
Aave
Permissioned market

SMART CONTRACT AUDIT

September 17, 2021

MixBytes()

CONTENTS
1.INTRODUCTION 2

DISCLAIMER 2

SECURITY ASSESSMENT METHODOLOGY 3

EXECUTIVE SUMMARY 5

PROJECT DASHBOARD 5

2.FINDINGS REPORT 7

2.1.CRITICAL 7

2.2.MAJOR 7

MJR-1 Incorrect logic for access modifier 7

MJR-2 Incorrect values in events 8

2.3.WARNING 9

WRN-1 No logic for returned values from the function 9

WRN-2 Move event emit to another location 10

WRN-3 Functions similar in functionality have different logic for return values 11

WRN-4 Invalid variable return value from the function 12

WRN-5 No validation of the address parameter value in contract constructor 13

WRN-6 It is necessary to compare the values of the variables calculated in

different places 14

WRN-7 The value returned by the token transfer function is not processed 15

WRN-8 Possible withdrawETH is missing in PermissionedLendingPool 16

WRN-9 Invalid values for variable _borrowAllowances 17

2.4.COMMENT 18

CMT-1 Function is too long 18

CMT-2 Too many input parameters for functions 19

CMT-3 Using hardcoded constants instead of constants from Errors library 20

CMT-4 Inappropriate error used 21

CMT-5 Debt tokens code duplication 22

CMT-6 Possible code improving 23

CMT-7 Missing functions documentation 24

3.ABOUT MIXBYTES 25

1

1.INTRODUCTION

1.1 DISCLAIMER

The audit makes no statements or warranties about utility of the code, safety of the

code, suitability of the business model, investment advice, endorsement of the

platform or its products, regulatory regime for the business model, or any other

statements about fitness of the contracts to purpose, or their bug free status. The

audit documentation is for discussion purposes only. The information presented in this

report is confidential and privileged. If you are reading this report, you agree to

keep it confidential, not to copy, disclose or disseminate without the agreement of

Aave. If you are not the intended recipient(s) of this document, please note that any

disclosure, copying or dissemination of its content is strictly forbidden.

2

1.2 SECURITY ASSESSMENT METHODOLOGY

A group of auditors are involved in the work on the audit who check the provided

source code independently of each other in accordance with the methodology

described below:

01 Project architecture review:

> Reviewing project documentation

> General code review

> Reverse research and study of the architecture of the code based on the source

code only

> Mockup prototyping

Stage goal:

Building an independent view of the project's architecture and identifying

logical flaws in the code.

02 Checking the code against the checklist of known vulnerabilities:

> Manual code check for vulnerabilities from the company's internal checklist

> The company's checklist is constantly updated based on the analysis of hacks,

research and audit of the clients' code

> Checking with static analyzers (i.e Slither, Mythril, etc.)

Stage goal:

Eliminate typical vulnerabilities (e.g. reentrancy, gas limit, flashloan

attacks, etc.)

03 Checking the code for compliance with the desired security model:

> Detailed study of the project documentation

> Examining contracts tests

> Examining comments in code

> Comparison of the desired model obtained during the study with the reversed

view obtained during the blind audit

> Exploits PoC development using Brownie

Stage goal:

Detection of inconsistencies with the desired model

04 Consolidation of interim auditor reports into a general one:

> Cross-check: each auditor reviews the reports of the others

> Discussion of the found issues by the auditors

> Formation of a general (merged) report

Stage goal:

Re-check all the problems for relevance and correctness of the threat level and

provide the client with an interim report.

05 Bug fixing & re-check:

> Client fixes or comments on every issue

> Upon completion of the bug fixing, the auditors double-check each fix and set

the statuses with a link to the fix

Stage goal:

Preparation of the final code version with all the fixes

06 Preparation of the final audit report and delivery to the customer.

3

Findings discovered during the audit are classified as follows:

FINDINGS SEVERITY BREAKDOWN

Level Description Required action

Critical Bugs leading to assets theft, fund access
locking, or any other loss funds to be
transferred to any party

Immediate action
to fix issue

Major Bugs that can trigger a contract failure.
Further recovery is possible only by manual
modification of the contract state or
replacement.

Implement fix as
soon as possible

Warning Bugs that can break the intended contract
logic or expose it to DoS attacks

Take into
consideration and
implement fix in
certain period

Comment Other issues and recommendations reported
to/acknowledged by the team

Take into
consideration

Based on the feedback received from the Customer's team regarding the list of findings

discovered by the Contractor, they are assigned the following statuses:

Status Description

Fixed Recommended fixes have been made to the project code and no
longer affect its security.

Acknowledged The project team is aware of this finding. Recommendations for
this finding are planned to be resolved in the future. This
finding does not affect the overall safety of the project.

No issue Finding does not affect the overall safety of the project and
does not violate the logic of its work.

4

1.3 EXECUTIVE SUMMARY

Aave is a decentralized non-custodial liquidity markets protocol where users can

participate as depositors or borrowers. Depositors provide liquidity to the market to

earn a passive income, while borrowers are able to borrow in an overcollateralized

(perpetually) or undercollateralized (one-block liquidity) fashion.Audited smart

contracts are designed to work with contract access rights. In a dedicated

PermissionManager contract, there is logic for setting, removing, and checking roles

for addresses. Other contracts provide access rights to use the functionality.Here is

a brief description of the functional in the contracts under study:

PermissionManager - This smart contract implements basic whitelisting functions for

different actors of the permissioned protocol.

PermissionedLendingPool - This smart contract adds a permission layer to the

LendingPool contract to enable whitelisting of the users interacting with it.

PermissionedStableDebtToken - This smart contract implements a stable debt token to

track the borrowing positions of users at stable rate mode, with permissioned roles on

credit delegation.

PermissionedVariableDebtToken - This smart contract implements a variable debt token to

track the borrowing positions of users at variable rate mode, with permissioned roles

on credit delegation.

WETHGateway - This smart contract allows you to make and remove a deposit in WETH

(deposits WETH into the reserve, using native ETH. A corresponding amount of the

overlying asset (aTokens) is minted).

PermissionedWETHGateway - This smart contract is inherited from WETHGateway. In this

contract, the developers have added functionality for role-activated access to the

main functions of the contract.

LendingPoolCollateralManager - This smart contract implements actions involving

management of collateral in the protocol, the main one being the liquidations.

1.4 PROJECT DASHBOARD

Client Aave

Audit name Permissioned market

Initial version 7ebd95e22e4c901becfd2515f366167891ae81c8

Final version 303600a5260c11e1ca7027b9f0bfdcae99ec406b

Date May 21, 2021 - September 17, 2021

Auditors engaged 3 auditors

FILES LISTING

5

LendingPoolCollateralManager.sol https://github.com/aave/protocol-v2/blob/7eb
d95e22e4c901becfd2515f366167891ae81c8/contra
cts/protocol/lendingpool/LendingPoolCollater
alManager.sol

PermissionedLendingPool.sol https://github.com/aave/protocol-v2/blob/7eb
d95e22e4c901becfd2515f366167891ae81c8/contra
cts/protocol/lendingpool/PermissionedLending
Pool.sol

PermissionManager.sol https://github.com/aave/protocol-v2/blob/7eb
d95e22e4c901becfd2515f366167891ae81c8/contra
cts/protocol/configuration/PermissionManage
r.sol

PermissionedStableDebtToken.sol https://github.com/aave/protocol-v2/blob/7eb
d95e22e4c901becfd2515f366167891ae81c8/contra
cts/protocol/tokenization/PermissionedStable
DebtToken.sol

PermissionedVariableDebtToken.sol https://github.com/aave/protocol-v2/blob/7eb
d95e22e4c901becfd2515f366167891ae81c8/contra
cts/protocol/tokenization/PermissionedVariab
leDebtToken.sol

PermissionedWETHGateway.sol https://github.com/aave/protocol-v2/blob/7eb
d95e22e4c901becfd2515f366167891ae81c8/contra
cts/misc/PermissionedWETHGateway.sol

WETHGateway.sol https://github.com/aave/protocol-v2/blob/7eb
d95e22e4c901becfd2515f366167891ae81c8/contra
cts/misc/WETHGateway.sol

FINDINGS SUMMARY

Level Amount

Critical 0

Major 2

Warning 9

Comment 7

CONCLUSION

During the audit no critical issues were found, several majors, warnings and comments

were spotted. After working on the reported findings all of them were fixed by the

client or acknowledged.Final commit identifier with all fixes:
303600a5260c11e1ca7027b9f0bfdcae99ec406b

6

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/LendingPoolCollateralManager.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/PermissionedLendingPool.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/configuration/PermissionManager.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/PermissionedWETHGateway.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol

2.FINDINGS REPORT

2.1 CRITICAL
Not Found

2.2 MAJOR

MJR-1 Incorrect logic for access modifier

File PermissionedLendingPool.sol
 PermissionManager.sol

Severity Major

Status Fixed at 7a2eece3

DESCRIPTION

At line PermissionedLendingPool.sol#L256 the onlyUserPermissionAdmin access modifier is

used for the seize() function. It checks that the sender of the msg.sender transaction

is a permission administrator for user user. Look at line PermissionManager.sol#L176.

Let's assume the owner has removed this permission administrator. This can be done

with the removePermissionAdmins() method on these lines: PermissionManager.sol#L38-L44.

The data is modified only for the _permissionsAdmins variable while for variable

_users[user].permissionAdmin, it does not change.

For the _isPermissionAdminOf() function, you need to do an additional check by calling

the isUserPermissionAdminValid function located on lines: PermissionManager.sol#L180-L182.

RECOMMENDATION

It is recommended to correct this error.

You will also need to implement the logic for the correct removal of a permission

administrator from all users. But this relationship will need to be stored in a

separate variable. For example, this should be a variable of type:

mapping (address => address[]) private _usersWithPermissionAdmin;

But do not forget that such users will always have an associated permission

administrator.

7

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/PermissionedLendingPool.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/configuration/PermissionManager.sol
https://github.com/aave/protocol-v2/commit/7a2eece3ada2b25ed7c703eacfa95e1fe171b8d5
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/PermissionedLendingPool.sol#L256
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/configuration/PermissionManager.sol#L176
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/configuration/PermissionManager.sol#L38-L44
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/configuration/PermissionManager.sol#L180-L182

CLIENT'S COMMENTARY

Condition for _isPermissionAdminOf() was changed in 7a2eece3. There will be no

additional changes made. It may be impossible to change the permissionAdmin field

for each user onchain, depending on the number of users, and also it may be useful

to keep track of the address of the permission admin that added a certain user.

8

https://github.com/aave/protocol-v2/commit/7a2eece3ada2b25ed7c703eacfa95e1fe171b8d5

MJR-2 Incorrect values in events

File PermissionedStableDebtToken.sol
 PermissionedVariableDebtToken.sol

Severity Major

Status Acknowledged

DESCRIPTION

When minting new tokens and when burning existing tokens, you need to record the

events of Transfer.

At line PermissionedStableDebtToken.sol#L239, function _mint() is called.

At line PermissionedStableDebtToken.sol#L252, function _burn() is called.

In functions _mint () at line

PermissionedStableDebtToken.sol#L404

and _burn() at line

PermissionedStableDebtToken.sol#L423

there is no recording of events Transfer.

Thus, this event Transfer is recorded only once on line

PermissionedStableDebtToken.sol#L256.

The value of the variable amount is not equal to the values of the variable

balanceIncrease.sub(amount) and amount.sub(balanceIncrease).

Similarly in another contract:

at line PermissionedVariableDebtToken.sol#L111 the Transfer event is written, amount

is passed, and amount.rayDiv(index) is passed to the _mint() function.

at line PermissionedVariableDebtToken.sol#L13 the Transfer event is written, amount

is passed, and amount.rayDiv(index) is passed to the _burn() function.

RECOMMENDATION

It is recommended to fix the errors found.

CLIENT'S COMMENTARY

Acknowledged. This is a known issue caused by the accrual of interest of the

aTokens/debtTokens and changing it would be out of the scope of the project.

9

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L239
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L252
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L404
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L423
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L256
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol#L111
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol#L13

2.3 WARNING

WRN-1 No logic for returned values from the function

File LendingPoolCollateralManager.sol
 PermissionedLendingPool.sol

Severity Warning

Status Fixed at 303600a5

DESCRIPTION

At lines LendingPoolCollateralManager.sol#L75-L91 there is a seize() function. It

returns two values of type uint256 and string.

But there is no initialization of these variables anywhere.

For line PermissionedLendingPool.sol#L262, this function is called. And on lines 267-

269, the return values are processed.

But with the current logic for the seize() function, the condition on line

PermissionedLendingPool.sol#L269 will be satisfied in all cases.

RECOMMENDATION

It is recommended to correct this error.

10

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/LendingPoolCollateralManager.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/PermissionedLendingPool.sol
https://github.com/aave/protocol-v2/commit/303600a5260c11e1ca7027b9f0bfdcae99ec406b
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/LendingPoolCollateralManager.sol#L75-L91
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/PermissionedLendingPool.sol#L262
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/PermissionedLendingPool.sol#L269

WRN-2 Move event emit to another location

File PermissionedStableDebtToken.sol
 PermissionedVariableDebtToken.sol

Severity Warning

Status Acknowledged

DESCRIPTION

At line

PermissionedStableDebtToken.sol#L174

the _mint () function is called and then the Transfer event is recorded.

It is recommended to move the Transfer event record to the _mint() function on line

PermissionedStableDebtToken.sol#L404

for the following reasons::

1. The _mint () function and the Transfer event must be called together;

2. If you record the Transfer event after calling the _mint() function, you can forget

to do it;

3. If you record the Transfer event after calling the _mint() function, then you can

transfer incorrect values there;

4. The Transfer event is called from the_mint ()function in the well-known Openzeppelin

library.

Similar code was found in the following locations.

At line PermissionedStableDebtToken.sol#L239 there is a call to the _mint() function

and only then on line 256 a record of the Transfer event is made.

At line PermissionedStableDebtToken.sol#L252 there is a call to the _burn() function

and only then on line 256 a record of the Transfer event is made.

At line PermissionedVariableDebtToken.sol#L109 there is a call to the _mint() function

and only then on line 111 a record of the Transfer event is made.

At line PermissionedVariableDebtToken.sol#L132 there is a call to the _burn() function

and only then on line 134 a record of the Transfer event is made.

RECOMMENDATION

It is recommended to transfer events to another location.

CLIENT'S COMMENTARY

Acknowledged. No changes will be made as it requires changes to the core Aave

protocol.

11

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L174
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L404
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L239
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L252
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol#L109
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol#L132

WRN-3 Functions similar in functionality have different logic for return
values

File PermissionedStableDebtToken.sol
 PermissionedVariableDebtToken.sol

Severity Warning

Status Acknowledged

DESCRIPTION

The mint() function is used to create new tokens. The opposite function burn() is used

to burn existing tokens.

These functions do the opposite, and both are designed to work with tokens.

However, in the mint() function on line PermissionedStableDebtToken.sol#L141 there is a

return variable of type bool

and there are no return variables in the burn () function on line

PermissionedStableDebtToken.sol#L197.

Likewise, for the mint() function on line PermissionedVariableDebtToken.sol#L100 and

for the burn() function on line PermissionedVariableDebtToken.sol#L128.

RECOMMENDATION

It is recommended to do the same logic for the returned variables.

CLIENT'S COMMENTARY

Acknowledged. From our perspective mint/burn functions are used internally within

the protocol and aren't exposed to developers, and not being part of the ERC20

standard there is no need to respect any specific interface. We will make sure to

add more details to the natspec comments to explain the rationale behind the return

logic.

12

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L141
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L197
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol#L100
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol#L128

WRN-4 Invalid variable return value from the function

File PermissionedStableDebtToken.sol
 PermissionedVariableDebtToken.sol

 LendingPool.sol

Severity Warning

Status Acknowledged

DESCRIPTION

At line PermissionedStableDebtToken.sol#L189, the value returned by the mint() function

is processed.

The first time this function is called, it will return true. But on subsequent calls to

this function, if the balance of the onBehalfOf wallet has a positive value of tokens,

the valuefalse will be returned.

It is not right.

Similarly, on line PermissionedVariableDebtToken.sol#L114, the value returned by the

mint() function is processed.

The first time this function is called, it will return true. But on subsequent calls to

this function, if the balance of the onBehalfOf wallet has a positive value of tokens,

the value false will be returned.

Line LendingPool.sol#L121 has similar handling of the return value. But then it is

necessary to give clear names for the variables.

This can lead to the fact that another developer will not use the received answer to

his logic correctly.

RECOMMENDATION

It is recommended to correct this error.

CLIENT'S COMMENTARY

Acknowledged. From our perspective mint/burn functions are used internally within

the protocol and aren't exposed to developers, and not being part of the ERC20

standard there is no need to respect any specific interface. We will make sure to

add more details to the natspec comments to explain the rationale behind the return

logic.

13

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/LendingPool.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L189
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol#L114
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/LendingPool.sol#L121

WRN-5 No validation of the address parameter value in contract constructor

File WETHGateway.sol

Severity Warning

Status Acknowledged

DESCRIPTION

The variable is assigned the value of the constructor input parameter. But this

parameter is not checked before this. If the value turns out to be zero, then it will

be necessary to redeploy the contract, since there is no other functionality to set

this variable.

At line WETHGateway.sol#L27 the WETH variable is set to the value of the weth input

parameter.

RECOMMENDATION

It is necessary to add a check of the input parameter to zero before initializing the

variables.

CLIENT'S COMMENTARY

Acknowledged, no action. Passing zero address is an edge case as much as assigning

a wrong address so checking for nonzero address only solves a very particular edge

case.

14

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol#L27

WRN-6 It is necessary to compare the values of the variables calculated in
different places

File WETHGateway.sol
 LendingPool.sol

Severity Warning

Status Acknowledged

DESCRIPTION

At line WETHGateway.sol#L104

the repay() function is called near the address lendingpool.

At lines:

LendingPool.sol#L204

LendingPool.sol#L946

it shows that the function returns a variable of type uint256.

But this value is not processed.

The paybackAmount variables are calculated twice in different places. It is

recommended to compare the values of these variables.

RECOMMENDATION

Add processing of the value returned by the function.

CLIENT'S COMMENTARY

Acknowledged. This contract is not part of the core protocol so no actions will be

performed.

15

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/LendingPool.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol#L104
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/LendingPool.sol#L204
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/LendingPool.sol#L946

WRN-7 The value returned by the token transfer function is not processed

File WETHGateway.sol

Severity Warning

Status Acknowledged

DESCRIPTION

According to the ERC-20 standard, functions for working with tokens return a variable

of type bool.

But on these lines there is no processing of the received values:

WETHGateway.sol#L31

WETHGateway.sol#L69

WETHGateway.sol#L156

RECOMMENDATION

Add processing of the value returned by the function.

CLIENT'S COMMENTARY

Acknowledged. This contract is not part of the core protocol so no actions will be

performed.

16

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol#L31
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol#L69
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol#L156

WRN-8 Possible withdrawETH is missing in PermissionedLendingPool

File WETHGateway.sol

Severity Warning

Status Acknowledged

DESCRIPTION

msg.sender and to of the WETHGateway.sol#L56 function will not be checked for access.

RECOMMENDATION

It is recommended to add the withdrawETH function in the PermissionedLendingPool.

CLIENT'S COMMENTARY

The permissioned lending pool does not deal with ETH directly so it does not need

any withdrawETH() function. The withdrawETH() of the WETHGateway is only used as a UX

simplification for users coming with ETH to use the protocol.

function withdrawETH(

 address lendingPool,

 uint256 amount,

 address to

) public payable virtual override {

 ILendingPool pool = ILendingPool(lendingPool);

 require(_isInRole(msg.sender, DataTypes.Roles.DEPOSITOR, pool), Errors.USER_UNAUTHORIZED

 require(_isInRole(to, DataTypes.Roles.DEPOSITOR, pool), Errors.USER_UNAUTHORIZED);

 super.withdrawETH(lendingPool, amount, to);

}

17

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol#L56

WRN-9 Invalid values for variable _borrowAllowances

File PermissionedStableDebtToken.sol
 PermissionedVariableDebtToken.sol

Severity Warning

Status No Issue

DESCRIPTION

At line PermissionedStableDebtToken.sol#L145 the function call is made

_decreaseBorrowAllowance() to change the value of the variable _borrowAllowances.

Here the value of the variable _borrowallowances changes, which is dependent on the

value of the variable amount.

However, on line PermissionedStableDebtToken.sol#L174 there is a mint of new tokens in

the amount of amount.add(BalanceIncrease).

Thus, the value of balanceIncrease.

Likewise, at line PermissionedVariableDebtToken.sol#L102 the function call is made

_decreaseBorrowAllowance() to change the value of the variable _borrowAllowances.

Here the value of the variable _borrowallowances changes, which is dependent on the

value of the variable amount.

However, on line PermissionedVariableDebtToken.sol#L109 there is a mint of new tokens

in the amount of amount.rayDiv(index).

This will lead to errors in the program.

RECOMMENDATION

It is recommended to fix the errors found.

CLIENT'S COMMENTARY

borrowAllowance is decreased for the delegatee (user) while debt tokens are minted

for accounting to the delegator (onBehalfOf) by design. We can't identify any issue

here.

18

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L145
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L174
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol#L102
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol#L109

2.4 COMMENT

CMT-1 Function is too long

File LendingPoolCollateralManager.sol

Severity Comment

Status Acknowledged

DESCRIPTION

At lines LendingPoolCollateralManager.sol#L104-L268 the liquidationCall() function is

contained.

According to the SOLID principles (https://en.wikipedia.org/wiki/SOLID) made for

successful programming, each function should be responsible for only one action.

It will be possible to split the logic of the liquidationCall() function into separate

functions and from the liquidationCall() function call these modules.

Each subfunction should only perform one operation. It must do it well and it she

shouldn't do anything else.

RECOMMENDATION

It is recommended to split the function into sub-functions that perform only one

action.

CLIENT'S COMMENTARY

Acknowledged. There have been several attempts to refactore the liquidationCall()

function but it's not so easy given the nature of the action and all the different

conditions that might happen and must be checked.

19

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/LendingPoolCollateralManager.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/LendingPoolCollateralManager.sol#L104-L268
https://en.wikipedia.org/wiki/SOLID

CMT-2 Too many input parameters for functions

File LendingPoolCollateralManager.sol

Severity Comment

Status Acknowledged

DESCRIPTION

At lines LendingPoolCollateralManager.sol#L295-L302 there is a description of the

input parameters for the _calculateAvailableCollateralToLiquidate(). There are 6 variables

here.

But in programming functions with three arguments (ternary) should be avoided whenever

possible. The need for functions with a large number of arguments (polyary) should be

supported by very good reasons - and still it is better not to use such functions.

This is all covered in the [Clean Code: A Handbook of Agile Software Craftsmanship by Robert C.

Martin].(https://www.oreilly.com/library/view/clean-code-a/9780136083238/)

RECOMMENDATION

It is recommended to reduce the number of input parameters at least for internal

functions.

CLIENT'S COMMENTARY

Acknowledged. Those parameters are needed for the calculations so we believe it is

acceptable in this case.

20

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/LendingPoolCollateralManager.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/LendingPoolCollateralManager.sol#L295-L302
https://www.oreilly.com/library/view/clean-code-a/9780136083238/

CMT-3 Using hardcoded constants instead of constants from Errors library

File PermissionManager.sol
 Errors.sol

Severity Comment

Status Acknowledged

DESCRIPTION

At line PermissionManager.sol#L66 and at line

PermissionManager.sol#L99

constant INVALID_PERMISSIONADMIN already exists in Errors.sol#L111 and can be used.

RECOMMENDATION

It is recommended to use constans from libraries. Also INVALID_ROLE constant can be

moved into Errors library.

CLIENT'S COMMENTARY

For the permission manager, it is meant as a standalone contract that can be

eventually reused so it was preferred to avoid tighting it to the Errors library

that is protocol specific. We could not find INVALID_ROLE in the errors library.

21

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/configuration/PermissionManager.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/libraries/helpers/Errors.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/configuration/PermissionManager.sol#L66
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/configuration/PermissionManager.sol#L99
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/libraries/helpers/Errors.sol#L111

CMT-4 Inappropriate error used

File PermissionedLendingPool.sol

Severity Comment

Status Acknowledged

DESCRIPTION

The LP_LIQUIDATION_CALL_FAILED error constant for liquidationCall() function is used in

seize() funciton at line

PermissionedLendingPool.sol#L265.

RECOMMENDATION

It is recommended to create the PLP_SEIZE_FAILED error constant for seize() function and

use it.

CLIENT'S COMMENTARY

Acknowledged. The PermissionedLendingPool contract size is very close to the size

limit of 24KB (24522B) and something weird happens on compilation. When replacing

the LP_LIQUIDATION_CALL_FAILED with PLP_SEIZE_FAILED, the contract size increases by 100

bytes which is far more than what you would expect by just adding a new simple

constant. We tried to reduce the code size enough to allow this to be fixed with

some small refactorings but without success.

22

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/PermissionedLendingPool.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/PermissionedLendingPool.sol#L265

CMT-5 Debt tokens code duplication

File PermissionedStableDebtToken.sol
 StableDebtToken.sol

 PermissionedVariableDebtToken.sol
 VariableDebtToken.sol

Severity Comment

Status Acknowledged

DESCRIPTION

Pairs PermissionedStableDebtToken.sol#L18-StableDebtToken.sol#L18 and

PermissionedVariableDebtToken.sol#L17-VariableDebtToken.sol#L17 have the same code

except base PermissionedDebtTokenBase or DebtTokenBase.

The problem is that all code modifications have to be implemented in both permissioned

or original versions.

RECOMMENDATION

It is recommended to add VariableDebtTokenBase and StableDebtTokenBase contracts and inherit

from them.

CLIENT'S COMMENTARY

Acknowledged. This was a choice, because unfortunately the structure of the

inheritance doesn't make it easy to inherit PermissionedStableDebtToken and

PermissionedVariableDebtToken directly from VariableDebtTokenBase and StableDebtTokenBase. A

bigger refactoring that also involves these base classes and the original

StableDebtToken and VariableDebtToken is needed, which was not considered convenient

for this release.

23

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/StableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/VariableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol#L18
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/StableDebtToken.sol#L18
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedVariableDebtToken.sol#L17
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/VariableDebtToken.sol#L17

CMT-6 Possible code improving

File PermissionedWETHGateway.sol
 PermissionedDebtTokenBase.sol

 PermissionedLendingPool.sol

Severity Comment

Status Acknowledged

DESCRIPTION

Using onlyDepositors and onlyBorrowers and PERMISSION_MANAGER constant in

PermissionedWETHGateway.sol#L40-L80 as in PermissionedDebtTokenBase.sol#L23-L35 or

PermissionedLendingPool.sol#L17-L48 will make the code more consistent.

RECOMMENDATION

It is recommended to add modifiers onlyDepositors and onlyBorrowers and store

keccak256('PERMISSION_MANAGER') as constant.

CLIENT'S COMMENTARY

Acknowledged. The WETHGateway is a simple helper contract and we believe the current

implementation is clear enough.

24

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/PermissionedWETHGateway.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/base/PermissionedDebtTokenBase.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/PermissionedLendingPool.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/PermissionedWETHGateway.sol#L40-L80
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/base/PermissionedDebtTokenBase.sol#L23-L35
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/lendingpool/PermissionedLendingPool.sol#L17-L48

CMT-7 Missing functions documentation

File PermissionManager.sol
 IPermissionManager.sol
 WETHGateway.sol

 IWETHGateway.sol
 PermissionedStableDebtToken.sol

 IStableDebtToken.sol

Severity Comment

Status Acknowledged

DESCRIPTION

For the PermissionManager.sol contract, the description of functions and events is

located in the IPermissionManager.sol.

But for the WETHGateway.sol contract, the description of functions and events is not

in the IWETHGateway.sol interface. It's in the contract itself.

Also for the PermissionedStableDebtToken.sol contract, the description of functions

and events is located in the IStableDebtToken.sol interface and the contract itself.

RECOMMENDATION

It is recommended to use same code style in all contracts, it will make code more

obvious.

CLIENT'S COMMENTARY

Acknowledged - no action will be taken on this codebase, but it will be keep into

consideration for future code improvements.

25

https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/configuration/PermissionManager.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/interfaces/IPermissionManager.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/interfaces/IWETHGateway.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/interfaces/IStableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/configuration/PermissionManager.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/interfaces/IPermissionManager.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/WETHGateway.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/misc/interfaces/IWETHGateway.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/protocol/tokenization/PermissionedStableDebtToken.sol
https://github.com/aave/protocol-v2/blob/7ebd95e22e4c901becfd2515f366167891ae81c8/contracts/interfaces/IStableDebtToken.sol

3.ABOUT MIXBYTES
MixBytes is a team of blockchain developers, auditors and analysts keen on

decentralized systems. We build open-source solutions, smart contracts and blockchain

protocols, perform security audits, work on benchmarking and software testing

solutions, do research and tech consultancy.

BLOCKCHAINS

Ethereum

EOS

Cosmos

Substrate

TECH STACK

Python

Rust

Solidity

C++

CONTACTS

https://github.com/mixbytes/audits_public

https://mixbytes.io/

hello@mixbytes.io

https://t.me/MixBytes

https://twitter.com/mixbytes

26

https://github.com/mixbytes/audits_public
https://mixbytes.io/
mailto:hello@mixbytes.io
https://t.me/MixBytes
https://twitter.com/mixbytes

