Using Tenderly to simulate a transaction

Tenderly is a Smart contract monitoring and alerting tool. With tenderly you can monitor smart
contracts on multiple Ethereum networks. Recently, tenderly has come up with a great feature of
simulating a transaction on Ethereum network which makes debugging a lot more easier than
before.

So, today you will learn how you can simulate a transaction on tenderly.

Step 1:

Create an account on tenderly

Step 2:

Select Simulator from the side bar

ON-CHAIN DATA

SimU|at0r New Simulation

Transactions
Contracts
@) Simulator Status To Function Network

Local Transactions |Beta
® 0x015710bc. .

ONITORING
MONITORING 15710b

Analytics n
® 0x015710bc...0382

Alerting
® 0x015710BC. . .0382
PROJECT
PerPage 10 |20 50
Collaborators

Settings

Free Plan -

Step 3:
Create a new simulation using “New Simulation” button present on the right side of the screen.

Now, We will take a scenario from DSA which will throw an error of “gas required exceeds
allowance” which is quite common.

We will try to cast the oasis’ sell spell and maker’s borrow spell with amount 0.2 DAI and slippage
1%.

Now, If we will cast the above spells, then it will thrown an error of “gas required exceeds
allowance”. But it doesn’t give any clue why it is throwing this error.

So, now we can use the DSA’s estimateCastGas() function which provide us the amount of
gasLimit we need to provide to the spells and in its Catch section we will print the error which will
give us the data variable in case any error occurs.

Now, after executing the dsa.estimateCastGas() function, it will return us error along with the data
variable which we will use at tenderly.

https://dashboard.tenderly.co/register?utm_source=homepage

Returned error: gas required exceeds allowance (1000000@) or always failing transaction
Object.ErrorResponse (/Users/adityasharma/node_modules/web3/node_modules/web3-core-helpers/src/errors.js:29:16)
/Users/adityasharma/node_modules/web3/node_modules/web3-core-requestmanager/src/index.3s:166:36
XMLHttpRequest.request.onreadystatechange (/Users/adityasharma/node_modules/web3/node_modules/web3-providers-http/src/index
XMLHttpRequestEventTarget.dispatchEvent (/Users/adityasharma/node_modules/xhr2-cookies/dist/xml-http-request-event-target.j
XMLHttpRequest._setReadyState (/Users/adityasharma/node_modules/xhr2-cookies/dist/xml-http-request.)
XMLHttpRequest._onHttpResponseEnd (/Users/adityasharma/node_modules/xhr2-cookies/dist/xml-http-reque:
IncomingMessage.<anonymous> (/Users/adityasharma/node_modules/xhr2-cookies/dist/xml-http-request.js:

t ng age.emit nts.js:3

€ ick Rej C

transaction will likely faill! {
Error: Returned error: gas required exceeds allowance (10000000) or always failing transaction
Object.ErrorResponse (/Users/adityasharma/node_modules/web3/node_modules/web3-core-helpers/src/errors.j
/Users/adityasharma/node_modules/web3/node_modules/web3—core-requestmanager/src/index. js:166:36
XMLHttpRequest . request.onreadystatechange (/Users/adityasharma/node_modules/web3/node_modules/web3-providers-http/src/index.j
XMLHttpRequestEventTarget.dispatchEvent (/Users/adityasharma/node_modules/xhr2—cookies/dist/xml-http-request—event-target.j
XMLHttpRequest._setReadyState (/Users/adityasharma/node_modules/xhr2-cookies/dist/xml-http-request.js:208:14)
XMLHttpRequest._onHttpResponseEnd (/Users/adityasharma/node_modules/xhr2-cookies/dist/xml-http-request 18:14)
IncomingMessage.<anonymous> (/Users/adityasharma/node_modules/xhr2-cookies/dist/xml-http-request.js:289:61

(events.js:

stateMutability:

Step: 4

In the new Simulation on tenderly, select option of “Use Custom Contract” and provide the “to”
address from data variable to the “Address” section.

Since, DSA is best functional on Mainnet we will select Mainnet in the Network section

Now, take the value of “data” key from the data object in terminal and provide it to the “Raw Input
Section” on tenderly.

In the Transaction Parameters change the “From” variable to your address which has DSA setup
already.

New Simulation

Contract Transaction Parameters

Use Custom Contract Use Pending Block

Address 015710bc1dfc33640d9cd7e367377 Block number 10219502

. rent block: 10229770
Mainnet

0xe0e90acf000000000000000000000000000000000
000000000000000000000000000006000000000000 Maximum Block Index: 110

NN

Raw Input

From 0xb116f194179418b24713a6535149ef637fa13325

fault from addr

1000000

default

Simulate Transaction

Now, When we simulate the transaction it will tell us with the whole call stack and if the
transaction will go through or

= Overview B Contracts Q' Events State Changes >. Debugger @@ Gas Profiler

Transaction: 8c32c104-9f27-4e36-a866-f3ch53e7defd Mainnet

Status: Failed Block: 10219502 Timestamp: a few seconds ago (09/06/2020 11:49:40) Gas Used: 202,293

Value: 0ETH

Caller Address: Contract Address:

0xb116f194179418b24713a6535149ef637fa13325 ® 0x015710bc1dfc33640d9cd7e3673779b917€10382

Stack Trace

require(managerContract.count(address(this)) > @, "no-vault-opened"); >~ Debug Error
at ConnectMaker:324

getVault()
at ConnectMaker:508

2 traces from stack traces have been collapsed v Expand
Opcode: [DELEGATECALL]

in 0x015710bc1dfc33640d9cd7e3673779b917e10382
Opcode: [CALL]

in 0x015710bc1dfc33640d9cd7e3673779b917e10382

®

In our case, it is showing that the transaction has failed along with an error “execution reverted”.

But this time the error is quite understandable as it is providing us the condition which caused the
error which in our case is “require(managerContract.count(address(this)) > 0, "no-vault-opened");

”. Now, we can understand the error and work on solving it.

B Contracts [Events <> State Changes >~ Debugger & Gas Profiler

add in FiatTokenV1.sol:554
isActive in MatchingMarket.sol:886
convertWethToEth in ConnectOasis.sol:277
getAddressWETH in ConnectOasis.sol:153
setUint in ConnectOasis.sol:279
connectorlID in ConnectOasis.sol:284
getEventAddr in ConnectOasis.sol:285
emitEvent in ConnectOasis.sol:285
[STATICCALL] in InstaEvent.sol:15
spell in InstaAccount.sol:141
borrow in InstaAccount.sol:105
getMcdManager in ConnectMaker.sol:505
getUint in ConnectMaker.sol:507
getVault in ConnectMaker.sol:508
[STATICCALL] in ConnectMaker.sol:324

getVault in ConnectMaker.sol:324 B® View source | >- View in Debugger

function getVault(ManagerLike managerContract, uint vault) internal view returns (uint _vault) {
if (vault == @) {
require(managerContract.count(address(this)) > @, "no-vault-opened"); & execution reverted
_vault = managerContract.last(address(this));
} else {
_vault = vault;

}

can also take a look at the whole Stack Trace which your transaction went through.

= Overview B Contracts [Events <> State Changes - Debugger & Gas Profiler

Simulated Transaction @ Re-Simulate

This is the list of all project and publicly verified contracts that have been involved in this transaction. Select a contract below to view its source.

FiatTokenV1 Instalndex InstaEvent InstaList ConnectMaker DssCdpManager
| 971adfa.. 0x2af7e ool 0x4 ...abeb 0x5)T 0x5ef 75474...1dof

@ Verified Contract Verified Contract @ Verified Contract Verified Contract Verified Contract @ Verified Contract Verified Contract

MatchingMarket InstaAccount FiatTokenProxy InstaConnectors ConnectOasis
0x794 1. ..d 91...eb48 0xd6a »..1e0c 0xe554c .5b1f

 Verified Contract Verified Contract @ Verified Contract @ Verified Contract Verified Contract

If you want to know about the contracts that were involved in the transaction you can navigate to
the “Contracts” section and take a look.

Overview B Contracts [Events <> State Changes >~ Debugger & Gas Profiler

Simulated Transaction @ Re:simulate

Total Gas - 202,293 Gas
Actual G: d - 202,
Initial Gas - 25,640 Gas. CALL - 176,653 Gas
cast - 175,740 Gas
spell- 157,323 Gas
sell - 156,502 Gas borrow - 786,785

fallb: getBl approve-22,414 Gas sellAllmount - 96,053 Gas emitévent

take - 88,388 Gas

transferFrom - 19,475 _fallback - 21,405 Gas
_delegate - 0 Gas

transfer - 18,616 Gas

Gas Usage Breakdown by Function Call

Click on a function in the stack in order to expand the view and zoom in on that particular function.

202,293 / 1,000,000 Gas Used

20.23%

There is also a feature of “Gas Profiler” which provides you with a gas usage breakdown by the
function call.

Using these steps you can simulate a transaction on tenderly and debug your transaction.

