// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; import {Errors} from '../helpers/Errors.sol'; import {DataTypes} from '../types/DataTypes.sol'; /** * @title ReserveConfiguration library * @author Aave * @notice Implements the bitmap logic to handle the reserve configuration */ library ReserveConfiguration { uint256 constant LTV_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000; // prettier-ignore uint256 constant LIQUIDATION_THRESHOLD_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000FFFF; // prettier-ignore uint256 constant LIQUIDATION_BONUS_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000FFFFFFFF; // prettier-ignore uint256 constant DECIMALS_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00FFFFFFFFFFFF; // prettier-ignore uint256 constant ACTIVE_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFF; // prettier-ignore uint256 constant FROZEN_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDFFFFFFFFFFFFFF; // prettier-ignore uint256 constant BORROWING_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFF; // prettier-ignore uint256 constant STABLE_BORROWING_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFFFFF; // prettier-ignore uint256 constant RESERVE_FACTOR_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0000FFFFFFFFFFFFFFFF; // prettier-ignore uint256 constant BORROW_CAP_MASK = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFFFFFF; // prettier-ignore /// @dev For the LTV, the start bit is 0 (up to 15), hence no bitshifting is needed uint256 constant LIQUIDATION_THRESHOLD_START_BIT_POSITION = 16; uint256 constant LIQUIDATION_BONUS_START_BIT_POSITION = 32; uint256 constant RESERVE_DECIMALS_START_BIT_POSITION = 48; uint256 constant IS_ACTIVE_START_BIT_POSITION = 56; uint256 constant IS_FROZEN_START_BIT_POSITION = 57; uint256 constant BORROWING_ENABLED_START_BIT_POSITION = 58; uint256 constant STABLE_BORROWING_ENABLED_START_BIT_POSITION = 59; uint256 constant RESERVE_FACTOR_START_BIT_POSITION = 64; uint256 constant BORROW_CAP_START_BIT_POSITION = 80; uint256 constant MAX_VALID_LTV = 65535; uint256 constant MAX_VALID_LIQUIDATION_THRESHOLD = 65535; uint256 constant MAX_VALID_LIQUIDATION_BONUS = 65535; uint256 constant MAX_VALID_DECIMALS = 255; uint256 constant MAX_VALID_RESERVE_FACTOR = 65535; uint256 constant MAX_VALID_BORROW_CAP = 4294967296; /** * @dev Sets the Loan to Value of the reserve * @param self The reserve configuration * @param ltv the new ltv **/ function setLtv(DataTypes.ReserveConfigurationMap memory self, uint256 ltv) internal pure { require(ltv <= MAX_VALID_LTV, Errors.RC_INVALID_LTV); self.data = (self.data & LTV_MASK) | ltv; } /** * @dev Gets the Loan to Value of the reserve * @param self The reserve configuration * @return The loan to value **/ function getLtv(DataTypes.ReserveConfigurationMap storage self) internal view returns (uint256) { return self.data & ~LTV_MASK; } /** * @dev Sets the liquidation threshold of the reserve * @param self The reserve configuration * @param threshold The new liquidation threshold **/ function setLiquidationThreshold(DataTypes.ReserveConfigurationMap memory self, uint256 threshold) internal pure { require(threshold <= MAX_VALID_LIQUIDATION_THRESHOLD, Errors.RC_INVALID_LIQ_THRESHOLD); self.data = (self.data & LIQUIDATION_THRESHOLD_MASK) | (threshold << LIQUIDATION_THRESHOLD_START_BIT_POSITION); } /** * @dev Gets the liquidation threshold of the reserve * @param self The reserve configuration * @return The liquidation threshold **/ function getLiquidationThreshold(DataTypes.ReserveConfigurationMap storage self) internal view returns (uint256) { return (self.data & ~LIQUIDATION_THRESHOLD_MASK) >> LIQUIDATION_THRESHOLD_START_BIT_POSITION; } /** * @dev Sets the liquidation bonus of the reserve * @param self The reserve configuration * @param bonus The new liquidation bonus **/ function setLiquidationBonus(DataTypes.ReserveConfigurationMap memory self, uint256 bonus) internal pure { require(bonus <= MAX_VALID_LIQUIDATION_BONUS, Errors.RC_INVALID_LIQ_BONUS); self.data = (self.data & LIQUIDATION_BONUS_MASK) | (bonus << LIQUIDATION_BONUS_START_BIT_POSITION); } /** * @dev Gets the liquidation bonus of the reserve * @param self The reserve configuration * @return The liquidation bonus **/ function getLiquidationBonus(DataTypes.ReserveConfigurationMap storage self) internal view returns (uint256) { return (self.data & ~LIQUIDATION_BONUS_MASK) >> LIQUIDATION_BONUS_START_BIT_POSITION; } /** * @dev Sets the decimals of the underlying asset of the reserve * @param self The reserve configuration * @param decimals The decimals **/ function setDecimals(DataTypes.ReserveConfigurationMap memory self, uint256 decimals) internal pure { require(decimals <= MAX_VALID_DECIMALS, Errors.RC_INVALID_DECIMALS); self.data = (self.data & DECIMALS_MASK) | (decimals << RESERVE_DECIMALS_START_BIT_POSITION); } /** * @dev Gets the decimals of the underlying asset of the reserve * @param self The reserve configuration * @return The decimals of the asset **/ function getDecimals(DataTypes.ReserveConfigurationMap storage self) internal view returns (uint256) { return (self.data & ~DECIMALS_MASK) >> RESERVE_DECIMALS_START_BIT_POSITION; } /** * @dev Sets the active state of the reserve * @param self The reserve configuration * @param active The active state **/ function setActive(DataTypes.ReserveConfigurationMap memory self, bool active) internal pure { self.data = (self.data & ACTIVE_MASK) | (uint256(active ? 1 : 0) << IS_ACTIVE_START_BIT_POSITION); } /** * @dev Gets the active state of the reserve * @param self The reserve configuration * @return The active state **/ function getActive(DataTypes.ReserveConfigurationMap storage self) internal view returns (bool) { return (self.data & ~ACTIVE_MASK) != 0; } /** * @dev Sets the frozen state of the reserve * @param self The reserve configuration * @param frozen The frozen state **/ function setFrozen(DataTypes.ReserveConfigurationMap memory self, bool frozen) internal pure { self.data = (self.data & FROZEN_MASK) | (uint256(frozen ? 1 : 0) << IS_FROZEN_START_BIT_POSITION); } /** * @dev Gets the frozen state of the reserve * @param self The reserve configuration * @return The frozen state **/ function getFrozen(DataTypes.ReserveConfigurationMap storage self) internal view returns (bool) { return (self.data & ~FROZEN_MASK) != 0; } /** * @dev Enables or disables borrowing on the reserve * @param self The reserve configuration * @param enabled True if the borrowing needs to be enabled, false otherwise **/ function setBorrowingEnabled(DataTypes.ReserveConfigurationMap memory self, bool enabled) internal pure { self.data = (self.data & BORROWING_MASK) | (uint256(enabled ? 1 : 0) << BORROWING_ENABLED_START_BIT_POSITION); } /** * @dev Gets the borrowing state of the reserve * @param self The reserve configuration * @return The borrowing state **/ function getBorrowingEnabled(DataTypes.ReserveConfigurationMap storage self) internal view returns (bool) { return (self.data & ~BORROWING_MASK) != 0; } /** * @dev Enables or disables stable rate borrowing on the reserve * @param self The reserve configuration * @param enabled True if the stable rate borrowing needs to be enabled, false otherwise **/ function setStableRateBorrowingEnabled( DataTypes.ReserveConfigurationMap memory self, bool enabled ) internal pure { self.data = (self.data & STABLE_BORROWING_MASK) | (uint256(enabled ? 1 : 0) << STABLE_BORROWING_ENABLED_START_BIT_POSITION); } /** * @dev Gets the stable rate borrowing state of the reserve * @param self The reserve configuration * @return The stable rate borrowing state **/ function getStableRateBorrowingEnabled(DataTypes.ReserveConfigurationMap storage self) internal view returns (bool) { return (self.data & ~STABLE_BORROWING_MASK) != 0; } /** * @dev Sets the reserve factor of the reserve * @param self The reserve configuration * @param reserveFactor The reserve factor **/ function setReserveFactor(DataTypes.ReserveConfigurationMap memory self, uint256 reserveFactor) internal pure { require(reserveFactor <= MAX_VALID_RESERVE_FACTOR, Errors.RC_INVALID_RESERVE_FACTOR); self.data = (self.data & RESERVE_FACTOR_MASK) | (reserveFactor << RESERVE_FACTOR_START_BIT_POSITION); } /** * @dev Gets the reserve factor of the reserve * @param self The reserve configuration * @return The reserve factor **/ function getReserveFactor(DataTypes.ReserveConfigurationMap storage self) internal view returns (uint256) { return (self.data & ~RESERVE_FACTOR_MASK) >> RESERVE_FACTOR_START_BIT_POSITION; } /** * @dev Sets the borrow cap of the reserve * @param self The reserve configuration * @param borrowCap The borrow cap **/ function setBorrowCap(DataTypes.ReserveConfigurationMap memory self, uint256 borrowCap) internal pure { require(borrowCap <= MAX_VALID_BORROW_CAP, Errors.RC_INVALID_BORROW_CAP); self.data = (self.data & BORROW_CAP_MASK) | (borrowCap << BORROW_CAP_START_BIT_POSITION); } /** * @dev Gets the borrow cap of the reserve * @param self The reserve configuration * @return The borrow cap **/ function getBorrowCap(DataTypes.ReserveConfigurationMap storage self) internal view returns (uint256) { return (self.data & ~BORROW_CAP_MASK) >> BORROW_CAP_START_BIT_POSITION; } /** * @dev Gets the configuration flags of the reserve * @param self The reserve configuration * @return The state flags representing active, frozen, borrowing enabled, stableRateBorrowing enabled **/ function getFlags(DataTypes.ReserveConfigurationMap storage self) internal view returns ( bool, bool, bool, bool ) { uint256 dataLocal = self.data; return ( (dataLocal & ~ACTIVE_MASK) != 0, (dataLocal & ~FROZEN_MASK) != 0, (dataLocal & ~BORROWING_MASK) != 0, (dataLocal & ~STABLE_BORROWING_MASK) != 0 ); } /** * @dev Gets the configuration paramters of the reserve from storage * @param self The reserve configuration * @return The state params representing ltv, liquidation threshold, liquidation bonus, reserve decimals, reserve factor and borrow cap. **/ function getParams(DataTypes.ReserveConfigurationMap storage self) internal view returns ( uint256, uint256, uint256, uint256, uint256, uint256 ) { uint256 dataLocal = self.data; return ( dataLocal & ~LTV_MASK, (dataLocal & ~LIQUIDATION_THRESHOLD_MASK) >> LIQUIDATION_THRESHOLD_START_BIT_POSITION, (dataLocal & ~LIQUIDATION_BONUS_MASK) >> LIQUIDATION_BONUS_START_BIT_POSITION, (dataLocal & ~DECIMALS_MASK) >> RESERVE_DECIMALS_START_BIT_POSITION, (dataLocal & ~RESERVE_FACTOR_MASK) >> RESERVE_FACTOR_START_BIT_POSITION, (self.data & ~BORROW_CAP_MASK) >> BORROW_CAP_START_BIT_POSITION ); } /** * @dev Gets the configuration paramters of the reserve from a memory object * @param self The reserve configuration * @return The state params representing ltv, liquidation threshold, liquidation bonus, reserve decimals, reserve factor, borrow cap **/ function getParamsMemory(DataTypes.ReserveConfigurationMap memory self) internal pure returns ( uint256, uint256, uint256, uint256, uint256, uint256 ) { return ( self.data & ~LTV_MASK, (self.data & ~LIQUIDATION_THRESHOLD_MASK) >> LIQUIDATION_THRESHOLD_START_BIT_POSITION, (self.data & ~LIQUIDATION_BONUS_MASK) >> LIQUIDATION_BONUS_START_BIT_POSITION, (self.data & ~DECIMALS_MASK) >> RESERVE_DECIMALS_START_BIT_POSITION, (self.data & ~RESERVE_FACTOR_MASK) >> RESERVE_FACTOR_START_BIT_POSITION, (self.data & ~BORROW_CAP_MASK) >> BORROW_CAP_START_BIT_POSITION ); } /** * @dev Gets the configuration flags of the reserve from a memory object * @param self The reserve configuration * @return The state flags representing active, frozen, borrowing enabled, stableRateBorrowing enabled **/ function getFlagsMemory(DataTypes.ReserveConfigurationMap memory self) internal pure returns ( bool, bool, bool, bool ) { return ( (self.data & ~ACTIVE_MASK) != 0, (self.data & ~FROZEN_MASK) != 0, (self.data & ~BORROWING_MASK) != 0, (self.data & ~STABLE_BORROWING_MASK) != 0 ); } }