aave-protocol-v2/contracts/lendingpool/LendingPoolLiquidationManager.sol
Andrey Ko c340b9972f Merge branch 'master' into 'fix/21'
# Conflicts:
#   contracts/lendingpool/LendingPool.sol
2020-08-21 13:20:41 +00:00

332 lines
12 KiB
Solidity

// SPDX-License-Identifier: agpl-3.0
pragma solidity ^0.6.8;
import {SafeMath} from '@openzeppelin/contracts/math/SafeMath.sol';
import {IERC20} from '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import {ReentrancyGuard} from '@openzeppelin/contracts/utils/ReentrancyGuard.sol';
import {ReentrancyGuard} from '@openzeppelin/contracts/utils/ReentrancyGuard.sol';
import {
VersionedInitializable
} from '../libraries/openzeppelin-upgradeability/VersionedInitializable.sol';
import {LendingPoolAddressesProvider} from '../configuration/LendingPoolAddressesProvider.sol';
import {IAToken} from '../tokenization/interfaces/IAToken.sol';
import {IStableDebtToken} from '../tokenization/interfaces/IStableDebtToken.sol';
import {IVariableDebtToken} from '../tokenization/interfaces/IVariableDebtToken.sol';
import {IPriceOracleGetter} from '../interfaces/IPriceOracleGetter.sol';
import {GenericLogic} from '../libraries/logic/GenericLogic.sol';
import {ReserveLogic} from '../libraries/logic/ReserveLogic.sol';
import {ReserveConfiguration} from '../libraries/configuration/ReserveConfiguration.sol';
import {UserConfiguration} from '../libraries/configuration/UserConfiguration.sol';
import {Helpers} from '../libraries/helpers/Helpers.sol';
import {WadRayMath} from '../libraries/math/WadRayMath.sol';
import {PercentageMath} from '../libraries/math/PercentageMath.sol';
import {SafeERC20} from '@openzeppelin/contracts/token/ERC20/SafeERC20.sol';
/**
* @title LendingPoolLiquidationManager contract
* @author Aave
* @notice Implements the liquidation function.
**/
contract LendingPoolLiquidationManager is ReentrancyGuard, VersionedInitializable {
using SafeERC20 for IERC20;
using SafeMath for uint256;
using WadRayMath for uint256;
using PercentageMath for uint256;
using ReserveLogic for ReserveLogic.ReserveData;
using ReserveConfiguration for ReserveConfiguration.Map;
using UserConfiguration for UserConfiguration.Map;
LendingPoolAddressesProvider internal addressesProvider;
mapping(address => ReserveLogic.ReserveData) internal reserves;
mapping(address => UserConfiguration.Map) internal usersConfig;
address[] internal reservesList;
uint256 internal constant LIQUIDATION_CLOSE_FACTOR_PERCENT = 5000;
/**
* @dev emitted when a borrower is liquidated
* @param collateral the address of the collateral being liquidated
* @param principal the address of the reserve
* @param user the address of the user being liquidated
* @param purchaseAmount the total amount liquidated
* @param liquidatedCollateralAmount the amount of collateral being liquidated
* @param liquidator the address of the liquidator
* @param receiveAToken true if the liquidator wants to receive aTokens, false otherwise
**/
event LiquidationCall(
address indexed collateral,
address indexed principal,
address indexed user,
uint256 purchaseAmount,
uint256 liquidatedCollateralAmount,
address liquidator,
bool receiveAToken
);
enum LiquidationErrors {
NO_ERROR,
NO_COLLATERAL_AVAILABLE,
COLLATERAL_CANNOT_BE_LIQUIDATED,
CURRRENCY_NOT_BORROWED,
HEALTH_FACTOR_ABOVE_THRESHOLD,
NOT_ENOUGH_LIQUIDITY
}
struct LiquidationCallLocalVars {
uint256 userCollateralBalance;
uint256 userStableDebt;
uint256 userVariableDebt;
uint256 maxPrincipalAmountToLiquidate;
uint256 actualAmountToLiquidate;
uint256 liquidationRatio;
uint256 maxAmountCollateralToLiquidate;
ReserveLogic.InterestRateMode borrowRateMode;
uint256 userStableRate;
uint256 maxCollateralToLiquidate;
uint256 principalAmountNeeded;
uint256 healthFactor;
IAToken collateralAtoken;
bool isCollateralEnabled;
}
/**
* @dev as the contract extends the VersionedInitializable contract to match the state
* of the LendingPool contract, the getRevision() function is needed.
*/
function getRevision() internal override pure returns (uint256) {
return 0;
}
/**
* @dev users can invoke this function to liquidate an undercollateralized position.
* @param collateral the address of the collateral to liquidated
* @param principal the address of the principal reserve
* @param user the address of the borrower
* @param purchaseAmount the amount of principal that the liquidator wants to repay
* @param receiveAToken true if the liquidators wants to receive the aTokens, false if
* he wants to receive the underlying asset directly
**/
function liquidationCall(
address collateral,
address principal,
address user,
uint256 purchaseAmount,
bool receiveAToken
) external returns (uint256, string memory) {
ReserveLogic.ReserveData storage principalReserve = reserves[principal];
ReserveLogic.ReserveData storage collateralReserve = reserves[collateral];
UserConfiguration.Map storage userConfig = usersConfig[user];
LiquidationCallLocalVars memory vars;
(, , , , vars.healthFactor) = GenericLogic.calculateUserAccountData(
user,
reserves,
usersConfig[user],
reservesList,
addressesProvider.getPriceOracle()
);
if (vars.healthFactor >= GenericLogic.HEALTH_FACTOR_LIQUIDATION_THRESHOLD) {
return (
uint256(LiquidationErrors.HEALTH_FACTOR_ABOVE_THRESHOLD),
'Health factor is not below the threshold'
);
}
vars.userCollateralBalance = IERC20(collateralReserve.aTokenAddress).balanceOf(user);
vars.isCollateralEnabled =
collateralReserve.configuration.getLiquidationThreshold() > 0 &&
userConfig.isUsingAsCollateral(collateralReserve.index);
//if collateral isn't enabled as collateral by user, it cannot be liquidated
if (!vars.isCollateralEnabled) {
return (
uint256(LiquidationErrors.COLLATERAL_CANNOT_BE_LIQUIDATED),
'The collateral chosen cannot be liquidated'
);
}
//if the user hasn't borrowed the specific currency defined by asset, it cannot be liquidated
(vars.userStableDebt, vars.userVariableDebt) = Helpers.getUserCurrentDebt(
user,
principalReserve
);
if (vars.userStableDebt == 0 && vars.userVariableDebt == 0) {
return (
uint256(LiquidationErrors.CURRRENCY_NOT_BORROWED),
'User did not borrow the specified currency'
);
}
//all clear - calculate the max principal amount that can be liquidated
vars.maxPrincipalAmountToLiquidate = vars.userStableDebt.add(vars.userVariableDebt).percentMul(
LIQUIDATION_CLOSE_FACTOR_PERCENT
);
vars.actualAmountToLiquidate = purchaseAmount > vars.maxPrincipalAmountToLiquidate
? vars.maxPrincipalAmountToLiquidate
: purchaseAmount;
(
vars.maxCollateralToLiquidate,
vars.principalAmountNeeded
) = calculateAvailableCollateralToLiquidate(
collateralReserve,
principalReserve,
collateral,
principal,
vars.actualAmountToLiquidate,
vars.userCollateralBalance
);
//if principalAmountNeeded < vars.ActualAmountToLiquidate, there isn't enough
//of collateral to cover the actual amount that is being liquidated, hence we liquidate
//a smaller amount
if (vars.principalAmountNeeded < vars.actualAmountToLiquidate) {
vars.actualAmountToLiquidate = vars.principalAmountNeeded;
}
vars.collateralAtoken = IAToken(collateralReserve.aTokenAddress);
//if liquidator reclaims the underlying asset, we make sure there is enough available collateral in the reserve
if (!receiveAToken) {
uint256 currentAvailableCollateral = IERC20(collateral).balanceOf(
address(vars.collateralAtoken)
);
if (currentAvailableCollateral < vars.maxCollateralToLiquidate) {
return (
uint256(LiquidationErrors.NOT_ENOUGH_LIQUIDITY),
"There isn't enough liquidity available to liquidate"
);
}
}
//update the principal reserve
principalReserve.updateCumulativeIndexesAndTimestamp();
principalReserve.updateInterestRates(principal, vars.actualAmountToLiquidate, 0);
if (vars.userVariableDebt >= vars.actualAmountToLiquidate) {
IVariableDebtToken(principalReserve.variableDebtTokenAddress).burn(
user,
vars.actualAmountToLiquidate
);
} else {
IVariableDebtToken(principalReserve.variableDebtTokenAddress).burn(
user,
vars.userVariableDebt
);
IStableDebtToken(principalReserve.stableDebtTokenAddress).burn(
user,
vars.actualAmountToLiquidate.sub(vars.userVariableDebt)
);
}
//if liquidator reclaims the aToken, he receives the equivalent atoken amount
if (receiveAToken) {
vars.collateralAtoken.transferOnLiquidation(user, msg.sender, vars.maxCollateralToLiquidate);
} else {
//otherwise receives the underlying asset
//updating collateral reserve
collateralReserve.updateCumulativeIndexesAndTimestamp();
collateralReserve.updateInterestRates(collateral, 0, vars.maxCollateralToLiquidate);
//burn the equivalent amount of atoken
vars.collateralAtoken.burn(user, msg.sender, vars.maxCollateralToLiquidate);
}
//transfers the principal currency to the aToken
IERC20(principal).safeTransferFrom(
msg.sender,
principalReserve.aTokenAddress,
vars.actualAmountToLiquidate
);
emit LiquidationCall(
collateral,
principal,
user,
vars.actualAmountToLiquidate,
vars.maxCollateralToLiquidate,
msg.sender,
receiveAToken
);
return (uint256(LiquidationErrors.NO_ERROR), 'No errors');
}
struct AvailableCollateralToLiquidateLocalVars {
uint256 userCompoundedBorrowBalance;
uint256 liquidationBonus;
uint256 collateralPrice;
uint256 principalCurrencyPrice;
uint256 maxAmountCollateralToLiquidate;
uint256 principalDecimals;
uint256 collateralDecimals;
}
/**
* @dev calculates how much of a specific collateral can be liquidated, given
* a certain amount of principal currency. This function needs to be called after
* all the checks to validate the liquidation have been performed, otherwise it might fail.
* @param collateralAddress the collateral to be liquidated
* @param principalAddress the principal currency to be liquidated
* @param purchaseAmount the amount of principal being liquidated
* @param userCollateralBalance the collatera balance for the specific collateral asset of the user being liquidated
* @return collateralAmount the maximum amount that is possible to liquidated given all the liquidation constraints (user balance, close factor)
* @return principalAmountNeeded the purchase amount
**/
function calculateAvailableCollateralToLiquidate(
ReserveLogic.ReserveData storage _collateralReserve,
ReserveLogic.ReserveData storage _principalReserve,
address collateralAddress,
address principalAddress,
uint256 purchaseAmount,
uint256 userCollateralBalance
) internal view returns (uint256, uint256) {
uint256 collateralAmount = 0;
uint256 principalAmountNeeded = 0;
IPriceOracleGetter oracle = IPriceOracleGetter(addressesProvider.getPriceOracle());
// Usage of a memory struct of vars to avoid "Stack too deep" errors due to local variables
AvailableCollateralToLiquidateLocalVars memory vars;
vars.collateralPrice = oracle.getAssetPrice(collateralAddress);
vars.principalCurrencyPrice = oracle.getAssetPrice(principalAddress);
(, , vars.liquidationBonus, vars.collateralDecimals) = _collateralReserve
.configuration
.getParams();
vars.principalDecimals = _principalReserve.configuration.getDecimals();
//this is the maximum possible amount of the selected collateral that can be liquidated, given the
//max amount of principal currency that is available for liquidation.
vars.maxAmountCollateralToLiquidate = vars
.principalCurrencyPrice
.mul(purchaseAmount)
.mul(10**vars.collateralDecimals)
.div(vars.collateralPrice.mul(10**vars.principalDecimals))
.percentMul(vars.liquidationBonus);
if (vars.maxAmountCollateralToLiquidate > userCollateralBalance) {
collateralAmount = userCollateralBalance;
principalAmountNeeded = vars
.collateralPrice
.mul(collateralAmount)
.mul(10**vars.principalDecimals)
.div(vars.principalCurrencyPrice.mul(10**vars.collateralDecimals))
.percentDiv(vars.liquidationBonus);
} else {
collateralAmount = vars.maxAmountCollateralToLiquidate;
principalAmountNeeded = purchaseAmount;
}
return (collateralAmount, principalAmountNeeded);
}
}