aave-protocol-v2/contracts/lendingpool/LendingPoolLiquidationManager.sol
2020-09-16 16:34:29 +02:00

617 lines
21 KiB
Solidity

// SPDX-License-Identifier: agpl-3.0
pragma solidity ^0.6.8;
import {SafeMath} from '@openzeppelin/contracts/math/SafeMath.sol';
import {IERC20} from '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import {
VersionedInitializable
} from '../libraries/openzeppelin-upgradeability/VersionedInitializable.sol';
import {LendingPoolAddressesProvider} from '../configuration/LendingPoolAddressesProvider.sol';
import {IAToken} from '../tokenization/interfaces/IAToken.sol';
import {IStableDebtToken} from '../tokenization/interfaces/IStableDebtToken.sol';
import {IVariableDebtToken} from '../tokenization/interfaces/IVariableDebtToken.sol';
import {DebtTokenBase} from '../tokenization/base/DebtTokenBase.sol';
import {IPriceOracleGetter} from '../interfaces/IPriceOracleGetter.sol';
import {GenericLogic} from '../libraries/logic/GenericLogic.sol';
import {ReserveLogic} from '../libraries/logic/ReserveLogic.sol';
import {ReserveConfiguration} from '../libraries/configuration/ReserveConfiguration.sol';
import {UserConfiguration} from '../libraries/configuration/UserConfiguration.sol';
import {Helpers} from '../libraries/helpers/Helpers.sol';
import {WadRayMath} from '../libraries/math/WadRayMath.sol';
import {PercentageMath} from '../libraries/math/PercentageMath.sol';
import {SafeERC20} from '@openzeppelin/contracts/token/ERC20/SafeERC20.sol';
import {ISwapAdapter} from '../interfaces/ISwapAdapter.sol';
import {Errors} from '../libraries/helpers/Errors.sol';
import {ValidationLogic} from '../libraries/logic/ValidationLogic.sol';
/**
* @title LendingPoolLiquidationManager contract
* @author Aave
* @notice Implements the liquidation function.
* @dev LendingPoolLiquidationManager inherits Pausable from OpenZeppelin to have the same storage layout as LendingPool
**/
contract LendingPoolLiquidationManager is VersionedInitializable {
using SafeERC20 for IERC20;
using SafeMath for uint256;
using WadRayMath for uint256;
using PercentageMath for uint256;
using ReserveLogic for ReserveLogic.ReserveData;
using ReserveConfiguration for ReserveConfiguration.Map;
using UserConfiguration for UserConfiguration.Map;
// IMPORTANT The storage layout of the LendingPool is reproduced here because this contract
// is gonna be used through DELEGATECALL
LendingPoolAddressesProvider internal addressesProvider;
mapping(address => ReserveLogic.ReserveData) internal reserves;
mapping(address => UserConfiguration.Map) internal usersConfig;
mapping(address => mapping(address => mapping(address => uint256))) internal _borrowAllowance;
address[] internal reservesList;
bool internal _flashLiquidationLocked;
bool public _paused;
uint256 internal constant LIQUIDATION_CLOSE_FACTOR_PERCENT = 5000;
/**
* @dev emitted when a borrower is liquidated
* @param collateral the address of the collateral being liquidated
* @param principal the address of the reserve
* @param user the address of the user being liquidated
* @param purchaseAmount the total amount liquidated
* @param liquidatedCollateralAmount the amount of collateral being liquidated
* @param liquidator the address of the liquidator
* @param receiveAToken true if the liquidator wants to receive aTokens, false otherwise
**/
event LiquidationCall(
address indexed collateral,
address indexed principal,
address indexed user,
uint256 purchaseAmount,
uint256 liquidatedCollateralAmount,
address liquidator,
bool receiveAToken
);
/**
@dev emitted when a borrower/liquidator repays with the borrower's collateral
@param collateral the address of the collateral being swapped to repay
@param principal the address of the reserve of the debt
@param user the borrower's address
@param liquidator the address of the liquidator, same as the one of the borrower on self-repayment
@param principalAmount the amount of the debt finally covered
@param swappedCollateralAmount the amount of collateral finally swapped
*/
event RepaidWithCollateral(
address indexed collateral,
address indexed principal,
address indexed user,
address liquidator,
uint256 principalAmount,
uint256 swappedCollateralAmount
);
struct LiquidationCallLocalVars {
uint256 userCollateralBalance;
uint256 userStableDebt;
uint256 userVariableDebt;
uint256 maxPrincipalAmountToLiquidate;
uint256 actualAmountToLiquidate;
uint256 liquidationRatio;
uint256 maxAmountCollateralToLiquidate;
ReserveLogic.InterestRateMode borrowRateMode;
uint256 userStableRate;
uint256 maxCollateralToLiquidate;
uint256 principalAmountNeeded;
uint256 healthFactor;
IAToken collateralAtoken;
bool isCollateralEnabled;
address principalAToken;
uint256 errorCode;
string errorMsg;
}
struct SwapLiquidityLocalVars {
uint256 healthFactor;
uint256 amountToReceive;
uint256 userBalanceBefore;
IAToken fromReserveAToken;
IAToken toReserveAToken;
uint256 errorCode;
string errorMsg;
}
struct AvailableCollateralToLiquidateLocalVars {
uint256 userCompoundedBorrowBalance;
uint256 liquidationBonus;
uint256 collateralPrice;
uint256 principalCurrencyPrice;
uint256 maxAmountCollateralToLiquidate;
uint256 principalDecimals;
uint256 collateralDecimals;
}
/**
* @dev as the contract extends the VersionedInitializable contract to match the state
* of the LendingPool contract, the getRevision() function is needed.
*/
function getRevision() internal override pure returns (uint256) {
return 0;
}
/**
* @dev users can invoke this function to liquidate an undercollateralized position.
* @param collateral the address of the collateral to liquidated
* @param principal the address of the principal reserve
* @param user the address of the borrower
* @param purchaseAmount the amount of principal that the liquidator wants to repay
* @param receiveAToken true if the liquidators wants to receive the aTokens, false if
* he wants to receive the underlying asset directly
**/
function liquidationCall(
address collateral,
address principal,
address user,
uint256 purchaseAmount,
bool receiveAToken
) external returns (uint256, string memory) {
ReserveLogic.ReserveData storage collateralReserve = reserves[collateral];
ReserveLogic.ReserveData storage principalReserve = reserves[principal];
UserConfiguration.Map storage userConfig = usersConfig[user];
LiquidationCallLocalVars memory vars;
(, , , , vars.healthFactor) = GenericLogic.calculateUserAccountData(
user,
reserves,
usersConfig[user],
reservesList,
addressesProvider.getPriceOracle()
);
//if the user hasn't borrowed the specific currency defined by asset, it cannot be liquidated
(vars.userStableDebt, vars.userVariableDebt) = Helpers.getUserCurrentDebt(
user,
principalReserve
);
(vars.errorCode, vars.errorMsg) = ValidationLogic.validateLiquidationCall(
collateralReserve,
principalReserve,
userConfig,
vars.healthFactor,
vars.userStableDebt,
vars.userVariableDebt
);
if (Errors.LiquidationErrors(vars.errorCode) != Errors.LiquidationErrors.NO_ERROR) {
return (vars.errorCode, vars.errorMsg);
}
vars.collateralAtoken = IAToken(collateralReserve.aTokenAddress);
vars.userCollateralBalance = vars.collateralAtoken.balanceOf(user);
vars.maxPrincipalAmountToLiquidate = vars.userStableDebt.add(vars.userVariableDebt).percentMul(
LIQUIDATION_CLOSE_FACTOR_PERCENT
);
vars.actualAmountToLiquidate = purchaseAmount > vars.maxPrincipalAmountToLiquidate
? vars.maxPrincipalAmountToLiquidate
: purchaseAmount;
(
vars.maxCollateralToLiquidate,
vars.principalAmountNeeded
) = calculateAvailableCollateralToLiquidate(
collateralReserve,
principalReserve,
collateral,
principal,
vars.actualAmountToLiquidate,
vars.userCollateralBalance
);
//if principalAmountNeeded < vars.ActualAmountToLiquidate, there isn't enough
//of collateral to cover the actual amount that is being liquidated, hence we liquidate
//a smaller amount
if (vars.principalAmountNeeded < vars.actualAmountToLiquidate) {
vars.actualAmountToLiquidate = vars.principalAmountNeeded;
}
//if liquidator reclaims the underlying asset, we make sure there is enough available collateral in the reserve
if (!receiveAToken) {
uint256 currentAvailableCollateral = IERC20(collateral).balanceOf(
address(vars.collateralAtoken)
);
if (currentAvailableCollateral < vars.maxCollateralToLiquidate) {
return (
uint256(Errors.LiquidationErrors.NOT_ENOUGH_LIQUIDITY),
Errors.NOT_ENOUGH_LIQUIDITY_TO_LIQUIDATE
);
}
}
//update the principal reserve
principalReserve.updateState();
principalReserve.updateInterestRates(
principal,
principalReserve.aTokenAddress,
vars.actualAmountToLiquidate,
0
);
if (vars.userVariableDebt >= vars.actualAmountToLiquidate) {
IVariableDebtToken(principalReserve.variableDebtTokenAddress).burn(
user,
vars.actualAmountToLiquidate,
principalReserve.variableBorrowIndex
);
} else {
IVariableDebtToken(principalReserve.variableDebtTokenAddress).burn(
user,
vars.userVariableDebt,
principalReserve.variableBorrowIndex
);
IStableDebtToken(principalReserve.stableDebtTokenAddress).burn(
user,
vars.actualAmountToLiquidate.sub(vars.userVariableDebt)
);
}
//if liquidator reclaims the aToken, he receives the equivalent atoken amount
if (receiveAToken) {
vars.collateralAtoken.transferOnLiquidation(user, msg.sender, vars.maxCollateralToLiquidate);
} else {
//otherwise receives the underlying asset
//updating collateral reserve
collateralReserve.updateState();
collateralReserve.updateInterestRates(
collateral,
address(vars.collateralAtoken),
0,
vars.maxCollateralToLiquidate
);
//burn the equivalent amount of atoken
vars.collateralAtoken.burn(
user,
msg.sender,
vars.maxCollateralToLiquidate,
collateralReserve.liquidityIndex
);
}
//transfers the principal currency to the aToken
IERC20(principal).safeTransferFrom(
msg.sender,
principalReserve.aTokenAddress,
vars.actualAmountToLiquidate
);
emit LiquidationCall(
collateral,
principal,
user,
vars.actualAmountToLiquidate,
vars.maxCollateralToLiquidate,
msg.sender,
receiveAToken
);
return (uint256(Errors.LiquidationErrors.NO_ERROR), Errors.NO_ERRORS);
}
/**
* @dev flashes the underlying collateral on an user to swap for the owed asset and repay
* - Both the owner of the position and other liquidators can execute it.
* - The owner can repay with his collateral at any point, no matter the health factor.
* - Other liquidators can only use this function below 1 HF. To liquidate 50% of the debt > HF 0.98 or the whole below.
* @param collateral The address of the collateral asset.
* @param principal The address of the owed asset.
* @param user Address of the borrower.
* @param principalAmount Amount of the debt to repay.
* @param receiver Address of the contract receiving the collateral to swap.
* @param params Variadic bytes param to pass with extra information to the receiver
**/
function repayWithCollateral(
address collateral,
address principal,
address user,
uint256 principalAmount,
address receiver,
bytes calldata params
) external returns (uint256, string memory) {
ReserveLogic.ReserveData storage collateralReserve = reserves[collateral];
ReserveLogic.ReserveData storage debtReserve = reserves[principal];
UserConfiguration.Map storage userConfig = usersConfig[user];
LiquidationCallLocalVars memory vars;
(, , , , vars.healthFactor) = GenericLogic.calculateUserAccountData(
user,
reserves,
usersConfig[user],
reservesList,
addressesProvider.getPriceOracle()
);
(vars.userStableDebt, vars.userVariableDebt) = Helpers.getUserCurrentDebt(user, debtReserve);
(vars.errorCode, vars.errorMsg) = ValidationLogic.validateRepayWithCollateral(
collateralReserve,
debtReserve,
userConfig,
user,
vars.healthFactor,
vars.userStableDebt,
vars.userVariableDebt
);
if (Errors.LiquidationErrors(vars.errorCode) != Errors.LiquidationErrors.NO_ERROR) {
return (vars.errorCode, vars.errorMsg);
}
vars.maxPrincipalAmountToLiquidate = vars.userStableDebt.add(vars.userVariableDebt);
vars.actualAmountToLiquidate = principalAmount > vars.maxPrincipalAmountToLiquidate
? vars.maxPrincipalAmountToLiquidate
: principalAmount;
vars.collateralAtoken = IAToken(collateralReserve.aTokenAddress);
vars.userCollateralBalance = vars.collateralAtoken.balanceOf(user);
(
vars.maxCollateralToLiquidate,
vars.principalAmountNeeded
) = calculateAvailableCollateralToLiquidate(
collateralReserve,
debtReserve,
collateral,
principal,
vars.actualAmountToLiquidate,
vars.userCollateralBalance
);
//if principalAmountNeeded < vars.ActualAmountToLiquidate, there isn't enough
//of collateral to cover the actual amount that is being liquidated, hence we liquidate
//a smaller amount
if (vars.principalAmountNeeded < vars.actualAmountToLiquidate) {
vars.actualAmountToLiquidate = vars.principalAmountNeeded;
}
//updating collateral reserve indexes
collateralReserve.updateState();
vars.collateralAtoken.burn(
user,
receiver,
vars.maxCollateralToLiquidate,
collateralReserve.liquidityIndex
);
if (vars.userCollateralBalance == vars.maxCollateralToLiquidate) {
usersConfig[user].setUsingAsCollateral(collateralReserve.id, false);
}
vars.principalAToken = debtReserve.aTokenAddress;
// Notifies the receiver to proceed, sending as param the underlying already transferred
ISwapAdapter(receiver).executeOperation(
collateral,
principal,
vars.maxCollateralToLiquidate,
address(this),
params
);
//updating debt reserve
debtReserve.updateState();
debtReserve.updateInterestRates(
principal,
vars.principalAToken,
vars.actualAmountToLiquidate,
0
);
IERC20(principal).transferFrom(receiver, vars.principalAToken, vars.actualAmountToLiquidate);
if (vars.userVariableDebt >= vars.actualAmountToLiquidate) {
IVariableDebtToken(debtReserve.variableDebtTokenAddress).burn(
user,
vars.actualAmountToLiquidate,
debtReserve.variableBorrowIndex
);
} else {
IVariableDebtToken(debtReserve.variableDebtTokenAddress).burn(
user,
vars.userVariableDebt,
debtReserve.variableBorrowIndex
);
IStableDebtToken(debtReserve.stableDebtTokenAddress).burn(
user,
vars.actualAmountToLiquidate.sub(vars.userVariableDebt)
);
}
//updating collateral reserve
collateralReserve.updateInterestRates(
collateral,
address(vars.collateralAtoken),
0,
vars.maxCollateralToLiquidate
);
emit RepaidWithCollateral(
collateral,
principal,
user,
msg.sender,
vars.actualAmountToLiquidate,
vars.maxCollateralToLiquidate
);
return (uint256(Errors.LiquidationErrors.NO_ERROR), Errors.NO_ERRORS);
}
/**
* @dev Allows an user to release one of his assets deposited in the protocol, even if it is used as collateral, to swap for another.
* - It's not possible to release one asset to swap for the same
* @param receiverAddress The address of the contract receiving the funds. The receiver should implement the ISwapAdapter interface
* @param fromAsset Asset to swap from
* @param toAsset Asset to swap to
* @param params a bytes array to be sent (if needed) to the receiver contract with extra data
**/
function swapLiquidity(
address receiverAddress,
address fromAsset,
address toAsset,
uint256 amountToSwap,
bytes calldata params
) external returns (uint256, string memory) {
ReserveLogic.ReserveData storage fromReserve = reserves[fromAsset];
ReserveLogic.ReserveData storage toReserve = reserves[toAsset];
// Usage of a memory struct of vars to avoid "Stack too deep" errors due to local variables
SwapLiquidityLocalVars memory vars;
(vars.errorCode, vars.errorMsg) = ValidationLogic.validateSwapLiquidity(
fromReserve,
toReserve,
fromAsset,
toAsset
);
if (Errors.LiquidationErrors(vars.errorCode) != Errors.LiquidationErrors.NO_ERROR) {
return (vars.errorCode, vars.errorMsg);
}
vars.fromReserveAToken = IAToken(fromReserve.aTokenAddress);
vars.toReserveAToken = IAToken(toReserve.aTokenAddress);
fromReserve.updateState();
toReserve.updateState();
if (vars.fromReserveAToken.balanceOf(msg.sender) == amountToSwap) {
usersConfig[msg.sender].setUsingAsCollateral(fromReserve.id, false);
}
fromReserve.updateInterestRates(fromAsset, address(vars.fromReserveAToken), 0, amountToSwap);
vars.fromReserveAToken.burn(
msg.sender,
receiverAddress,
amountToSwap,
fromReserve.liquidityIndex
);
// Notifies the receiver to proceed, sending as param the underlying already transferred
ISwapAdapter(receiverAddress).executeOperation(
fromAsset,
toAsset,
amountToSwap,
address(this),
params
);
vars.amountToReceive = IERC20(toAsset).balanceOf(receiverAddress);
if (vars.amountToReceive != 0) {
IERC20(toAsset).transferFrom(
receiverAddress,
address(vars.toReserveAToken),
vars.amountToReceive
);
if (vars.toReserveAToken.balanceOf(msg.sender) == 0) {
usersConfig[msg.sender].setUsingAsCollateral(toReserve.id, true);
}
vars.toReserveAToken.mint(msg.sender, vars.amountToReceive, toReserve.liquidityIndex);
toReserve.updateInterestRates(
toAsset,
address(vars.toReserveAToken),
vars.amountToReceive,
0
);
}
(, , , , vars.healthFactor) = GenericLogic.calculateUserAccountData(
msg.sender,
reserves,
usersConfig[msg.sender],
reservesList,
addressesProvider.getPriceOracle()
);
if (vars.healthFactor < GenericLogic.HEALTH_FACTOR_LIQUIDATION_THRESHOLD) {
return (
uint256(Errors.LiquidationErrors.HEALTH_FACTOR_LOWER_THAN_LIQUIDATION_THRESHOLD),
Errors.HEALTH_FACTOR_LOWER_THAN_LIQUIDATION_THRESHOLD
);
}
return (uint256(Errors.LiquidationErrors.NO_ERROR), Errors.NO_ERRORS);
}
/**
* @dev calculates how much of a specific collateral can be liquidated, given
* a certain amount of principal currency. This function needs to be called after
* all the checks to validate the liquidation have been performed, otherwise it might fail.
* @param collateralAddress the collateral to be liquidated
* @param principalAddress the principal currency to be liquidated
* @param purchaseAmount the amount of principal being liquidated
* @param userCollateralBalance the collatera balance for the specific collateral asset of the user being liquidated
* @return collateralAmount the maximum amount that is possible to liquidated given all the liquidation constraints (user balance, close factor)
* @return principalAmountNeeded the purchase amount
**/
function calculateAvailableCollateralToLiquidate(
ReserveLogic.ReserveData storage collateralReserve,
ReserveLogic.ReserveData storage principalReserve,
address collateralAddress,
address principalAddress,
uint256 purchaseAmount,
uint256 userCollateralBalance
) internal view returns (uint256, uint256) {
uint256 collateralAmount = 0;
uint256 principalAmountNeeded = 0;
IPriceOracleGetter oracle = IPriceOracleGetter(addressesProvider.getPriceOracle());
// Usage of a memory struct of vars to avoid "Stack too deep" errors due to local variables
AvailableCollateralToLiquidateLocalVars memory vars;
vars.collateralPrice = oracle.getAssetPrice(collateralAddress);
vars.principalCurrencyPrice = oracle.getAssetPrice(principalAddress);
(, , vars.liquidationBonus, vars.collateralDecimals) = collateralReserve
.configuration
.getParams();
vars.principalDecimals = principalReserve.configuration.getDecimals();
//this is the maximum possible amount of the selected collateral that can be liquidated, given the
//max amount of principal currency that is available for liquidation.
vars.maxAmountCollateralToLiquidate = vars
.principalCurrencyPrice
.mul(purchaseAmount)
.mul(10**vars.collateralDecimals)
.div(vars.collateralPrice.mul(10**vars.principalDecimals))
.percentMul(vars.liquidationBonus);
if (vars.maxAmountCollateralToLiquidate > userCollateralBalance) {
collateralAmount = userCollateralBalance;
principalAmountNeeded = vars
.collateralPrice
.mul(collateralAmount)
.mul(10**vars.principalDecimals)
.div(vars.principalCurrencyPrice.mul(10**vars.collateralDecimals))
.percentDiv(vars.liquidationBonus);
} else {
collateralAmount = vars.maxAmountCollateralToLiquidate;
principalAmountNeeded = purchaseAmount;
}
return (collateralAmount, principalAmountNeeded);
}
}