aave-protocol-v2/contracts/protocol/lendingpool/LendingPoolCollateralManager.sol

314 lines
12 KiB
Solidity

// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.6.12;
import {SafeMath} from '../../dependencies/openzeppelin/contracts//SafeMath.sol';
import {IERC20} from '../../dependencies/openzeppelin/contracts//IERC20.sol';
import {VersionedInitializable} from '../libraries/aave-upgradeability/VersionedInitializable.sol';
import {IAToken} from '../tokenization/interfaces/IAToken.sol';
import {IStableDebtToken} from '../tokenization/interfaces/IStableDebtToken.sol';
import {IVariableDebtToken} from '../tokenization/interfaces/IVariableDebtToken.sol';
import {IPriceOracleGetter} from '../../interfaces/IPriceOracleGetter.sol';
import {ILendingPoolCollateralManager} from '../../interfaces/ILendingPoolCollateralManager.sol';
import {GenericLogic} from '../libraries/logic/GenericLogic.sol';
import {ReserveLogic} from '../libraries/logic/ReserveLogic.sol';
import {UserConfiguration} from '../libraries/configuration/UserConfiguration.sol';
import {Helpers} from '../libraries/helpers/Helpers.sol';
import {WadRayMath} from '../libraries/math/WadRayMath.sol';
import {PercentageMath} from '../libraries/math/PercentageMath.sol';
import {SafeERC20} from '../../dependencies/openzeppelin/contracts/SafeERC20.sol';
import {Errors} from '../libraries/helpers/Errors.sol';
import {ValidationLogic} from '../libraries/logic/ValidationLogic.sol';
import {LendingPoolStorage} from './LendingPoolStorage.sol';
/**
* @title LendingPoolCollateralManager contract
* @author Aave
* @notice Implements actions involving management of collateral in the protocol.
* @notice this contract will be ran always through delegatecall
* @dev LendingPoolCollateralManager inherits VersionedInitializable from OpenZeppelin to have the same storage layout as LendingPool
**/
contract LendingPoolCollateralManager is ILendingPoolCollateralManager, VersionedInitializable, LendingPoolStorage {
using SafeERC20 for IERC20;
using SafeMath for uint256;
using WadRayMath for uint256;
using PercentageMath for uint256;
// IMPORTANT The storage layout of the LendingPool is reproduced here because this contract
// is gonna be used through DELEGATECALL
uint256 internal constant LIQUIDATION_CLOSE_FACTOR_PERCENT = 5000;
struct LiquidationCallLocalVars {
uint256 userCollateralBalance;
uint256 userStableDebt;
uint256 userVariableDebt;
uint256 maxPrincipalAmountToLiquidate;
uint256 actualAmountToLiquidate;
uint256 liquidationRatio;
uint256 maxAmountCollateralToLiquidate;
uint256 userStableRate;
uint256 maxCollateralToLiquidate;
uint256 principalAmountNeeded;
uint256 healthFactor;
IAToken collateralAtoken;
bool isCollateralEnabled;
ReserveLogic.InterestRateMode borrowRateMode;
address principalAToken;
uint256 errorCode;
string errorMsg;
}
struct AvailableCollateralToLiquidateLocalVars {
uint256 userCompoundedBorrowBalance;
uint256 liquidationBonus;
uint256 collateralPrice;
uint256 principalCurrencyPrice;
uint256 maxAmountCollateralToLiquidate;
uint256 principalDecimals;
uint256 collateralDecimals;
}
/**
* @dev as the contract extends the VersionedInitializable contract to match the state
* of the LendingPool contract, the getRevision() function is needed.
*/
function getRevision() internal pure override returns (uint256) {
return 0;
}
/**
* @dev users can invoke this function to liquidate an undercollateralized position.
* @param collateral the address of the collateral to liquidated
* @param principal the address of the principal reserve
* @param user the address of the borrower
* @param debtToCover the amount of principal that the liquidator wants to repay
* @param receiveAToken true if the liquidators wants to receive the aTokens, false if
* he wants to receive the underlying asset directly
**/
function liquidationCall(
address collateral,
address principal,
address user,
uint256 debtToCover,
bool receiveAToken
) external override returns (uint256, string memory) {
ReserveLogic.ReserveData storage collateralReserve = _reserves[collateral];
ReserveLogic.ReserveData storage principalReserve = _reserves[principal];
UserConfiguration.Map storage userConfig = _usersConfig[user];
LiquidationCallLocalVars memory vars;
(, , , , vars.healthFactor) = GenericLogic.calculateUserAccountData(
user,
_reserves,
userConfig,
_reservesList,
_reservesCount,
_addressesProvider.getPriceOracle()
);
//if the user hasn't borrowed the specific currency defined by asset, it cannot be liquidated
(vars.userStableDebt, vars.userVariableDebt) = Helpers.getUserCurrentDebt(
user,
principalReserve
);
(vars.errorCode, vars.errorMsg) = ValidationLogic.validateLiquidationCall(
collateralReserve,
principalReserve,
userConfig,
vars.healthFactor,
vars.userStableDebt,
vars.userVariableDebt
);
if (Errors.CollateralManagerErrors(vars.errorCode) != Errors.CollateralManagerErrors.NO_ERROR) {
return (vars.errorCode, vars.errorMsg);
}
vars.collateralAtoken = IAToken(collateralReserve.aTokenAddress);
vars.userCollateralBalance = vars.collateralAtoken.balanceOf(user);
vars.maxPrincipalAmountToLiquidate = vars.userStableDebt.add(vars.userVariableDebt).percentMul(
LIQUIDATION_CLOSE_FACTOR_PERCENT
);
vars.actualAmountToLiquidate = debtToCover > vars.maxPrincipalAmountToLiquidate
? vars.maxPrincipalAmountToLiquidate
: debtToCover;
(
vars.maxCollateralToLiquidate,
vars.principalAmountNeeded
) = _calculateAvailableCollateralToLiquidate(
collateralReserve,
principalReserve,
collateral,
principal,
vars.actualAmountToLiquidate,
vars.userCollateralBalance
);
//if principalAmountNeeded < vars.ActualAmountToLiquidate, there isn't enough
//of collateral to cover the actual amount that is being liquidated, hence we liquidate
//a smaller amount
if (vars.principalAmountNeeded < vars.actualAmountToLiquidate) {
vars.actualAmountToLiquidate = vars.principalAmountNeeded;
}
//if liquidator reclaims the underlying asset, we make sure there is enough available collateral in the reserve
if (!receiveAToken) {
uint256 currentAvailableCollateral =
IERC20(collateral).balanceOf(address(vars.collateralAtoken));
if (currentAvailableCollateral < vars.maxCollateralToLiquidate) {
return (
uint256(Errors.CollateralManagerErrors.NOT_ENOUGH_LIQUIDITY),
Errors.LPCM_NOT_ENOUGH_LIQUIDITY_TO_LIQUIDATE
);
}
}
//update the principal reserve
principalReserve.updateState();
if (vars.userVariableDebt >= vars.actualAmountToLiquidate) {
IVariableDebtToken(principalReserve.variableDebtTokenAddress).burn(
user,
vars.actualAmountToLiquidate,
principalReserve.variableBorrowIndex
);
} else {
//if the user does not have variable debt, no need to try to burn variable
//debt tokens
if (vars.userVariableDebt > 0) {
IVariableDebtToken(principalReserve.variableDebtTokenAddress).burn(
user,
vars.userVariableDebt,
principalReserve.variableBorrowIndex
);
}
IStableDebtToken(principalReserve.stableDebtTokenAddress).burn(
user,
vars.actualAmountToLiquidate.sub(vars.userVariableDebt)
);
}
principalReserve.updateInterestRates(
principal,
principalReserve.aTokenAddress,
vars.actualAmountToLiquidate,
0
);
//if liquidator reclaims the aToken, he receives the equivalent atoken amount
if (receiveAToken) {
vars.collateralAtoken.transferOnLiquidation(user, msg.sender, vars.maxCollateralToLiquidate);
} else {
//otherwise receives the underlying asset
//updating collateral reserve
collateralReserve.updateState();
collateralReserve.updateInterestRates(
collateral,
address(vars.collateralAtoken),
0,
vars.maxCollateralToLiquidate
);
//burn the equivalent amount of atoken
vars.collateralAtoken.burn(
user,
msg.sender,
vars.maxCollateralToLiquidate,
collateralReserve.liquidityIndex
);
}
//if the collateral being liquidated is equal to the user balance,
//we set the currency as not being used as collateral anymore
if (vars.maxCollateralToLiquidate == vars.userCollateralBalance) {
userConfig.setUsingAsCollateral(collateralReserve.id, false);
emit ReserveUsedAsCollateralDisabled(collateral, user);
}
//transfers the principal currency to the aToken
IERC20(principal).safeTransferFrom(
msg.sender,
principalReserve.aTokenAddress,
vars.actualAmountToLiquidate
);
emit LiquidationCall(
collateral,
principal,
user,
vars.actualAmountToLiquidate,
vars.maxCollateralToLiquidate,
msg.sender,
receiveAToken
);
return (uint256(Errors.CollateralManagerErrors.NO_ERROR), Errors.LPCM_NO_ERRORS);
}
/**
* @dev calculates how much of a specific collateral can be liquidated, given
* a certain amount of principal currency. This function needs to be called after
* all the checks to validate the liquidation have been performed, otherwise it might fail.
* @param collateralAddress the collateral to be liquidated
* @param principalAddress the principal currency to be liquidated
* @param debtToCover the amount of principal being liquidated
* @param userCollateralBalance the collatera balance for the specific collateral asset of the user being liquidated
* @return collateralAmount the maximum amount that is possible to liquidated given all the liquidation constraints (user balance, close factor)
* @return principalAmountNeeded the purchase amount
**/
function _calculateAvailableCollateralToLiquidate(
ReserveLogic.ReserveData storage collateralReserve,
ReserveLogic.ReserveData storage principalReserve,
address collateralAddress,
address principalAddress,
uint256 debtToCover,
uint256 userCollateralBalance
) internal view returns (uint256, uint256) {
uint256 collateralAmount = 0;
uint256 principalAmountNeeded = 0;
IPriceOracleGetter oracle = IPriceOracleGetter(_addressesProvider.getPriceOracle());
AvailableCollateralToLiquidateLocalVars memory vars;
vars.collateralPrice = oracle.getAssetPrice(collateralAddress);
vars.principalCurrencyPrice = oracle.getAssetPrice(principalAddress);
(, , vars.liquidationBonus, vars.collateralDecimals, ) = collateralReserve
.configuration
.getParams();
vars.principalDecimals = principalReserve.configuration.getDecimals();
//this is the maximum possible amount of the selected collateral that can be liquidated, given the
//max amount of principal currency that is available for liquidation.
vars.maxAmountCollateralToLiquidate = vars
.principalCurrencyPrice
.mul(debtToCover)
.mul(10**vars.collateralDecimals)
.percentMul(vars.liquidationBonus)
.div(vars.collateralPrice.mul(10**vars.principalDecimals));
if (vars.maxAmountCollateralToLiquidate > userCollateralBalance) {
collateralAmount = userCollateralBalance;
principalAmountNeeded = vars
.collateralPrice
.mul(collateralAmount)
.mul(10**vars.principalDecimals)
.div(vars.principalCurrencyPrice.mul(10**vars.collateralDecimals))
.percentDiv(vars.liquidationBonus);
} else {
collateralAmount = vars.maxAmountCollateralToLiquidate;
principalAmountNeeded = debtToCover;
}
return (collateralAmount, principalAmountNeeded);
}
}