
Using Tenderly to simulate a transaction

Tenderly is a Smart contract monitoring and alerting tool. With tenderly you can monitor smart
contracts on multiple Ethereum networks. Recently, tenderly has come up with a great feature of
simulating a transaction on Ethereum network which makes debugging a lot more easier than
before.

So, today you will learn how you can simulate a transaction on tenderly.

Step 1:

Create an account on tenderly

Step 2:

Select Simulator from the side bar

Step 3:

Create a new simulation using “New Simulation” button present on the right side of the screen.

Now, We will take a scenario from DSA which will throw an error of “gas required exceeds
allowance” which is quite common.

We will try to cast the oasis’ sell spell and maker’s borrow spell with amount 0.2 DAI and slippage
1%.

Now, If we will cast the above spells, then it will thrown an error of “gas required exceeds
allowance”. But it doesn’t give any clue why it is throwing this error.

So, now we can use the DSA’s estimateCastGas() function which provide us the amount of
gasLimit we need to provide to the spells and in its Catch section we will print the error which will
give us the data variable in case any error occurs.

Now, after executing the dsa.estimateCastGas() function, it will return us error along with the data
variable which we will use at tenderly.

https://dashboard.tenderly.co/register?utm_source=homepage

Step: 4

In the new Simulation on tenderly, select option of “Use Custom Contract” and provide the “to”
address from data variable to the “Address” section.

Since, DSA is best functional on Mainnet we will select Mainnet in the Network section

Now, take the value of “data” key from the data object in terminal and provide it to the “Raw Input
Section” on tenderly.

In the Transaction Parameters change the “From” variable to your address which has DSA setup
already.

Now, When we simulate the transaction it will tell us with the whole call stack and if the
transaction will go through or not.

In our case, it is showing that the transaction has failed along with an error “execution reverted”.

But this time the error is quite understandable as it is providing us the condition which caused the
error which in our case is “require(managerContract.count(address(this)) > 0, "no-vault-opened");
”. Now, we can understand the error and work on solving it.

You can also take a look at the whole Stack Trace which your transaction went through.

If you want to know about the contracts that were involved in the transaction you can navigate to
the “Contracts” section and take a look.

There is also a feature of “Gas Profiler” which provides you with a gas usage breakdown by the
function call.

Using these steps you can simulate a transaction on tenderly and debug your transaction.

