// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; uint256 constant WAD = 1e18; /// @title MathLib /// @author Morpho Labs /// @custom:contact security@morpho.org /// @notice Library to manage fixed-point arithmetic. library MathLib { /// @dev Returns (`x` * `y`) / `WAD` rounded down. function wMulDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); } /// @dev Returns (`x` * `WAD`) / `y` rounded down. function wDivDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); } /// @dev Returns (`x` * `WAD`) / `y` rounded up. function wDivUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); } /// @dev Returns (`x` * `y`) / `d` rounded down. function mulDivDown(uint256 x, uint256 y, uint256 d) internal pure returns (uint256) { return (x * y) / d; } /// @dev Returns (`x` * `y`) / `d` rounded up. function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256) { return (x * y + (d - 1)) / d; } /// @dev Returns the sum of the first three non-zero terms of a Taylor expansion of e^(nx) - 1, to approximate a /// continuous compound interest rate. function wTaylorCompounded(uint256 x, uint256 n) internal pure returns (uint256) { uint256 firstTerm = x * n; uint256 secondTerm = mulDivDown(firstTerm, firstTerm, 2 * WAD); uint256 thirdTerm = mulDivDown(secondTerm, firstTerm, 3 * WAD); return firstTerm + secondTerm + thirdTerm; } }