using LendingPoolHarness as POOL /** TotalSupply is the sum of all users’ balances totalSupply(t) = Σaddress u. balanceOf(u,t) Check that each possible opertaion changes the balance of at most one user */ rule balanceOfChange(address a, address b, method f) { env e; require a!=b ; uint256 balanceABefore = sinvoke balanceOf(e, a); uint256 balanceBBefore = sinvoke balanceOf(e, b); calldataarg arg; sinvoke f(e, arg); uint256 balanceAAfter = sinvoke balanceOf(e, a); uint256 balanceBAfter = sinvoke balanceOf(e, b); assert ( balanceABefore == balanceAAfter || balanceBBefore == balanceBAfter ); } /* Check that the changed to total supply is coherent with the changes to balance */ rule integirtyBalanceOfTotalSupply(address a, method f ) { env e; uint256 balanceABefore = balanceOf(e, a); uint256 totalSupplyBefore = totalSupply(e); calldataarg arg; sinvoke f(e, arg); require (f.selector != burn(address, uint256, uint256).selector && f.selector != mint(address, uint256, uint256).selector ) ; uint256 balanceAAfter = balanceOf(e, a); uint256 totalSupplyAfter = totalSupply(e); assert (balanceAAfter != balanceABefore => ( balanceAAfter - balanceABefore == totalSupplyAfter - totalSupplyBefore)); } /* Burn behaves deferently and due to accumulation errors might hace less total supply then the balance */ rule integirtyBalanceOfTotalSupplyOnBurn(address a, method f ) { env e; uint256 balanceABefore = balanceOf(e, a); uint256 totalSupplyBefore = totalSupply(e); uint256 x; address asset; uint256 index = POOL.getReserveNormalizedVariableDebt(e, asset); sinvoke burn(e, a, x, index); uint256 balanceAAfter = balanceOf(e, a); uint256 totalSupplyAfter = totalSupply(e); assert (balanceAAfter != balanceABefore => ( balanceAAfter - balanceABefore == totalSupplyAfter - totalSupplyBefore)); } rule integirtyBalanceOfTotalSupplyOnMint(address a, method f ) { env e; uint256 balanceABefore = balanceOf(e, a); uint256 totalSupplyBefore = totalSupply(e); uint256 x; address asset; uint256 index = POOL.getReserveNormalizedVariableDebt(e, asset); sinvoke mint(e, a, x, index); uint256 balanceAAfter = balanceOf(e, a); uint256 totalSupplyAfter = totalSupply(e); assert (balanceAAfter != balanceABefore => ( balanceAAfter - balanceABefore == totalSupplyAfter - totalSupplyBefore)); } /** Minting an amount of x tokens for user u increases their balance by x, up to rounding errors. { b= balanceOf(u,t) } mint(u,x,index) { balanceOf(u,t) = b + x } */ rule integrityMint(address a, uint256 x) { env e; address asset; uint256 index = POOL.getReserveNormalizedVariableDebt(e,asset); uint256 balancebefore = balanceOf(e, a); sinvoke mint(e, a, x, index); uint256 balanceAfter = balanceOf(e, a); assert balanceAfter == balancebefore+x; } /** Mint is additive, can performed either all at once or gradually mint(u,x); mint(u,y) ~ mint(u,x+y) at the same timestamp */ rule additiveMint(address a, uint256 x, uint256 y) { env e; address asset; uint256 index = POOL.getReserveNormalizedVariableDebt(e, asset); storage initialStorage = lastStorage; sinvoke mint(e, a, x, index); sinvoke mint(e, a, y, index); uint256 balanceScenario1 = balanceOf(e, a); uint t = x + y; sinvoke mint(e, a, t ,index) at initialStorage; uint256 balanceScenario2 = balanceOf(e, a); assert balanceScenario1 == balanceScenario2, "mint is not additive"; } /** Transfer of x amount of tokens from user u where receiver is user u’ {bu = balanceOf(u) } burn(u, u’, x) {balanceOf(u) = bu - x } */ rule integrityBurn(address a, uint256 x) { env e; address asset; uint256 index = POOL.getReserveNormalizedVariableDebt(e, asset); uint256 balancebefore = balanceOf(e, a); sinvoke burn(e, a, x, index); uint256 balanceAfter = balanceOf(e, a); assert balanceAfter == balancebefore - x; } /** Minting is additive, i.e., it can be performed either all at once or in steps. burn(u, u’, x); burn(u, u’, y) ~ burn(u, u’, x+y) */ rule additiveBurn(address a, uint256 x, uint256 y) { env e; address asset; uint256 index = POOL.getReserveNormalizedVariableDebt(e, asset); storage initialStorage = lastStorage; sinvoke burn(e, a, x, index); sinvoke burn(e, a, y, index); uint256 balanceScenario1 = balanceOf(e, a); uint t = x + y; sinvoke burn(e, a, t ,index) at initialStorage; uint256 balanceScenario2 = balanceOf(e, a); assert balanceScenario1 == balanceScenario2, "burn is not additive"; } /** Minting and burning are inverse operations. {bu = balanceOf(u) } mint(u,x); burn(u, u, x) {balanceOf(u) = bu } */ rule inverseMintBurn(address a, uint256 x) { env e; address asset; uint256 index = POOL.getReserveNormalizedVariableDebt(e, asset); uint256 balancebefore = balanceOf(e, a); sinvoke mint(e, a, x, index); sinvoke burn(e, a, x, index); uint256 balanceAfter = balanceOf(e, a); assert balancebefore == balanceAfter, "burn is not inverse of mint"; }