY_DOUBLE_MAPPING_SLOT,
|
||||
user_,
|
||||
token_
|
||||
)
|
||||
);
|
||||
|
||||
(uint256 supplyExchangePrice, ) = LiquidityCalcs.calcExchangePrices(
|
||||
LIQUIDITY.readFromStorage(
|
||||
LiquiditySlotsLink.calculateMappingStorageSlot(
|
||||
LiquiditySlotsLink.LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT,
|
||||
token_
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
uint256 userSupplyData_ = LIQUIDITY.readFromStorage(_LIQUDITY_PROTOCOL_SUPPLY_SLOT);
|
||||
|
||||
config_ = AdminModuleStructs.UserSupplyConfig({
|
||||
user: user_,
|
||||
|
|
@ -489,25 +529,32 @@ contract PayloadIGP26 {
|
|||
mode: uint8(userSupplyData_ & 1),
|
||||
expandPercent: (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14,
|
||||
expandDuration: (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24,
|
||||
baseWithdrawalLimit: BigMathMinified.fromBigNumber(
|
||||
(userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18,
|
||||
DEFAULT_EXPONENT_SIZE,
|
||||
DEFAULT_EXPONENT_MASK
|
||||
)
|
||||
baseWithdrawalLimit: withdrawalLimit * 1e12 / supplyExchangePrice
|
||||
});
|
||||
}
|
||||
|
||||
function getUserBorrowData(
|
||||
function getUserBorrowDataAndSetLimits(
|
||||
address token_,
|
||||
address user_
|
||||
address user_,
|
||||
uint256 baseLimit,
|
||||
uint256 maxLimit
|
||||
) internal view returns(AdminModuleStructs.UserBorrowConfig memory config_) {
|
||||
bytes32 _LIQUDITY_PROTOCOL_BORROW_SLOT = LiquiditySlotsLink.calculateDoubleMappingStorageSlot(
|
||||
LiquiditySlotsLink.LIQUIDITY_USER_BORROW_DOUBLE_MAPPING_SLOT,
|
||||
user_,
|
||||
token_
|
||||
uint256 userBorrowData_ = LIQUIDITY.readFromStorage(
|
||||
LiquiditySlotsLink.calculateDoubleMappingStorageSlot(
|
||||
LiquiditySlotsLink.LIQUIDITY_USER_BORROW_DOUBLE_MAPPING_SLOT,
|
||||
user_,
|
||||
token_
|
||||
)
|
||||
);
|
||||
|
||||
uint256 userBorrowData_ = LIQUIDITY.readFromStorage(_LIQUDITY_PROTOCOL_BORROW_SLOT);
|
||||
(, uint256 borrowExchangePrice) = LiquidityCalcs.calcExchangePrices(
|
||||
LIQUIDITY.readFromStorage(
|
||||
LiquiditySlotsLink.calculateMappingStorageSlot(
|
||||
LiquiditySlotsLink.LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT,
|
||||
token_
|
||||
)
|
||||
)
|
||||
);
|
||||
|
||||
config_ = AdminModuleStructs.UserBorrowConfig({
|
||||
user: user_,
|
||||
|
|
@ -515,20 +562,12 @@ contract PayloadIGP26 {
|
|||
mode: uint8(userBorrowData_ & 1),
|
||||
expandPercent: (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14,
|
||||
expandDuration: (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24,
|
||||
baseDebtCeiling: BigMathMinified.fromBigNumber(
|
||||
(userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18,
|
||||
DEFAULT_EXPONENT_SIZE,
|
||||
DEFAULT_EXPONENT_MASK
|
||||
),
|
||||
maxDebtCeiling: BigMathMinified.fromBigNumber(
|
||||
(userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18,
|
||||
DEFAULT_EXPONENT_SIZE,
|
||||
DEFAULT_EXPONENT_MASK
|
||||
)
|
||||
baseDebtCeiling: baseLimit * 1e12 / borrowExchangePrice,
|
||||
maxDebtCeiling: maxLimit * 1e12 / borrowExchangePrice
|
||||
});
|
||||
}
|
||||
|
||||
function getAllowance(address token) internal pure returns (uint256, uint256, ) {
|
||||
function getAllowance(address token) internal pure returns (uint256, uint256, uint256) {
|
||||
if (token == ETH_ADDRESS) {
|
||||
return (3 * 1e18, 4 * 1e18, 0.03 * 1e18);
|
||||
} else if (token == wstETH_ADDRESS) {
|
||||
|
|
@ -604,13 +643,15 @@ contract PayloadIGP26 {
|
|||
AdminModuleStructs.UserSupplyConfig[]
|
||||
memory configs_ = new AdminModuleStructs.UserSupplyConfig[](1);
|
||||
|
||||
configs_[0] = getUserSupplyData(newConstants.supplyToken, oldVaultAddress);
|
||||
|
||||
(uint256 baseAllowance, , supplyAllowance) = getAllowance(newConstants.supplyToken);
|
||||
(uint256 baseAllowance, , uint256 supplyAllowance) = getAllowance(newConstants.supplyToken);
|
||||
|
||||
amounts[0] = supplyAllowance;
|
||||
|
||||
configs_[0].baseWithdrawalLimit = baseAllowance;
|
||||
configs_[0] = getUserSupplyDataAndSetLimits(
|
||||
newConstants.supplyToken,
|
||||
oldVaultAddress,
|
||||
baseAllowance
|
||||
);
|
||||
|
||||
LIQUIDITY.updateUserSupplyConfigs(configs_);
|
||||
}
|
||||
|
|
@ -620,23 +661,17 @@ contract PayloadIGP26 {
|
|||
AdminModuleStructs.UserBorrowConfig[]
|
||||
memory configs_ = new AdminModuleStructs.UserBorrowConfig[](1);
|
||||
|
||||
configs_[0] = getUserBorrowData(newConstants.borrowToken, oldVaultAddress);
|
||||
(uint256 baseAllowance, uint256 maxAllowance, uint256 borrowAllowance) = getAllowance(newConstants.borrowToken);
|
||||
|
||||
amounts[1] = borrowAllowance;
|
||||
|
||||
uint256 exchangePriceAndConfig_ = LIQUIDITY.readFromStorage(
|
||||
LiquiditySlotsLink.calculateMappingStorageSlot(
|
||||
LiquiditySlotsLink.LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT,
|
||||
newConstants.borrowToken
|
||||
)
|
||||
configs_[0] = getUserBorrowDataAndSetLimits(
|
||||
newConstants.borrowToken,
|
||||
oldVaultAddress,
|
||||
baseAllowance,
|
||||
maxAllowance
|
||||
);
|
||||
|
||||
(uint256 supplyExchangePrice, uint256 borrowExchangePrice) = LiquidityCalcs.calcExchangePrices(exchangePriceAndConfig_);
|
||||
|
||||
configs_[0].baseDebtCeiling = baseAllowance;
|
||||
configs_[0].maxDebtCeiling = maxAllowance;
|
||||
|
||||
LIQUIDITY.updateUserBorrowConfigs(configs_);
|
||||
}
|
||||
|
||||
|
|
|
|||
27
contracts/payloads/IGP26/libraries/errorTypes.sol
Normal file
27
contracts/payloads/IGP26/libraries/errorTypes.sol
Normal file
|
|
@ -0,0 +1,27 @@
|
|||
// SPDX-License-Identifier: BUSL-1.1
|
||||
pragma solidity 0.8.21;
|
||||
|
||||
library LibsErrorTypes {
|
||||
/***********************************|
|
||||
| LiquidityCalcs |
|
||||
|__________________________________*/
|
||||
|
||||
/// @notice thrown when supply or borrow exchange price is zero at calc token data (token not configured yet)
|
||||
uint256 internal constant LiquidityCalcs__ExchangePriceZero = 70001;
|
||||
|
||||
/// @notice thrown when rate data is set to a version that is not implemented
|
||||
uint256 internal constant LiquidityCalcs__UnsupportedRateVersion = 70002;
|
||||
|
||||
/// @notice thrown when the calculated borrow rate turns negative. This should never happen.
|
||||
uint256 internal constant LiquidityCalcs__BorrowRateNegative = 70003;
|
||||
|
||||
/***********************************|
|
||||
| SafeTransfer |
|
||||
|__________________________________*/
|
||||
|
||||
/// @notice thrown when safe transfer from for an ERC20 fails
|
||||
uint256 internal constant SafeTransfer__TransferFromFailed = 71001;
|
||||
|
||||
/// @notice thrown when safe transfer for an ERC20 fails
|
||||
uint256 internal constant SafeTransfer__TransferFailed = 71002;
|
||||
}
|
||||
686
contracts/payloads/IGP26/libraries/liquidityCalcs.sol
Normal file
686
contracts/payloads/IGP26/libraries/liquidityCalcs.sol
Normal file
|
|
@ -0,0 +1,686 @@
|
|||
// SPDX-License-Identifier: BUSL-1.1
|
||||
pragma solidity 0.8.21;
|
||||
|
||||
import { LibsErrorTypes as ErrorTypes } from "./errorTypes.sol";
|
||||
import { LiquiditySlotsLink } from "./liquiditySlotsLink.sol";
|
||||
import { BigMathMinified } from "./bigMathMinified.sol";
|
||||
|
||||
/// @notice implements calculation methods used for Fluid liquidity such as updated exchange prices,
|
||||
/// borrow rate, withdrawal / borrow limits, revenue amount.
|
||||
library LiquidityCalcs {
|
||||
error FluidLiquidityCalcsError(uint256 errorId_);
|
||||
|
||||
/// @notice emitted if the calculated borrow rate surpassed max borrow rate (16 bits) and was capped at maximum value 65535
|
||||
event BorrowRateMaxCap();
|
||||
|
||||
/// @dev constants as from Liquidity variables.sol
|
||||
uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12;
|
||||
|
||||
/// @dev Ignoring leap years
|
||||
uint256 internal constant SECONDS_PER_YEAR = 365 days;
|
||||
// constants used for BigMath conversion from and to storage
|
||||
uint256 internal constant DEFAULT_EXPONENT_SIZE = 8;
|
||||
uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF;
|
||||
|
||||
uint256 internal constant FOUR_DECIMALS = 1e4;
|
||||
uint256 internal constant TWELVE_DECIMALS = 1e12;
|
||||
uint256 internal constant X14 = 0x3fff;
|
||||
uint256 internal constant X15 = 0x7fff;
|
||||
uint256 internal constant X16 = 0xffff;
|
||||
uint256 internal constant X18 = 0x3ffff;
|
||||
uint256 internal constant X24 = 0xffffff;
|
||||
uint256 internal constant X33 = 0x1ffffffff;
|
||||
uint256 internal constant X64 = 0xffffffffffffffff;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
////////// CALC EXCHANGE PRICES /////////
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// @dev calculates interest (exchange prices) for a token given its' exchangePricesAndConfig from storage.
|
||||
/// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage
|
||||
/// @return supplyExchangePrice_ updated supplyExchangePrice
|
||||
/// @return borrowExchangePrice_ updated borrowExchangePrice
|
||||
function calcExchangePrices(
|
||||
uint256 exchangePricesAndConfig_
|
||||
) internal view returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) {
|
||||
// Extracting exchange prices
|
||||
supplyExchangePrice_ =
|
||||
(exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) &
|
||||
X64;
|
||||
borrowExchangePrice_ =
|
||||
(exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) &
|
||||
X64;
|
||||
|
||||
if (supplyExchangePrice_ == 0 || borrowExchangePrice_ == 0) {
|
||||
revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__ExchangePriceZero);
|
||||
}
|
||||
|
||||
uint256 temp_ = exchangePricesAndConfig_ & X16; // temp_ = borrowRate
|
||||
|
||||
unchecked {
|
||||
// last timestamp can not be > current timestamp
|
||||
uint256 secondsSinceLastUpdate_ = block.timestamp -
|
||||
((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33);
|
||||
|
||||
uint256 borrowRatio_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO) &
|
||||
X15;
|
||||
if (secondsSinceLastUpdate_ == 0 || temp_ == 0 || borrowRatio_ == 1) {
|
||||
// if no time passed, borrow rate is 0, or no raw borrowings: no exchange price update needed
|
||||
// (if borrowRatio_ == 1 means there is only borrowInterestFree, as first bit is 1 and rest is 0)
|
||||
return (supplyExchangePrice_, borrowExchangePrice_);
|
||||
}
|
||||
|
||||
// calculate new borrow exchange price.
|
||||
// formula borrowExchangePriceIncrease: previous price * borrow rate * secondsSinceLastUpdate_.
|
||||
// nominator is max uint112 (uint64 * uint16 * uint32). Divisor can not be 0.
|
||||
borrowExchangePrice_ +=
|
||||
(borrowExchangePrice_ * temp_ * secondsSinceLastUpdate_) /
|
||||
(SECONDS_PER_YEAR * FOUR_DECIMALS);
|
||||
|
||||
// FOR SUPPLY EXCHANGE PRICE:
|
||||
// all yield paid by borrowers (in mode with interest) goes to suppliers in mode with interest.
|
||||
// formula: previous price * supply rate * secondsSinceLastUpdate_.
|
||||
// where supply rate = (borrow rate - revenueFee%) * ratioSupplyYield. And
|
||||
// ratioSupplyYield = utilization * supplyRatio * borrowRatio
|
||||
//
|
||||
// Example:
|
||||
// supplyRawInterest is 80, supplyInterestFree is 20. totalSupply is 100. BorrowedRawInterest is 50.
|
||||
// BorrowInterestFree is 10. TotalBorrow is 60. borrow rate 40%, revenueFee 10%.
|
||||
// yield is 10 (so half a year must have passed).
|
||||
// supplyRawInterest must become worth 89. totalSupply must become 109. BorrowedRawInterest must become 60.
|
||||
// borrowInterestFree must still be 10. supplyInterestFree still 20. totalBorrow 70.
|
||||
// supplyExchangePrice would have to go from 1 to 1,125 (+ 0.125). borrowExchangePrice from 1 to 1,2 (+0.2).
|
||||
// utilization is 60%. supplyRatio = 20 / 80 = 25% (only 80% of lenders receiving yield).
|
||||
// borrowRatio = 10 / 50 = 20% (only 83,333% of borrowers paying yield):
|
||||
// x of borrowers paying yield = 100% - (20 / (100 + 20)) = 100% - 16.6666666% = 83,333%.
|
||||
// ratioSupplyYield = 60% * 83,33333% * (100% + 20%) = 62,5%
|
||||
// supplyRate = (40% * (100% - 10%)) * = 36% * 62,5% = 22.5%
|
||||
// increase in supplyExchangePrice, assuming 100 as previous price.
|
||||
// 100 * 22,5% * 1/2 (half a year) = 0,1125.
|
||||
// cross-check supplyRawInterest worth = 80 * 1.1125 = 89. totalSupply worth = 89 + 20.
|
||||
|
||||
// -------------- 1. calculate ratioSupplyYield --------------------------------
|
||||
// step1: utilization * supplyRatio (or actually part of lenders receiving yield)
|
||||
|
||||
// temp_ => supplyRatio (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383)
|
||||
// if first bit 0 then ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)
|
||||
// else ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)
|
||||
temp_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) & X15;
|
||||
|
||||
if (temp_ == 1) {
|
||||
// if no raw supply: no exchange price update needed
|
||||
// (if supplyRatio_ == 1 means there is only supplyInterestFree, as first bit is 1 and rest is 0)
|
||||
return (supplyExchangePrice_, borrowExchangePrice_);
|
||||
}
|
||||
|
||||
// ratioSupplyYield precision is 1e27 as 100% for increased precision when supplyInterestFree > supplyWithInterest
|
||||
if (temp_ & 1 == 1) {
|
||||
// ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)
|
||||
temp_ = temp_ >> 1;
|
||||
|
||||
// Note: case where temp_ == 0 (only supplyInterestFree, no yield) already covered by early return
|
||||
// in the if statement a little above.
|
||||
|
||||
// based on above example but supplyRawInterest is 20, supplyInterestFree is 80. no fee.
|
||||
// supplyRawInterest must become worth 30. totalSupply must become 110.
|
||||
// supplyExchangePrice would have to go from 1 to 1,5. borrowExchangePrice from 1 to 1,2.
|
||||
// so ratioSupplyYield must come out as 2.5 (250%).
|
||||
// supplyRatio would be (20 * 10_000 / 80) = 2500. but must be inverted.
|
||||
temp_ = (1e27 * FOUR_DECIMALS) / temp_; // e.g. 1e31 / 2500 = 4e27. (* 1e27 for precision)
|
||||
// e.g. 5_000 * (1e27 + 4e27) / 1e27 = 25_000 (=250%).
|
||||
temp_ =
|
||||
// utilization * (100% + 100% / supplyRatio)
|
||||
(((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) *
|
||||
(1e27 + temp_)) / // extract utilization (max 16_383 so there is no way this can overflow).
|
||||
(FOUR_DECIMALS);
|
||||
// max possible value of temp_ here is 16383 * (1e27 + 1e31) / 1e4 = ~1.64e31
|
||||
} else {
|
||||
// ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)
|
||||
temp_ = temp_ >> 1;
|
||||
// if temp_ == 0 then only supplyWithInterest => full yield. temp_ is already 0
|
||||
|
||||
// e.g. 5_000 * 10_000 + (20 * 10_000 / 80) / 10_000 = 5000 * 12500 / 10000 = 6250 (=62.5%).
|
||||
temp_ =
|
||||
// 1e27 * utilization * (100% + supplyRatio) / 100%
|
||||
(1e27 *
|
||||
((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * // extract utilization (max 16_383 so there is no way this can overflow).
|
||||
(FOUR_DECIMALS + temp_)) /
|
||||
(FOUR_DECIMALS * FOUR_DECIMALS);
|
||||
// max possible temp_ value: 1e27 * 16383 * 2e4 / 1e8 = 3.2766e27
|
||||
}
|
||||
// from here temp_ => ratioSupplyYield (utilization * supplyRatio part) scaled by 1e27. max possible value ~1.64e31
|
||||
|
||||
// step2 of ratioSupplyYield: add borrowRatio (only x% of borrowers paying yield)
|
||||
if (borrowRatio_ & 1 == 1) {
|
||||
// ratio is borrowWithInterest / borrowInterestFree (borrowInterestFree is bigger)
|
||||
borrowRatio_ = borrowRatio_ >> 1;
|
||||
// borrowRatio_ => x of total bororwers paying yield. scale to 1e27.
|
||||
|
||||
// Note: case where borrowRatio_ == 0 (only borrowInterestFree, no yield) already covered
|
||||
// at the beginning of the method by early return if `borrowRatio_ == 1`.
|
||||
|
||||
// based on above example but borrowRawInterest is 10, borrowInterestFree is 50. no fee. borrowRatio = 20%.
|
||||
// so only 16.66% of borrowers are paying yield. so the 100% - part of the formula is not needed.
|
||||
// x of borrowers paying yield = (borrowRatio / (100 + borrowRatio)) = 16.6666666%
|
||||
// borrowRatio_ => x of total bororwers paying yield. scale to 1e27.
|
||||
borrowRatio_ = (borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_);
|
||||
// max value here for borrowRatio_ is (1e31 / (1e4 + 1e4))= 5e26 (= 50% of borrowers paying yield).
|
||||
} else {
|
||||
// ratio is borrowInterestFree / borrowWithInterest (borrowWithInterest is bigger)
|
||||
borrowRatio_ = borrowRatio_ >> 1;
|
||||
|
||||
// borrowRatio_ => x of total bororwers paying yield. scale to 1e27.
|
||||
// x of borrowers paying yield = 100% - (borrowRatio / (100 + borrowRatio)) = 100% - 16.6666666% = 83,333%.
|
||||
borrowRatio_ = (1e27 - ((borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_)));
|
||||
// borrowRatio can never be > 100%. so max subtraction can be 100% - 100% / 200%.
|
||||
// or if borrowRatio_ is 0 -> 100% - 0. or if borrowRatio_ is 1 -> 100% - 1 / 101.
|
||||
// max value here for borrowRatio_ is 1e27 - 0 = 1e27 (= 100% of borrowers paying yield).
|
||||
}
|
||||
|
||||
// temp_ => ratioSupplyYield. scaled down from 1e25 = 1% each to normal percent precision 1e2 = 1%.
|
||||
// max nominator value is ~1.64e31 * 1e27 = 1.64e58. max result = 1.64e8
|
||||
temp_ = (FOUR_DECIMALS * temp_ * borrowRatio_) / 1e54;
|
||||
|
||||
// 2. calculate supply rate
|
||||
// temp_ => supply rate (borrow rate - revenueFee%) * ratioSupplyYield.
|
||||
// division part is done in next step to increase precision. (divided by 2x FOUR_DECIMALS, fee + borrowRate)
|
||||
// Note that all calculation divisions for supplyExchangePrice are rounded down.
|
||||
// Note supply rate can be bigger than the borrowRate, e.g. if there are only few lenders with interest
|
||||
// but more suppliers not earning interest.
|
||||
temp_ = ((exchangePricesAndConfig_ & X16) * // borrow rate
|
||||
temp_ * // ratioSupplyYield
|
||||
(FOUR_DECIMALS - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14))); // revenueFee
|
||||
// fee can not be > 100%. max possible = 65535 * ~1.64e8 * 1e4 =~1.074774e17.
|
||||
|
||||
// 3. calculate increase in supply exchange price
|
||||
supplyExchangePrice_ += ((supplyExchangePrice_ * temp_ * secondsSinceLastUpdate_) /
|
||||
(SECONDS_PER_YEAR * FOUR_DECIMALS * FOUR_DECIMALS * FOUR_DECIMALS));
|
||||
// max possible nominator = max uint 64 * 1.074774e17 * max uint32 = ~8.52e45. Denominator can not be 0.
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
////////// CALC REVENUE /////////
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// @dev gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from storage
|
||||
/// and the current balance of the Fluid liquidity contract for the token.
|
||||
/// @param totalAmounts_ total amounts packed uint256 read from storage
|
||||
/// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage
|
||||
/// @param liquidityTokenBalance_ current balance of Liquidity contract (IERC20(token_).balanceOf(address(this)))
|
||||
/// @return revenueAmount_ collectable revenue amount
|
||||
function calcRevenue(
|
||||
uint256 totalAmounts_,
|
||||
uint256 exchangePricesAndConfig_,
|
||||
uint256 liquidityTokenBalance_
|
||||
) internal view returns (uint256 revenueAmount_) {
|
||||
// @dev no need to super-optimize this method as it is only used by admin
|
||||
|
||||
// calculate the new exchange prices based on earned interest
|
||||
(uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) = calcExchangePrices(exchangePricesAndConfig_);
|
||||
|
||||
// total supply = interest free + with interest converted from raw
|
||||
uint256 totalSupply_ = getTotalSupply(totalAmounts_, supplyExchangePrice_);
|
||||
|
||||
if (totalSupply_ > 0) {
|
||||
// available revenue: balanceOf(token) + totalBorrowings - totalLendings.
|
||||
revenueAmount_ = liquidityTokenBalance_ + getTotalBorrow(totalAmounts_, borrowExchangePrice_);
|
||||
// ensure there is no possible case because of rounding etc. where this would revert,
|
||||
// explicitly check if >
|
||||
revenueAmount_ = revenueAmount_ > totalSupply_ ? revenueAmount_ - totalSupply_ : 0;
|
||||
// Note: if utilization > 100% (totalSupply < totalBorrow), then all the amount above 100% utilization
|
||||
// can only be revenue.
|
||||
} else {
|
||||
// if supply is 0, then rest of balance can be withdrawn as revenue so that no amounts get stuck
|
||||
revenueAmount_ = liquidityTokenBalance_;
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
////////// CALC LIMITS /////////
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// @dev calculates withdrawal limit before an operate execution:
|
||||
/// amount of user supply that must stay supplied (not amount that can be withdrawn).
|
||||
/// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M
|
||||
/// @param userSupplyData_ user supply data packed uint256 from storage
|
||||
/// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and converted from BigMath
|
||||
/// @return currentWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction.
|
||||
/// returned value is in raw for with interest mode, normal amount for interest free mode!
|
||||
function calcWithdrawalLimitBeforeOperate(
|
||||
uint256 userSupplyData_,
|
||||
uint256 userSupply_
|
||||
) internal view returns (uint256 currentWithdrawalLimit_) {
|
||||
// @dev must support handling the case where timestamp is 0 (config is set but no interactions yet).
|
||||
// first tx where timestamp is 0 will enter `if (lastWithdrawalLimit_ == 0)` because lastWithdrawalLimit_ is not set yet.
|
||||
// returning max withdrawal allowed, which is not exactly right but doesn't matter because the first interaction must be
|
||||
// a deposit anyway. Important is that it would not revert.
|
||||
|
||||
// Note the first time a deposit brings the user supply amount to above the base withdrawal limit, the active limit
|
||||
// is the fully expanded limit immediately.
|
||||
|
||||
// extract last set withdrawal limit
|
||||
uint256 lastWithdrawalLimit_ = (userSupplyData_ >>
|
||||
LiquiditySlotsLink.BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT) & X64;
|
||||
lastWithdrawalLimit_ =
|
||||
(lastWithdrawalLimit_ >> DEFAULT_EXPONENT_SIZE) <<
|
||||
(lastWithdrawalLimit_ & DEFAULT_EXPONENT_MASK);
|
||||
if (lastWithdrawalLimit_ == 0) {
|
||||
// withdrawal limit is not activated. Max withdrawal allowed
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint256 maxWithdrawableLimit_;
|
||||
uint256 temp_;
|
||||
unchecked {
|
||||
// extract max withdrawable percent of user supply and
|
||||
// calculate maximum withdrawable amount expandPercentage of user supply at full expansion duration elapsed
|
||||
// e.g.: if 10% expandPercentage, meaning 10% is withdrawable after full expandDuration has elapsed.
|
||||
|
||||
// userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
|
||||
maxWithdrawableLimit_ =
|
||||
(((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14) * userSupply_) /
|
||||
FOUR_DECIMALS;
|
||||
|
||||
// time elapsed since last withdrawal limit was set (in seconds)
|
||||
// @dev last process timestamp is guaranteed to exist for withdrawal, as a supply must have happened before.
|
||||
// last timestamp can not be > current timestamp
|
||||
temp_ =
|
||||
block.timestamp -
|
||||
((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) & X33);
|
||||
}
|
||||
// calculate withdrawable amount of expandPercent that is elapsed of expandDuration.
|
||||
// e.g. if 60% of expandDuration has elapsed, then user should be able to withdraw 6% of user supply, down to 94%.
|
||||
// Note: no explicit check for this needed, it is covered by setting minWithdrawalLimit_ if needed.
|
||||
temp_ =
|
||||
(maxWithdrawableLimit_ * temp_) /
|
||||
// extract expand duration: After this, decrement won't happen (user can withdraw 100% of withdraw limit)
|
||||
((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24); // expand duration can never be 0
|
||||
// calculate expanded withdrawal limit: last withdrawal limit - withdrawable amount.
|
||||
// Note: withdrawable amount here can grow bigger than userSupply if timeElapsed is a lot bigger than expandDuration,
|
||||
// which would cause the subtraction `lastWithdrawalLimit_ - withdrawableAmount_` to revert. In that case, set 0
|
||||
// which will cause minimum (fully expanded) withdrawal limit to be set in lines below.
|
||||
unchecked {
|
||||
// underflow explicitly checked & handled
|
||||
currentWithdrawalLimit_ = lastWithdrawalLimit_ > temp_ ? lastWithdrawalLimit_ - temp_ : 0;
|
||||
// calculate minimum withdrawal limit: minimum amount of user supply that must stay supplied at full expansion.
|
||||
// subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_
|
||||
temp_ = userSupply_ - maxWithdrawableLimit_;
|
||||
}
|
||||
// if withdrawal limit is decreased below minimum then set minimum
|
||||
// (e.g. when more than expandDuration time has elapsed)
|
||||
if (temp_ > currentWithdrawalLimit_) {
|
||||
currentWithdrawalLimit_ = temp_;
|
||||
}
|
||||
}
|
||||
|
||||
/// @dev calculates withdrawal limit after an operate execution:
|
||||
/// amount of user supply that must stay supplied (not amount that can be withdrawn).
|
||||
/// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M
|
||||
/// @param userSupplyData_ user supply data packed uint256 from storage
|
||||
/// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and added / subtracted with the executed operate amount
|
||||
/// @param newWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction, result from `calcWithdrawalLimitBeforeOperate`
|
||||
/// @return withdrawalLimit_ updated withdrawal limit that should be written to storage. returned value is in
|
||||
/// raw for with interest mode, normal amount for interest free mode!
|
||||
function calcWithdrawalLimitAfterOperate(
|
||||
uint256 userSupplyData_,
|
||||
uint256 userSupply_,
|
||||
uint256 newWithdrawalLimit_
|
||||
) internal pure returns (uint256) {
|
||||
// temp_ => base withdrawal limit. below this, maximum withdrawals are allowed
|
||||
uint256 temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18;
|
||||
temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);
|
||||
|
||||
// if user supply is below base limit then max withdrawals are allowed
|
||||
if (userSupply_ < temp_) {
|
||||
return 0;
|
||||
}
|
||||
// temp_ => withdrawal limit expandPercent (is in 1e2 decimals)
|
||||
temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14;
|
||||
unchecked {
|
||||
// temp_ => minimum withdrawal limit: userSupply - max withdrawable limit (userSupply * expandPercent))
|
||||
// userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
|
||||
// subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_
|
||||
temp_ = userSupply_ - ((userSupply_ * temp_) / FOUR_DECIMALS);
|
||||
}
|
||||
// if new (before operation) withdrawal limit is less than minimum limit then set minimum limit.
|
||||
// e.g. can happen on new deposits. withdrawal limit is instantly fully expanded in a scenario where
|
||||
// increased deposit amount outpaces withrawals.
|
||||
if (temp_ > newWithdrawalLimit_) {
|
||||
return temp_;
|
||||
}
|
||||
return newWithdrawalLimit_;
|
||||
}
|
||||
|
||||
/// @dev calculates borrow limit before an operate execution:
|
||||
/// total amount user borrow can reach (not borrowable amount in current operation).
|
||||
/// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M
|
||||
/// @param userBorrowData_ user borrow data packed uint256 from storage
|
||||
/// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_`
|
||||
/// @return currentBorrowLimit_ current borrow limit updated for expansion since last interaction. returned value is in
|
||||
/// raw for with interest mode, normal amount for interest free mode!
|
||||
function calcBorrowLimitBeforeOperate(
|
||||
uint256 userBorrowData_,
|
||||
uint256 userBorrow_
|
||||
) internal view returns (uint256 currentBorrowLimit_) {
|
||||
// @dev must support handling the case where timestamp is 0 (config is set but no interactions yet) -> base limit.
|
||||
// first tx where timestamp is 0 will enter `if (maxExpandedBorrowLimit_ < baseBorrowLimit_)` because `userBorrow_` and thus
|
||||
// `maxExpansionLimit_` and thus `maxExpandedBorrowLimit_` is 0 and `baseBorrowLimit_` can not be 0.
|
||||
|
||||
// temp_ = extract borrow expand percent (is in 1e2 decimals)
|
||||
uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14;
|
||||
|
||||
uint256 maxExpansionLimit_;
|
||||
uint256 maxExpandedBorrowLimit_;
|
||||
unchecked {
|
||||
// calculate max expansion limit: Max amount limit can expand to since last interaction
|
||||
// userBorrow_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
|
||||
maxExpansionLimit_ = ((userBorrow_ * temp_) / FOUR_DECIMALS);
|
||||
|
||||
// calculate max borrow limit: Max point limit can increase to since last interaction
|
||||
maxExpandedBorrowLimit_ = userBorrow_ + maxExpansionLimit_;
|
||||
}
|
||||
|
||||
// currentBorrowLimit_ = extract base borrow limit
|
||||
currentBorrowLimit_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;
|
||||
currentBorrowLimit_ =
|
||||
(currentBorrowLimit_ >> DEFAULT_EXPONENT_SIZE) <<
|
||||
(currentBorrowLimit_ & DEFAULT_EXPONENT_MASK);
|
||||
|
||||
if (maxExpandedBorrowLimit_ < currentBorrowLimit_) {
|
||||
return currentBorrowLimit_;
|
||||
}
|
||||
// time elapsed since last borrow limit was set (in seconds)
|
||||
unchecked {
|
||||
// temp_ = timeElapsed_ (last timestamp can not be > current timestamp)
|
||||
temp_ =
|
||||
block.timestamp -
|
||||
((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) & X33); // extract last update timestamp
|
||||
}
|
||||
|
||||
// currentBorrowLimit_ = expandedBorrowableAmount + extract last set borrow limit
|
||||
currentBorrowLimit_ =
|
||||
// calculate borrow limit expansion since last interaction for `expandPercent` that is elapsed of `expandDuration`.
|
||||
// divisor is extract expand duration (after this, full expansion to expandPercentage happened).
|
||||
((maxExpansionLimit_ * temp_) /
|
||||
((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24)) + // expand duration can never be 0
|
||||
// extract last set borrow limit
|
||||
BigMathMinified.fromBigNumber(
|
||||
(userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT) & X64,
|
||||
DEFAULT_EXPONENT_SIZE,
|
||||
DEFAULT_EXPONENT_MASK
|
||||
);
|
||||
|
||||
// if timeElapsed is bigger than expandDuration, new borrow limit would be > max expansion,
|
||||
// so set to `maxExpandedBorrowLimit_` in that case.
|
||||
// also covers the case where last process timestamp = 0 (timeElapsed would simply be very big)
|
||||
if (currentBorrowLimit_ > maxExpandedBorrowLimit_) {
|
||||
currentBorrowLimit_ = maxExpandedBorrowLimit_;
|
||||
}
|
||||
// temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)
|
||||
temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;
|
||||
temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);
|
||||
|
||||
if (currentBorrowLimit_ > temp_) {
|
||||
currentBorrowLimit_ = temp_;
|
||||
}
|
||||
}
|
||||
|
||||
/// @dev calculates borrow limit after an operate execution:
|
||||
/// total amount user borrow can reach (not borrowable amount in current operation).
|
||||
/// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M
|
||||
/// @param userBorrowData_ user borrow data packed uint256 from storage
|
||||
/// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` and added / subtracted with the executed operate amount
|
||||
/// @param newBorrowLimit_ current borrow limit updated for expansion since last interaction, result from `calcBorrowLimitBeforeOperate`
|
||||
/// @return borrowLimit_ updated borrow limit that should be written to storage.
|
||||
/// returned value is in raw for with interest mode, normal amount for interest free mode!
|
||||
function calcBorrowLimitAfterOperate(
|
||||
uint256 userBorrowData_,
|
||||
uint256 userBorrow_,
|
||||
uint256 newBorrowLimit_
|
||||
) internal pure returns (uint256 borrowLimit_) {
|
||||
// temp_ = extract borrow expand percent
|
||||
uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; // (is in 1e2 decimals)
|
||||
|
||||
unchecked {
|
||||
// borrowLimit_ = calculate maximum borrow limit at full expansion.
|
||||
// userBorrow_ needs to be at least 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
|
||||
borrowLimit_ = userBorrow_ + ((userBorrow_ * temp_) / FOUR_DECIMALS);
|
||||
}
|
||||
|
||||
// temp_ = extract base borrow limit
|
||||
temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;
|
||||
temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);
|
||||
|
||||
if (borrowLimit_ < temp_) {
|
||||
// below base limit, borrow limit is always base limit
|
||||
return temp_;
|
||||
}
|
||||
// temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)
|
||||
temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;
|
||||
temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);
|
||||
|
||||
// make sure fully expanded borrow limit is not above hard max borrow limit
|
||||
if (borrowLimit_ > temp_) {
|
||||
borrowLimit_ = temp_;
|
||||
}
|
||||
// if new borrow limit (from before operate) is > max borrow limit, set max borrow limit.
|
||||
// (e.g. on a repay shrinking instantly to fully expanded borrow limit from new borrow amount. shrinking is instant)
|
||||
if (newBorrowLimit_ > borrowLimit_) {
|
||||
return borrowLimit_;
|
||||
}
|
||||
return newBorrowLimit_;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
////////// CALC RATES /////////
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// @dev Calculates new borrow rate from utilization for a token
|
||||
/// @param rateData_ rate data packed uint256 from storage for the token
|
||||
/// @param utilization_ totalBorrow / totalSupply. 1e4 = 100% utilization
|
||||
/// @return rate_ rate for that particular token in 1e2 precision (e.g. 5% rate = 500)
|
||||
function calcBorrowRateFromUtilization(uint256 rateData_, uint256 utilization_) internal returns (uint256 rate_) {
|
||||
// extract rate version: 4 bits (0xF) starting from bit 0
|
||||
uint256 rateVersion_ = (rateData_ & 0xF);
|
||||
|
||||
if (rateVersion_ == 1) {
|
||||
rate_ = calcRateV1(rateData_, utilization_);
|
||||
} else if (rateVersion_ == 2) {
|
||||
rate_ = calcRateV2(rateData_, utilization_);
|
||||
} else {
|
||||
revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__UnsupportedRateVersion);
|
||||
}
|
||||
|
||||
if (rate_ > X16) {
|
||||
// hard cap for borrow rate at maximum value 16 bits (65535) to make sure it does not overflow storage space.
|
||||
// this is unlikely to ever happen if configs stay within expected levels.
|
||||
rate_ = X16;
|
||||
// emit event to more easily become aware
|
||||
emit BorrowRateMaxCap();
|
||||
}
|
||||
}
|
||||
|
||||
/// @dev calculates the borrow rate based on utilization for rate data version 1 (with one kink) in 1e2 precision
|
||||
/// @param rateData_ rate data packed uint256 from storage for the token
|
||||
/// @param utilization_ in 1e2 (100% = 1e4)
|
||||
/// @return rate_ rate in 1e2 precision
|
||||
function calcRateV1(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) {
|
||||
/// For rate v1 (one kink) ------------------------------------------------------
|
||||
/// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
|
||||
/// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
|
||||
/// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
|
||||
/// Next 16 bits => 52- 67 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
|
||||
/// Last 188 bits => 68-255 => blank, might come in use in future
|
||||
|
||||
// y = mx + c.
|
||||
// y is borrow rate
|
||||
// x is utilization
|
||||
// m = slope (m can also be negative for declining rates)
|
||||
// c is constant (c can be negative)
|
||||
|
||||
uint256 y1_;
|
||||
uint256 y2_;
|
||||
uint256 x1_;
|
||||
uint256 x2_;
|
||||
|
||||
// extract kink1: 16 bits (0xFFFF) starting from bit 20
|
||||
// kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two
|
||||
uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_UTILIZATION_AT_KINK) & X16;
|
||||
if (utilization_ < kink1_) {
|
||||
// if utilization is less than kink
|
||||
y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO) & X16;
|
||||
y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16;
|
||||
x1_ = 0; // 0%
|
||||
x2_ = kink1_;
|
||||
} else {
|
||||
// else utilization is greater than kink
|
||||
y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16;
|
||||
y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX) & X16;
|
||||
x1_ = kink1_;
|
||||
x2_ = FOUR_DECIMALS; // 100%
|
||||
}
|
||||
|
||||
int256 constant_;
|
||||
int256 slope_;
|
||||
unchecked {
|
||||
// calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1).
|
||||
// utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor)
|
||||
// y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS
|
||||
slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_));
|
||||
|
||||
// calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx.
|
||||
// maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256
|
||||
// maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12;
|
||||
// maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256
|
||||
// subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256
|
||||
constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_));
|
||||
|
||||
// calculating new borrow rate
|
||||
// - slope_ max value is 65535 * 1e12,
|
||||
// - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply)
|
||||
// - constant max value is 65535 * 1e12
|
||||
// so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256
|
||||
// divisor TWELVE_DECIMALS can not be 0
|
||||
slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings
|
||||
if (slope_ < 0) {
|
||||
revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative);
|
||||
}
|
||||
rate_ = uint256(slope_) / TWELVE_DECIMALS;
|
||||
}
|
||||
}
|
||||
|
||||
/// @dev calculates the borrow rate based on utilization for rate data version 2 (with two kinks) in 1e4 precision
|
||||
/// @param rateData_ rate data packed uint256 from storage for the token
|
||||
/// @param utilization_ in 1e2 (100% = 1e4)
|
||||
/// @return rate_ rate in 1e4 precision
|
||||
function calcRateV2(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) {
|
||||
/// For rate v2 (two kinks) -----------------------------------------------------
|
||||
/// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
|
||||
/// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
|
||||
/// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
|
||||
/// Next 16 bits => 52- 67 => Utilization at kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
|
||||
/// Next 16 bits => 68- 83 => Rate at utilization kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
|
||||
/// Next 16 bits => 84- 99 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
|
||||
/// Last 156 bits => 100-255 => blank, might come in use in future
|
||||
|
||||
// y = mx + c.
|
||||
// y is borrow rate
|
||||
// x is utilization
|
||||
// m = slope (m can also be negative for declining rates)
|
||||
// c is constant (c can be negative)
|
||||
|
||||
uint256 y1_;
|
||||
uint256 y2_;
|
||||
uint256 x1_;
|
||||
uint256 x2_;
|
||||
|
||||
// extract kink1: 16 bits (0xFFFF) starting from bit 20
|
||||
// kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two
|
||||
uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1) & X16;
|
||||
if (utilization_ < kink1_) {
|
||||
// if utilization is less than kink1
|
||||
y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO) & X16;
|
||||
y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16;
|
||||
x1_ = 0; // 0%
|
||||
x2_ = kink1_;
|
||||
} else {
|
||||
// extract kink2: 16 bits (0xFFFF) starting from bit 52
|
||||
uint256 kink2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2) & X16;
|
||||
if (utilization_ < kink2_) {
|
||||
// if utilization is less than kink2
|
||||
y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16;
|
||||
y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16;
|
||||
x1_ = kink1_;
|
||||
x2_ = kink2_;
|
||||
} else {
|
||||
// else utilization is greater than kink2
|
||||
y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16;
|
||||
y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX) & X16;
|
||||
x1_ = kink2_;
|
||||
x2_ = FOUR_DECIMALS;
|
||||
}
|
||||
}
|
||||
|
||||
int256 constant_;
|
||||
int256 slope_;
|
||||
unchecked {
|
||||
// calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1).
|
||||
// utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor)
|
||||
// y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS
|
||||
slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_));
|
||||
|
||||
// calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx.
|
||||
// maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256
|
||||
// maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12;
|
||||
// maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256
|
||||
// subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256
|
||||
constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_));
|
||||
|
||||
// calculating new borrow rate
|
||||
// - slope_ max value is 65535 * 1e12,
|
||||
// - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply)
|
||||
// - constant max value is 65535 * 1e12
|
||||
// so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256
|
||||
// divisor TWELVE_DECIMALS can not be 0
|
||||
slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings
|
||||
if (slope_ < 0) {
|
||||
revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative);
|
||||
}
|
||||
rate_ = uint256(slope_) / TWELVE_DECIMALS;
|
||||
}
|
||||
}
|
||||
|
||||
/// @dev reads the total supply out of Liquidity packed storage `totalAmounts_` for `supplyExchangePrice_`
|
||||
function getTotalSupply(
|
||||
uint256 totalAmounts_,
|
||||
uint256 supplyExchangePrice_
|
||||
) internal pure returns (uint256 totalSupply_) {
|
||||
// totalSupply_ => supplyInterestFree
|
||||
totalSupply_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64;
|
||||
totalSupply_ = (totalSupply_ >> DEFAULT_EXPONENT_SIZE) << (totalSupply_ & DEFAULT_EXPONENT_MASK);
|
||||
|
||||
uint256 totalSupplyRaw_ = totalAmounts_ & X64; // no shifting as supplyRaw is first 64 bits
|
||||
totalSupplyRaw_ = (totalSupplyRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalSupplyRaw_ & DEFAULT_EXPONENT_MASK);
|
||||
|
||||
// totalSupply = supplyInterestFree + supplyRawInterest normalized from raw
|
||||
totalSupply_ += ((totalSupplyRaw_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION);
|
||||
}
|
||||
|
||||
/// @dev reads the total borrow out of Liquidity packed storage `totalAmounts_` for `borrowExchangePrice_`
|
||||
function getTotalBorrow(
|
||||
uint256 totalAmounts_,
|
||||
uint256 borrowExchangePrice_
|
||||
) internal pure returns (uint256 totalBorrow_) {
|
||||
// totalBorrow_ => borrowInterestFree
|
||||
// no & mask needed for borrow interest free as it occupies the last bits in the storage slot
|
||||
totalBorrow_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE);
|
||||
totalBorrow_ = (totalBorrow_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrow_ & DEFAULT_EXPONENT_MASK);
|
||||
|
||||
uint256 totalBorrowRaw_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64;
|
||||
totalBorrowRaw_ = (totalBorrowRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrowRaw_ & DEFAULT_EXPONENT_MASK);
|
||||
|
||||
// totalBorrow = borrowInterestFree + borrowRawInterest normalized from raw
|
||||
totalBorrow_ += ((totalBorrowRaw_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION);
|
||||
}
|
||||
}
|
||||
Loading…
Reference in New Issue
Block a user