pragma solidity ^0.7.0;

interface TokenInterface {
    function approve(address, uint256) external;
    function transfer(address, uint) external;
    function transferFrom(address, address, uint) external;
    function deposit() external payable;
    function withdraw(uint) external;
    function balanceOf(address) external view returns (uint);
    function decimals() external view returns (uint);
}

interface MemoryInterface {
    function getUint(uint id) external returns (uint num);
    function setUint(uint id, uint val) external;
}

interface InstaMapping {
    function cTokenMapping(address) external view returns (address);
    function gemJoinMapping(bytes32) external view returns (address);
}

interface AccountInterface {
    function enable(address) external;
    function disable(address) external;
    function isAuth(address) external view returns (bool);
}

abstract contract Stores {

  /**
   * @dev Return ethereum address
   */
  address constant internal ethAddr = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;

  /**
   * @dev Return Wrapped ETH address
   */
  address constant internal wethAddr = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;

  /**
   * @dev Return memory variable address
   */
  MemoryInterface constant internal instaMemory = MemoryInterface(0x8a5419CfC711B2343c17a6ABf4B2bAFaBb06957F);

  /**
   * @dev Return InstaDApp Mapping Addresses
   */
  InstaMapping constant internal instaMapping = InstaMapping(0xe81F70Cc7C0D46e12d70efc60607F16bbD617E88);

  /**
   * @dev Get Uint value from InstaMemory Contract.
   */
  function getUint(uint getId, uint val) internal returns (uint returnVal) {
    returnVal = getId == 0 ? val : instaMemory.getUint(getId);
  }

  /**
  * @dev Set Uint value in InstaMemory Contract.
  */
  function setUint(uint setId, uint val) virtual internal {
    if (setId != 0) instaMemory.setUint(setId, val);
  }

}

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        uint256 c = a + b;
        if (c < a) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b > a) return (false, 0);
        return (true, a - b);
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) return (true, 0);
        uint256 c = a * b;
        if (c / a != b) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a / b);
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a % b);
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= a, "SafeMath: subtraction overflow");
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a == 0) return 0;
        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");
        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: division by zero");
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: modulo by zero");
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        return a - b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryDiv}.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a % b;
    }
}

contract DSMath {
  uint constant WAD = 10 ** 18;
  uint constant RAY = 10 ** 27;

  function add(uint x, uint y) internal pure returns (uint z) {
    z = SafeMath.add(x, y);
  }

  function sub(uint x, uint y) internal virtual pure returns (uint z) {
    z = SafeMath.sub(x, y);
  }

  function mul(uint x, uint y) internal pure returns (uint z) {
    z = SafeMath.mul(x, y);
  }

  function div(uint x, uint y) internal pure returns (uint z) {
    z = SafeMath.div(x, y);
  }

  function wmul(uint x, uint y) internal pure returns (uint z) {
    z = SafeMath.add(SafeMath.mul(x, y), WAD / 2) / WAD;
  }

  function wdiv(uint x, uint y) internal pure returns (uint z) {
    z = SafeMath.add(SafeMath.mul(x, WAD), y / 2) / y;
  }

  function rdiv(uint x, uint y) internal pure returns (uint z) {
    z = SafeMath.add(SafeMath.mul(x, RAY), y / 2) / y;
  }

  function rmul(uint x, uint y) internal pure returns (uint z) {
    z = SafeMath.add(SafeMath.mul(x, y), RAY / 2) / RAY;
  }

  function toInt(uint x) internal pure returns (int y) {
    y = int(x);
    require(y >= 0, "int-overflow");
  }

  function toRad(uint wad) internal pure returns (uint rad) {
    rad = mul(wad, 10 ** 27);
  }

}

abstract contract Basic is DSMath, Stores {

    function convert18ToDec(uint _dec, uint256 _amt) internal pure returns (uint256 amt) {
        amt = (_amt / 10 ** (18 - _dec));
    }

    function convertTo18(uint _dec, uint256 _amt) internal pure returns (uint256 amt) {
        amt = mul(_amt, 10 ** (18 - _dec));
    }

    function getTokenBal(TokenInterface token) internal view returns(uint _amt) {
        _amt = address(token) == ethAddr ? address(this).balance : token.balanceOf(address(this));
    }

    function getTokensDec(TokenInterface buyAddr, TokenInterface sellAddr) internal view returns(uint buyDec, uint sellDec) {
        buyDec = address(buyAddr) == ethAddr ?  18 : buyAddr.decimals();
        sellDec = address(sellAddr) == ethAddr ?  18 : sellAddr.decimals();
    }

    function encodeEvent(string memory eventName, bytes memory eventParam) internal pure returns (bytes memory) {
        return abi.encode(eventName, eventParam);
    }

    function changeEthAddress(address buy, address sell) internal pure returns(TokenInterface _buy, TokenInterface _sell){
        _buy = buy == ethAddr ? TokenInterface(wethAddr) : TokenInterface(buy);
        _sell = sell == ethAddr ? TokenInterface(wethAddr) : TokenInterface(sell);
    }

    function convertEthToWeth(bool isEth, TokenInterface token, uint amount) internal {
        if(isEth) token.deposit{value: amount}();
    }

    function convertWethToEth(bool isEth, TokenInterface token, uint amount) internal {
       if(isEth) {
            token.approve(address(token), amount);
            token.withdraw(amount);
        }
    }
}

interface RootChainManagerInterface {
    function rootToChildToken(address user) external view returns(address);
    function depositEtherFor(address user) external payable;
    function depositFor(
        address user,
        address rootToken,
        bytes calldata depositData
    ) external;
    function exit(bytes calldata inputData) external;
}

interface DepositManagerProxyInterface {
    function depositERC20ForUser(
        address _token,
        address _user,
        uint256 _amount
    ) external;
}


abstract contract Helpers is DSMath, Basic {
    /**
     * @dev Polygon POS Bridge ERC20 Predicate
     */
    address internal constant erc20Predicate = 0x40ec5B33f54e0E8A33A975908C5BA1c14e5BbbDf;

    /**
     * @dev Polygon POS Bridge Manager
     */
    RootChainManagerInterface internal constant migrator = RootChainManagerInterface(0xA0c68C638235ee32657e8f720a23ceC1bFc77C77);
    
    /**
     * @dev Polygon Plasma Bridge Manager
     */
    DepositManagerProxyInterface internal constant migratorPlasma = DepositManagerProxyInterface(0x401F6c983eA34274ec46f84D70b31C151321188b);
}

contract Events {
    event LogDeposit(
        address targetDsa,
        address token,
        uint256 amt,
        uint256 getId,
        uint256 setId
    );
    event LogWithdraw(bytes proof);
}


abstract contract PolygonBridgeResolver is Events, Helpers {
    /**
     * @dev Deposit assets to the bridge.
     * @notice Deposit assets to the bridge.
     * @param targetDsa The address to receive the token on Polygon
     * @param token The address of the token to deposit. (For ETH: 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE)
     * @param amt The amount of tokens to deposit. (For max: `uint256(-1)`)
     * @param getId ID to retrieve amt.
     * @param setId ID stores the amount of tokens deposit.
    */
    function deposit(
        address targetDsa,
        address token,
        uint256 amt,
        uint256 getId,
        uint256 setId
    ) external payable {
        uint _amt = getUint(getId, amt);

        if (token == ethAddr) {
            _amt = _amt == uint(-1) ? address(this).balance : _amt;
            migrator.depositEtherFor{value: _amt}(targetDsa);
        } else {
            TokenInterface _token = TokenInterface(token);
            _amt = _amt == uint(-1) ? _token.balanceOf(address(this)) : _amt;
            if (migrator.rootToChildToken(token) != address(0)) {
                _token.approve(erc20Predicate, _amt);
                migrator.depositFor(targetDsa, token, abi.encode(_amt));
            } else {
                _token.approve(address(migratorPlasma), _amt);
                migratorPlasma.depositERC20ForUser(token, targetDsa, _amt);
            }
        }

        setUint(setId, _amt);
        emit LogDeposit(targetDsa, token, _amt, getId, setId);
    }
}

contract ConnectPolygonBridge is PolygonBridgeResolver {
    /**
     * @dev Connector Details
    */
    function connectorID() public pure returns(uint _type, uint _id) {
        (_type, _id) = (1, 100);
    }

    string public constant name = "Polygon-Bridge-v1.1";
}