mirror of
https://github.com/Instadapp/aave-protocol-v2.git
synced 2024-07-29 21:47:30 +00:00
335 lines
13 KiB
Solidity
335 lines
13 KiB
Solidity
// SPDX-License-Identifier: agpl-3.0
|
|
pragma solidity 0.6.12;
|
|
|
|
import {SafeMath} from '../../dependencies/openzeppelin/contracts//SafeMath.sol';
|
|
import {IERC20} from '../../dependencies/openzeppelin/contracts//IERC20.sol';
|
|
import {IAToken} from '../../interfaces/IAToken.sol';
|
|
import {IStableDebtToken} from '../../interfaces/IStableDebtToken.sol';
|
|
import {IVariableDebtToken} from '../../interfaces/IVariableDebtToken.sol';
|
|
import {IPriceOracleGetter} from '../../interfaces/IPriceOracleGetter.sol';
|
|
import {ILendingPoolCollateralManager} from '../../interfaces/ILendingPoolCollateralManager.sol';
|
|
import {VersionedInitializable} from '../libraries/aave-upgradeability/VersionedInitializable.sol';
|
|
import {GenericLogic} from '../libraries/logic/GenericLogic.sol';
|
|
import {Helpers} from '../libraries/helpers/Helpers.sol';
|
|
import {WadRayMath} from '../libraries/math/WadRayMath.sol';
|
|
import {PercentageMath} from '../libraries/math/PercentageMath.sol';
|
|
import {SafeERC20} from '../../dependencies/openzeppelin/contracts/SafeERC20.sol';
|
|
import {Errors} from '../libraries/helpers/Errors.sol';
|
|
import {ValidationLogic} from '../libraries/logic/ValidationLogic.sol';
|
|
import {DataTypes} from '../libraries/types/DataTypes.sol';
|
|
import {LendingPoolStorage} from './LendingPoolStorage.sol';
|
|
import {CachingHelper} from '../libraries/helpers/CachingHelper.sol';
|
|
|
|
/**
|
|
* @title LendingPoolCollateralManager contract
|
|
* @author Aave
|
|
* @dev Implements actions involving management of collateral in the protocol, the main one being the liquidations
|
|
* IMPORTANT This contract will run always via DELEGATECALL, through the LendingPool, so the chain of inheritance
|
|
* is the same as the LendingPool, to have compatible storage layouts
|
|
**/
|
|
contract LendingPoolCollateralManager is
|
|
ILendingPoolCollateralManager,
|
|
VersionedInitializable,
|
|
LendingPoolStorage
|
|
{
|
|
using SafeERC20 for IERC20;
|
|
using SafeMath for uint256;
|
|
using WadRayMath for uint256;
|
|
using PercentageMath for uint256;
|
|
|
|
uint256 internal constant LIQUIDATION_CLOSE_FACTOR_PERCENT = 5000;
|
|
|
|
struct LiquidationCallLocalVars {
|
|
uint256 userCollateralBalance;
|
|
uint256 userStableDebt;
|
|
uint256 userVariableDebt;
|
|
uint256 maxLiquidatableDebt;
|
|
uint256 actualDebtToLiquidate;
|
|
uint256 liquidationRatio;
|
|
uint256 maxAmountCollateralToLiquidate;
|
|
uint256 userStableRate;
|
|
uint256 maxCollateralToLiquidate;
|
|
uint256 debtAmountNeeded;
|
|
uint256 healthFactor;
|
|
uint256 liquidatorPreviousATokenBalance;
|
|
IAToken collateralAtoken;
|
|
bool isCollateralEnabled;
|
|
DataTypes.InterestRateMode borrowRateMode;
|
|
uint256 errorCode;
|
|
string errorMsg;
|
|
}
|
|
|
|
/**
|
|
* @dev As thIS contract extends the VersionedInitializable contract to match the state
|
|
* of the LendingPool contract, the getRevision() function is needed, but the value is not
|
|
* important, as the initialize() function will never be called here
|
|
*/
|
|
function getRevision() internal pure override returns (uint256) {
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @dev Function to liquidate a position if its Health Factor drops below 1
|
|
* - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives
|
|
* a proportionally amount of the `collateralAsset` plus a bonus to cover market risk
|
|
* @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation
|
|
* @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
|
|
* @param user The address of the borrower getting liquidated
|
|
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
|
|
* @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants
|
|
* to receive the underlying collateral asset directly
|
|
**/
|
|
function liquidationCall(
|
|
address collateralAsset,
|
|
address debtAsset,
|
|
address user,
|
|
uint256 debtToCover,
|
|
bool receiveAToken
|
|
) external override returns (uint256, string memory) {
|
|
DataTypes.ReserveData storage collateralReserve = _reserves[collateralAsset];
|
|
DataTypes.ReserveData storage debtReserve = _reserves[debtAsset];
|
|
DataTypes.UserConfigurationMap storage userConfig = _usersConfig[user];
|
|
|
|
LiquidationCallLocalVars memory vars;
|
|
|
|
(, , , , vars.healthFactor) = GenericLogic.calculateUserAccountData(
|
|
user,
|
|
_reserves,
|
|
userConfig,
|
|
_reservesList,
|
|
_reservesCount,
|
|
_addressesProvider.getPriceOracle()
|
|
);
|
|
|
|
(vars.userStableDebt, vars.userVariableDebt) = Helpers.getUserCurrentDebt(user, debtReserve);
|
|
|
|
(vars.errorCode, vars.errorMsg) = ValidationLogic.validateLiquidationCall(
|
|
collateralReserve,
|
|
debtReserve,
|
|
userConfig,
|
|
vars.healthFactor,
|
|
vars.userStableDebt,
|
|
vars.userVariableDebt
|
|
);
|
|
|
|
if (Errors.CollateralManagerErrors(vars.errorCode) != Errors.CollateralManagerErrors.NO_ERROR) {
|
|
return (vars.errorCode, vars.errorMsg);
|
|
}
|
|
|
|
vars.collateralAtoken = IAToken(collateralReserve.aTokenAddress);
|
|
|
|
vars.userCollateralBalance = vars.collateralAtoken.balanceOf(user);
|
|
|
|
vars.maxLiquidatableDebt = vars.userStableDebt.add(vars.userVariableDebt).percentMul(
|
|
LIQUIDATION_CLOSE_FACTOR_PERCENT
|
|
);
|
|
|
|
vars.actualDebtToLiquidate = debtToCover > vars.maxLiquidatableDebt
|
|
? vars.maxLiquidatableDebt
|
|
: debtToCover;
|
|
|
|
(
|
|
vars.maxCollateralToLiquidate,
|
|
vars.debtAmountNeeded
|
|
) = _calculateAvailableCollateralToLiquidate(
|
|
collateralReserve,
|
|
debtReserve,
|
|
collateralAsset,
|
|
debtAsset,
|
|
vars.actualDebtToLiquidate,
|
|
vars.userCollateralBalance
|
|
);
|
|
|
|
// If debtAmountNeeded < actualDebtToLiquidate, there isn't enough
|
|
// collateral to cover the actual amount that is being liquidated, hence we liquidate
|
|
// a smaller amount
|
|
|
|
if (vars.debtAmountNeeded < vars.actualDebtToLiquidate) {
|
|
vars.actualDebtToLiquidate = vars.debtAmountNeeded;
|
|
}
|
|
|
|
// If the liquidator reclaims the underlying asset, we make sure there is enough available liquidity in the
|
|
// collateral reserve
|
|
if (!receiveAToken) {
|
|
uint256 currentAvailableCollateral =
|
|
IERC20(collateralAsset).balanceOf(address(vars.collateralAtoken));
|
|
if (currentAvailableCollateral < vars.maxCollateralToLiquidate) {
|
|
return (
|
|
uint256(Errors.CollateralManagerErrors.NOT_ENOUGH_LIQUIDITY),
|
|
Errors.LPCM_NOT_ENOUGH_LIQUIDITY_TO_LIQUIDATE
|
|
);
|
|
}
|
|
}
|
|
|
|
CachingHelper.CachedData memory debtReserveCachedData = CachingHelper.fetchData(debtReserve);
|
|
|
|
debtReserve.updateState(debtReserveCachedData);
|
|
|
|
if (vars.userVariableDebt >= vars.actualDebtToLiquidate) {
|
|
IVariableDebtToken(debtReserve.variableDebtTokenAddress).burn(
|
|
user,
|
|
vars.actualDebtToLiquidate,
|
|
debtReserveCachedData.newVariableBorrowIndex
|
|
);
|
|
debtReserveCachedData.newScaledVariableDebt = debtReserveCachedData.oldScaledVariableDebt.sub(
|
|
vars.actualDebtToLiquidate.rayDiv(debtReserveCachedData.newVariableBorrowIndex)
|
|
);
|
|
} else {
|
|
// If the user doesn't have variable debt, no need to try to burn variable debt tokens
|
|
if (vars.userVariableDebt > 0) {
|
|
IVariableDebtToken(debtReserveCachedData.variableDebtTokenAddress).burn(
|
|
user,
|
|
vars.userVariableDebt,
|
|
debtReserveCachedData.newVariableBorrowIndex
|
|
);
|
|
debtReserveCachedData.newScaledVariableDebt = debtReserveCachedData
|
|
.oldScaledVariableDebt
|
|
.sub(vars.userVariableDebt.rayDiv(debtReserveCachedData.newVariableBorrowIndex));
|
|
}
|
|
IStableDebtToken(debtReserveCachedData.stableDebtTokenAddress).burn(
|
|
user,
|
|
vars.actualDebtToLiquidate.sub(vars.userVariableDebt)
|
|
);
|
|
|
|
debtReserveCachedData.newPrincipalStableDebt = debtReserveCachedData
|
|
.newTotalStableDebt = debtReserveCachedData.oldTotalStableDebt.sub(
|
|
vars.actualDebtToLiquidate.sub(vars.userVariableDebt)
|
|
);
|
|
}
|
|
|
|
debtReserve.updateInterestRates(
|
|
debtReserveCachedData,
|
|
debtAsset,
|
|
vars.actualDebtToLiquidate,
|
|
0
|
|
);
|
|
|
|
if (receiveAToken) {
|
|
vars.liquidatorPreviousATokenBalance = IERC20(vars.collateralAtoken).balanceOf(msg.sender);
|
|
vars.collateralAtoken.transferOnLiquidation(user, msg.sender, vars.maxCollateralToLiquidate);
|
|
|
|
if (vars.liquidatorPreviousATokenBalance == 0) {
|
|
DataTypes.UserConfigurationMap storage liquidatorConfig = _usersConfig[msg.sender];
|
|
liquidatorConfig.setUsingAsCollateral(collateralReserve.id, true);
|
|
emit ReserveUsedAsCollateralEnabled(collateralAsset, msg.sender);
|
|
}
|
|
} else {
|
|
CachingHelper.CachedData memory collateralReserveCachedData =
|
|
CachingHelper.fetchData(collateralReserve);
|
|
|
|
collateralReserve.updateState(collateralReserveCachedData);
|
|
collateralReserve.updateInterestRates(
|
|
collateralReserveCachedData,
|
|
collateralAsset,
|
|
0,
|
|
vars.maxCollateralToLiquidate
|
|
);
|
|
|
|
// Burn the equivalent amount of aToken, sending the underlying to the liquidator
|
|
vars.collateralAtoken.burn(
|
|
user,
|
|
msg.sender,
|
|
vars.maxCollateralToLiquidate,
|
|
collateralReserve.liquidityIndex
|
|
);
|
|
}
|
|
|
|
// If the collateral being liquidated is equal to the user balance,
|
|
// we set the currency as not being used as collateral anymore
|
|
if (vars.maxCollateralToLiquidate == vars.userCollateralBalance) {
|
|
userConfig.setUsingAsCollateral(collateralReserve.id, false);
|
|
emit ReserveUsedAsCollateralDisabled(collateralAsset, user);
|
|
}
|
|
|
|
// Transfers the debt asset being repaid to the aToken, where the liquidity is kept
|
|
IERC20(debtAsset).safeTransferFrom(
|
|
msg.sender,
|
|
debtReserve.aTokenAddress,
|
|
vars.actualDebtToLiquidate
|
|
);
|
|
|
|
emit LiquidationCall(
|
|
collateralAsset,
|
|
debtAsset,
|
|
user,
|
|
vars.actualDebtToLiquidate,
|
|
vars.maxCollateralToLiquidate,
|
|
msg.sender,
|
|
receiveAToken
|
|
);
|
|
|
|
return (uint256(Errors.CollateralManagerErrors.NO_ERROR), Errors.LPCM_NO_ERRORS);
|
|
}
|
|
|
|
struct AvailableCollateralToLiquidateLocalVars {
|
|
uint256 userCompoundedBorrowBalance;
|
|
uint256 liquidationBonus;
|
|
uint256 collateralPrice;
|
|
uint256 debtAssetPrice;
|
|
uint256 maxAmountCollateralToLiquidate;
|
|
uint256 debtAssetDecimals;
|
|
uint256 collateralDecimals;
|
|
}
|
|
|
|
/**
|
|
* @dev Calculates how much of a specific collateral can be liquidated, given
|
|
* a certain amount of debt asset.
|
|
* - This function needs to be called after all the checks to validate the liquidation have been performed,
|
|
* otherwise it might fail.
|
|
* @param collateralReserve The data of the collateral reserve
|
|
* @param debtReserve The data of the debt reserve
|
|
* @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation
|
|
* @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
|
|
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
|
|
* @param userCollateralBalance The collateral balance for the specific `collateralAsset` of the user being liquidated
|
|
* @return collateralAmount: The maximum amount that is possible to liquidate given all the liquidation constraints
|
|
* (user balance, close factor)
|
|
* debtAmountNeeded: The amount to repay with the liquidation
|
|
**/
|
|
function _calculateAvailableCollateralToLiquidate(
|
|
DataTypes.ReserveData storage collateralReserve,
|
|
DataTypes.ReserveData storage debtReserve,
|
|
address collateralAsset,
|
|
address debtAsset,
|
|
uint256 debtToCover,
|
|
uint256 userCollateralBalance
|
|
) internal view returns (uint256, uint256) {
|
|
uint256 collateralAmount = 0;
|
|
uint256 debtAmountNeeded = 0;
|
|
IPriceOracleGetter oracle = IPriceOracleGetter(_addressesProvider.getPriceOracle());
|
|
|
|
AvailableCollateralToLiquidateLocalVars memory vars;
|
|
|
|
vars.collateralPrice = oracle.getAssetPrice(collateralAsset);
|
|
vars.debtAssetPrice = oracle.getAssetPrice(debtAsset);
|
|
|
|
(, , vars.liquidationBonus, vars.collateralDecimals, ) = collateralReserve
|
|
.configuration
|
|
.getParams();
|
|
vars.debtAssetDecimals = debtReserve.configuration.getDecimals();
|
|
|
|
// This is the maximum possible amount of the selected collateral that can be liquidated, given the
|
|
// max amount of liquidatable debt
|
|
vars.maxAmountCollateralToLiquidate = vars
|
|
.debtAssetPrice
|
|
.mul(debtToCover)
|
|
.mul(10**vars.collateralDecimals)
|
|
.percentMul(vars.liquidationBonus)
|
|
.div(vars.collateralPrice.mul(10**vars.debtAssetDecimals));
|
|
|
|
if (vars.maxAmountCollateralToLiquidate > userCollateralBalance) {
|
|
collateralAmount = userCollateralBalance;
|
|
debtAmountNeeded = vars
|
|
.collateralPrice
|
|
.mul(collateralAmount)
|
|
.mul(10**vars.debtAssetDecimals)
|
|
.div(vars.debtAssetPrice.mul(10**vars.collateralDecimals))
|
|
.percentDiv(vars.liquidationBonus);
|
|
} else {
|
|
collateralAmount = vars.maxAmountCollateralToLiquidate;
|
|
debtAmountNeeded = debtToCover;
|
|
}
|
|
return (collateralAmount, debtAmountNeeded);
|
|
}
|
|
}
|