aave-protocol-v2/specs/VariableDebtToken.spec

174 lines
4.9 KiB
Ruby
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using LendingPoolHarnessForVariableDebtToken as POOL
/**
TotalSupply is the sum of all users balances
totalSupply(t) = Σaddress u. balanceOf(u,t)
Check that each possible opertaion changes the balance of at most one user
*/
rule balanceOfChange(address a, address b, method f)
{
env e;
require a!=b ;
uint256 balanceABefore = sinvoke balanceOf(e, a);
uint256 balanceBBefore = sinvoke balanceOf(e, b);
calldataarg arg;
sinvoke f(e, arg);
uint256 balanceAAfter = sinvoke balanceOf(e, a);
uint256 balanceBAfter = sinvoke balanceOf(e, b);
assert ( balanceABefore == balanceAAfter || balanceBBefore == balanceBAfter );
}
/*
Check that the changed to total supply is coherent with the changes to balance
*/
rule integirtyBalanceOfTotalSupply(address a, method f )
{
env e;
uint256 balanceABefore = balanceOf(e, a);
uint256 totalSupplyBefore = totalSupply(e);
calldataarg arg;
sinvoke f(e, arg);
require (f.selector != burn(address, uint256, uint256).selector &&
f.selector != mint(address, uint256, uint256).selector ) ;
uint256 balanceAAfter = balanceOf(e, a);
uint256 totalSupplyAfter = totalSupply(e);
assert (balanceAAfter != balanceABefore => ( balanceAAfter - balanceABefore == totalSupplyAfter - totalSupplyBefore));
}
/* Burn behaves deferently and due to accumulation errors might hace less total supply then the balance
*/
rule integirtyBalanceOfTotalSupplyOnBurn(address a, method f )
{
env e;
uint256 balanceABefore = balanceOf(e, a);
uint256 totalSupplyBefore = totalSupply(e);
uint256 x;
address asset;
uint256 index = POOL.getReserveNormalizedVariableDebt(e, asset);
sinvoke burn(e, a, x, index);
uint256 balanceAAfter = balanceOf(e, a);
uint256 totalSupplyAfter = totalSupply(e);
assert (balanceAAfter != balanceABefore => ( balanceAAfter - balanceABefore == totalSupplyAfter - totalSupplyBefore));
}
rule integirtyBalanceOfTotalSupplyOnMint(address a, method f )
{
env e;
uint256 balanceABefore = balanceOf(e, a);
uint256 totalSupplyBefore = totalSupply(e);
uint256 x;
address asset;
uint256 index = POOL.getReserveNormalizedVariableDebt(e, asset);
sinvoke mint(e, a, x, index);
uint256 balanceAAfter = balanceOf(e, a);
uint256 totalSupplyAfter = totalSupply(e);
assert (balanceAAfter != balanceABefore => ( balanceAAfter - balanceABefore == totalSupplyAfter - totalSupplyBefore));
}
/**
Minting an amount of x tokens for user u increases their balance by x, up to rounding errors.
{ b= balanceOf(u,t) }
mint(u,x,index)
{ balanceOf(u,t) = b + x }
*/
rule integrityMint(address a, uint256 x) {
env e;
address asset;
uint256 index = POOL.getReserveNormalizedVariableDebt(e,asset);
uint256 balancebefore = balanceOf(e, a);
sinvoke mint(e, a, x, index);
uint256 balanceAfter = balanceOf(e, a);
assert balanceAfter == balancebefore+x;
}
/**
Mint is additive, can performed either all at once or gradually
mint(u,x); mint(u,y) ~ mint(u,x+y) at the same timestamp
*/
rule additiveMint(address a, uint256 x, uint256 y) {
env e;
address asset;
uint256 index = POOL.getReserveNormalizedVariableDebt(e, asset);
storage initialStorage = lastStorage;
sinvoke mint(e, a, x, index);
sinvoke mint(e, a, y, index);
uint256 balanceScenario1 = balanceOf(e, a);
uint t = x + y;
sinvoke mint(e, a, t ,index) at initialStorage;
uint256 balanceScenario2 = balanceOf(e, a);
assert balanceScenario1 == balanceScenario2, "mint is not additive";
}
/**
Transfer of x amount of tokens from user u where receiver is user u
{bu = balanceOf(u) }
burn(u, u, x)
{balanceOf(u) = bu - x }
*/
rule integrityBurn(address a, uint256 x) {
env e;
address asset;
uint256 index = POOL.getReserveNormalizedVariableDebt(e, asset);
uint256 balancebefore = balanceOf(e, a);
sinvoke burn(e, a, x, index);
uint256 balanceAfter = balanceOf(e, a);
assert balanceAfter == balancebefore - x;
}
/**
Minting is additive, i.e., it can be performed either all at once or in steps.
burn(u, u, x); burn(u, u, y) ~ burn(u, u, x+y)
*/
rule additiveBurn(address a, uint256 x, uint256 y) {
env e;
address asset;
uint256 index = POOL.getReserveNormalizedVariableDebt(e, asset);
storage initialStorage = lastStorage;
sinvoke burn(e, a, x, index);
sinvoke burn(e, a, y, index);
uint256 balanceScenario1 = balanceOf(e, a);
uint t = x + y;
sinvoke burn(e, a, t ,index) at initialStorage;
uint256 balanceScenario2 = balanceOf(e, a);
assert balanceScenario1 == balanceScenario2, "burn is not additive";
}
/**
Minting and burning are inverse operations.
{bu = balanceOf(u) }
mint(u,x); burn(u, u, x)
{balanceOf(u) = bu }
*/
rule inverseMintBurn(address a, uint256 x) {
env e;
address asset;
uint256 index = POOL.getReserveNormalizedVariableDebt(e, asset);
uint256 balancebefore = balanceOf(e, a);
sinvoke mint(e, a, x, index);
sinvoke burn(e, a, x, index);
uint256 balanceAfter = balanceOf(e, a);
assert balancebefore == balanceAfter, "burn is not inverse of mint";
}