aave-protocol-v2/contracts/libraries/GenericLogic.sol
2020-07-03 23:20:02 +02:00

281 lines
11 KiB
Solidity

// SPDX-License-Identifier: agpl-3.0
pragma solidity ^0.6.8;
import {SafeMath} from "@openzeppelin/contracts/math/SafeMath.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {CoreLibrary} from "./CoreLibrary.sol";
import {ReserveLogic} from "./ReserveLogic.sol";
import {UserLogic} from "./UserLogic.sol";
import {WadRayMath} from "./WadRayMath.sol";
import "../interfaces/IPriceOracleGetter.sol";
import {IFeeProvider} from "../interfaces/IFeeProvider.sol";
/**
* @title GenericLogic library
* @author Aave
* @title Implements protocol-level logic to check the status of the user across all the reserves
*/
library GenericLogic {
using ReserveLogic for CoreLibrary.ReserveData;
using UserLogic for CoreLibrary.UserReserveData;
using SafeMath for uint256;
using WadRayMath for uint256;
uint256 public constant HEALTH_FACTOR_LIQUIDATION_THRESHOLD = 1e18;
struct balanceDecreaseAllowedLocalVars {
uint256 decimals;
uint256 collateralBalanceETH;
uint256 borrowBalanceETH;
uint256 totalFeesETH;
uint256 currentLiquidationThreshold;
uint256 reserveLiquidationThreshold;
uint256 amountToDecreaseETH;
uint256 collateralBalancefterDecrease;
uint256 liquidationThresholdAfterDecrease;
uint256 healthFactorAfterDecrease;
bool reserveUsageAsCollateralEnabled;
}
/**
* @dev check if a specific balance decrease is allowed (i.e. doesn't bring the user borrow position health factor under HEALTH_FACTOR_LIQUIDATION_THRESHOLD)
* @param _reserve the address of the reserve
* @param _user the address of the user
* @param _amount the amount to decrease
* @return true if the decrease of the balance is allowed
**/
function balanceDecreaseAllowed(
address _reserve,
address _user,
uint256 _amount,
mapping(address => CoreLibrary.ReserveData) storage _reservesData,
mapping(address => mapping(address => CoreLibrary.UserReserveData)) storage _usersData,
address[] calldata _reserves,
address _oracle
) external view returns (bool) {
// Usage of a memory struct of vars to avoid "Stack too deep" errors due to local variables
balanceDecreaseAllowedLocalVars memory vars;
if (
!_reservesData[_reserve].usageAsCollateralEnabled ||
!_usersData[_user][_reserve].useAsCollateral
) {
return true; //if reserve is not used as collateral, no reasons to block the transfer
}
(
vars.collateralBalanceETH,
vars.borrowBalanceETH,
vars.totalFeesETH,
,
vars.currentLiquidationThreshold,
) = calculateUserAccountData(_user, _reservesData, _usersData, _reserves, _oracle);
if (vars.borrowBalanceETH == 0) {
return true; //no borrows - no reasons to block the transfer
}
vars.amountToDecreaseETH = IPriceOracleGetter(_oracle)
.getAssetPrice(_reserve)
.mul(_amount)
.div(10 ** _reservesData[_reserve].decimals);
vars.collateralBalancefterDecrease = vars.collateralBalanceETH.sub(
vars.amountToDecreaseETH
);
//if there is a borrow, there can't be 0 collateral
if (vars.collateralBalancefterDecrease == 0) {
return false;
}
vars.liquidationThresholdAfterDecrease = vars
.collateralBalanceETH
.mul(vars.currentLiquidationThreshold)
.sub(vars.amountToDecreaseETH.mul(vars.reserveLiquidationThreshold))
.div(vars.collateralBalancefterDecrease);
uint256 healthFactorAfterDecrease = calculateHealthFactorFromBalances(
vars.collateralBalancefterDecrease,
vars.borrowBalanceETH,
vars.totalFeesETH,
vars.liquidationThresholdAfterDecrease
);
return healthFactorAfterDecrease > GenericLogic.HEALTH_FACTOR_LIQUIDATION_THRESHOLD;
}
struct CalculateUserAccountDataVars {
uint256 reserveUnitPrice;
uint256 tokenUnit;
uint256 compoundedLiquidityBalance;
uint256 compoundedBorrowBalance;
uint256 reserveDecimals;
uint256 baseLtv;
uint256 liquidationThreshold;
uint256 originationFee;
uint256 i;
uint256 healthFactor;
uint256 totalCollateralBalanceETH;
uint256 totalBorrowBalanceETH;
uint256 totalFeesETH;
uint256 currentLtv;
uint256 currentLiquidationThreshold;
bool healthFactorBelowThreshold;
address currentReserveAddress;
bool usageAsCollateralEnabled;
bool userUsesReserveAsCollateral;
}
/**
* @dev calculates the user data across the reserves.
* this includes the total liquidity/collateral/borrow balances in ETH,
* the average Loan To Value, the average Liquidation Ratio, and the Health factor.
* @param _user the address of the user
* @param _reservesData data of all the reserves
* @param _usersReserveData data
* @return the total liquidity, total collateral, total borrow balances of the user in ETH.
* also the average Ltv, liquidation threshold, and the health factor
**/
function calculateUserAccountData(
address _user,
mapping(address => CoreLibrary.ReserveData) storage _reservesData,
mapping(address => mapping(address => CoreLibrary.UserReserveData)) storage _usersReserveData,
address[] memory _reserves,
address _oracle
) public view returns (uint256, uint256, uint256, uint256, uint256, uint256) {
CalculateUserAccountDataVars memory vars;
for (vars.i = 0; vars.i < _reserves.length; vars.i++) {
vars.currentReserveAddress = _reserves[vars.i];
CoreLibrary.ReserveData storage currentReserve = _reservesData[vars
.currentReserveAddress];
vars.compoundedLiquidityBalance = IERC20(currentReserve.aTokenAddress).balanceOf(_user);
vars.compoundedBorrowBalance = IERC20(currentReserve.stableDebtTokenAddress).balanceOf(_user);
vars.compoundedBorrowBalance = vars.compoundedBorrowBalance.add(IERC20(currentReserve.variableDebtTokenAddress).balanceOf(_user));
if (vars.compoundedLiquidityBalance == 0 && vars.compoundedBorrowBalance == 0) {
continue;
}
vars.tokenUnit = 10 ** currentReserve.decimals;
vars.reserveUnitPrice = IPriceOracleGetter(_oracle).getAssetPrice(_reserves[vars.i]);
//liquidity and collateral balance
if (vars.compoundedLiquidityBalance > 0) {
uint256 liquidityBalanceETH = vars
.reserveUnitPrice
.mul(vars.compoundedLiquidityBalance)
.div(vars.tokenUnit);
if (
currentReserve.usageAsCollateralEnabled &&
_usersReserveData[_user][_reserves[vars.i]].useAsCollateral
) {
vars.totalCollateralBalanceETH = vars.totalCollateralBalanceETH.add(
liquidityBalanceETH
);
vars.currentLtv = vars.currentLtv.add(
liquidityBalanceETH.mul(currentReserve.baseLTVasCollateral)
);
vars.currentLiquidationThreshold = vars.currentLiquidationThreshold.add(
liquidityBalanceETH.mul(currentReserve.liquidationThreshold)
);
}
}
if (vars.compoundedBorrowBalance > 0) {
vars.totalBorrowBalanceETH = vars.totalBorrowBalanceETH.add(
vars.reserveUnitPrice.mul(vars.compoundedBorrowBalance).div(vars.tokenUnit)
);
vars.totalFeesETH = vars.totalFeesETH.add(
vars.originationFee.mul(vars.reserveUnitPrice).div(vars.tokenUnit)
);
}
}
vars.currentLtv = vars.totalCollateralBalanceETH > 0
? vars.currentLtv.div(vars.totalCollateralBalanceETH)
: 0;
vars.currentLiquidationThreshold = vars.totalCollateralBalanceETH > 0
? vars.currentLiquidationThreshold.div(vars.totalCollateralBalanceETH)
: 0;
vars.healthFactor = calculateHealthFactorFromBalances(
vars.totalCollateralBalanceETH,
vars.totalBorrowBalanceETH,
vars.totalFeesETH,
vars.currentLiquidationThreshold
);
return (
vars.totalCollateralBalanceETH,
vars.totalBorrowBalanceETH,
vars.totalFeesETH,
vars.currentLtv,
vars.currentLiquidationThreshold,
vars.healthFactor
);
}
/**
* @dev calculates the health factor from the corresponding balances
* @param collateralBalanceETH the total collateral balance in ETH
* @param borrowBalanceETH the total borrow balance in ETH
* @param totalFeesETH the total fees in ETH
* @param liquidationThreshold the avg liquidation threshold
* @return the health factor calculated from the balances provided
**/
function calculateHealthFactorFromBalances(
uint256 collateralBalanceETH,
uint256 borrowBalanceETH,
uint256 totalFeesETH,
uint256 liquidationThreshold
) internal pure returns (uint256) {
if (borrowBalanceETH == 0) return uint256(-1);
return
(collateralBalanceETH.mul(liquidationThreshold).div(100)).wadDiv(
borrowBalanceETH.add(totalFeesETH)
);
}
/**
* @dev calculates the equivalent amount in ETH that an user can borrow, depending on the available collateral and the
* average Loan To Value.
* @param collateralBalanceETH the total collateral balance
* @param borrowBalanceETH the total borrow balance
* @param totalFeesETH the total fees
* @param ltv the average loan to value
* @return the amount available to borrow in ETH for the user
**/
function calculateAvailableBorrowsETH(
uint256 collateralBalanceETH,
uint256 borrowBalanceETH,
uint256 totalFeesETH,
uint256 ltv,
address _feeProvider
) external view returns (uint256) {
uint256 availableBorrowsETH = collateralBalanceETH.mul(ltv).div(100); //ltv is in percentage
if (availableBorrowsETH < borrowBalanceETH) {
return 0;
}
availableBorrowsETH = availableBorrowsETH.sub(borrowBalanceETH.add(totalFeesETH));
//calculate fee
uint256 borrowFee = IFeeProvider(_feeProvider).calculateLoanOriginationFee(
msg.sender,
availableBorrowsETH
);
return availableBorrowsETH.sub(borrowFee);
}
}