mirror of
				https://github.com/Instadapp/dsa-connectors.git
				synced 2024-07-29 22:37:00 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			125 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Solidity
		
	
	
	
	
	
			
		
		
	
	
			125 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Solidity
		
	
	
	
	
	
| // SPDX-License-Identifier: MIT
 | ||
| pragma solidity >=0.4.0;
 | ||
| 
 | ||
| /// @title Contains 512-bit math functions
 | ||
| /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
 | ||
| /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
 | ||
| library FullMath {
 | ||
|     /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
 | ||
|     /// @param a The multiplicand
 | ||
|     /// @param b The multiplier
 | ||
|     /// @param denominator The divisor
 | ||
|     /// @return result The 256-bit result
 | ||
|     /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
 | ||
|     function mulDiv(
 | ||
|         uint256 a,
 | ||
|         uint256 b,
 | ||
|         uint256 denominator
 | ||
|     ) internal pure returns (uint256 result) {
 | ||
|         // 512-bit multiply [prod1 prod0] = a * b
 | ||
|         // Compute the product mod 2**256 and mod 2**256 - 1
 | ||
|         // then use the Chinese Remainder Theorem to reconstruct
 | ||
|         // the 512 bit result. The result is stored in two 256
 | ||
|         // variables such that product = prod1 * 2**256 + prod0
 | ||
|         uint256 prod0; // Least significant 256 bits of the product
 | ||
|         uint256 prod1; // Most significant 256 bits of the product
 | ||
|         assembly {
 | ||
|             let mm := mulmod(a, b, not(0))
 | ||
|             prod0 := mul(a, b)
 | ||
|             prod1 := sub(sub(mm, prod0), lt(mm, prod0))
 | ||
|         }
 | ||
| 
 | ||
|         // Handle non-overflow cases, 256 by 256 division
 | ||
|         if (prod1 == 0) {
 | ||
|             require(denominator > 0);
 | ||
|             assembly {
 | ||
|                 result := div(prod0, denominator)
 | ||
|             }
 | ||
|             return result;
 | ||
|         }
 | ||
| 
 | ||
|         // Make sure the result is less than 2**256.
 | ||
|         // Also prevents denominator == 0
 | ||
|         require(denominator > prod1);
 | ||
| 
 | ||
|         ///////////////////////////////////////////////
 | ||
|         // 512 by 256 division.
 | ||
|         ///////////////////////////////////////////////
 | ||
| 
 | ||
|         // Make division exact by subtracting the remainder from [prod1 prod0]
 | ||
|         // Compute remainder using mulmod
 | ||
|         uint256 remainder;
 | ||
|         assembly {
 | ||
|             remainder := mulmod(a, b, denominator)
 | ||
|         }
 | ||
|         // Subtract 256 bit number from 512 bit number
 | ||
|         assembly {
 | ||
|             prod1 := sub(prod1, gt(remainder, prod0))
 | ||
|             prod0 := sub(prod0, remainder)
 | ||
|         }
 | ||
| 
 | ||
|         // Factor powers of two out of denominator
 | ||
|         // Compute largest power of two divisor of denominator.
 | ||
|         // Always >= 1.
 | ||
|         uint256 twos = -denominator & denominator;
 | ||
|         // Divide denominator by power of two
 | ||
|         assembly {
 | ||
|             denominator := div(denominator, twos)
 | ||
|         }
 | ||
| 
 | ||
|         // Divide [prod1 prod0] by the factors of two
 | ||
|         assembly {
 | ||
|             prod0 := div(prod0, twos)
 | ||
|         }
 | ||
|         // Shift in bits from prod1 into prod0. For this we need
 | ||
|         // to flip `twos` such that it is 2**256 / twos.
 | ||
|         // If twos is zero, then it becomes one
 | ||
|         assembly {
 | ||
|             twos := add(div(sub(0, twos), twos), 1)
 | ||
|         }
 | ||
|         prod0 |= prod1 * twos;
 | ||
| 
 | ||
|         // Invert denominator mod 2**256
 | ||
|         // Now that denominator is an odd number, it has an inverse
 | ||
|         // modulo 2**256 such that denominator * inv = 1 mod 2**256.
 | ||
|         // Compute the inverse by starting with a seed that is correct
 | ||
|         // correct for four bits. That is, denominator * inv = 1 mod 2**4
 | ||
|         uint256 inv = (3 * denominator) ^ 2;
 | ||
|         // Now use Newton-Raphson iteration to improve the precision.
 | ||
|         // Thanks to Hensel's lifting lemma, this also works in modular
 | ||
|         // arithmetic, doubling the correct bits in each step.
 | ||
|         inv *= 2 - denominator * inv; // inverse mod 2**8
 | ||
|         inv *= 2 - denominator * inv; // inverse mod 2**16
 | ||
|         inv *= 2 - denominator * inv; // inverse mod 2**32
 | ||
|         inv *= 2 - denominator * inv; // inverse mod 2**64
 | ||
|         inv *= 2 - denominator * inv; // inverse mod 2**128
 | ||
|         inv *= 2 - denominator * inv; // inverse mod 2**256
 | ||
| 
 | ||
|         // Because the division is now exact we can divide by multiplying
 | ||
|         // with the modular inverse of denominator. This will give us the
 | ||
|         // correct result modulo 2**256. Since the precoditions guarantee
 | ||
|         // that the outcome is less than 2**256, this is the final result.
 | ||
|         // We don't need to compute the high bits of the result and prod1
 | ||
|         // is no longer required.
 | ||
|         result = prod0 * inv;
 | ||
|         return result;
 | ||
|     }
 | ||
| 
 | ||
|     /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
 | ||
|     /// @param a The multiplicand
 | ||
|     /// @param b The multiplier
 | ||
|     /// @param denominator The divisor
 | ||
|     /// @return result The 256-bit result
 | ||
|     function mulDivRoundingUp(
 | ||
|         uint256 a,
 | ||
|         uint256 b,
 | ||
|         uint256 denominator
 | ||
|     ) internal pure returns (uint256 result) {
 | ||
|         result = mulDiv(a, b, denominator);
 | ||
|         if (mulmod(a, b, denominator) > 0) {
 | ||
|             require(result < type(uint256).max);
 | ||
|             result++;
 | ||
|         }
 | ||
|     }
 | ||
| }
 | 
