// SPDX-License-Identifier: agpl-3.0 pragma solidity 0.6.12; import {SafeMath} from '../../dependencies/openzeppelin/contracts//SafeMath.sol'; import {IERC20} from '../../dependencies/openzeppelin/contracts//IERC20.sol'; import {VersionedInitializable} from '../libraries/aave-upgradeability/VersionedInitializable.sol'; import {IAToken} from '../tokenization/interfaces/IAToken.sol'; import {IStableDebtToken} from '../tokenization/interfaces/IStableDebtToken.sol'; import {IVariableDebtToken} from '../tokenization/interfaces/IVariableDebtToken.sol'; import {IPriceOracleGetter} from '../../interfaces/IPriceOracleGetter.sol'; import {GenericLogic} from '../libraries/logic/GenericLogic.sol'; import {ReserveLogic} from '../libraries/logic/ReserveLogic.sol'; import {UserConfiguration} from '../libraries/configuration/UserConfiguration.sol'; import {Helpers} from '../libraries/helpers/Helpers.sol'; import {WadRayMath} from '../libraries/math/WadRayMath.sol'; import {PercentageMath} from '../libraries/math/PercentageMath.sol'; import {SafeERC20} from '../../dependencies/openzeppelin/contracts/SafeERC20.sol'; import {Errors} from '../libraries/helpers/Errors.sol'; import {ValidationLogic} from '../libraries/logic/ValidationLogic.sol'; import {LendingPoolStorage} from './LendingPoolStorage.sol'; /** * @title LendingPoolCollateralManager contract * @author Aave * @notice Implements actions involving management of collateral in the protocol. * @notice this contract will be ran always through delegatecall * @dev LendingPoolCollateralManager inherits VersionedInitializable from OpenZeppelin to have the same storage layout as LendingPool **/ contract LendingPoolCollateralManager is VersionedInitializable, LendingPoolStorage { using SafeERC20 for IERC20; using SafeMath for uint256; using WadRayMath for uint256; using PercentageMath for uint256; // IMPORTANT The storage layout of the LendingPool is reproduced here because this contract // is gonna be used through DELEGATECALL uint256 internal constant LIQUIDATION_CLOSE_FACTOR_PERCENT = 5000; /** * @dev emitted when a borrower is liquidated * @param collateral the address of the collateral being liquidated * @param principal the address of the reserve * @param user the address of the user being liquidated * @param purchaseAmount the total amount liquidated * @param liquidatedCollateralAmount the amount of collateral being liquidated * @param liquidator the address of the liquidator * @param receiveAToken true if the liquidator wants to receive aTokens, false otherwise **/ event LiquidationCall( address indexed collateral, address indexed principal, address indexed user, uint256 purchaseAmount, uint256 liquidatedCollateralAmount, address liquidator, bool receiveAToken ); /** * @dev emitted when a user disables a reserve as collateral * @param reserve the address of the reserve * @param user the address of the user **/ event ReserveUsedAsCollateralDisabled(address indexed reserve, address indexed user); struct LiquidationCallLocalVars { uint256 userCollateralBalance; uint256 userStableDebt; uint256 userVariableDebt; uint256 maxPrincipalAmountToLiquidate; uint256 actualAmountToLiquidate; uint256 liquidationRatio; uint256 maxAmountCollateralToLiquidate; uint256 userStableRate; uint256 maxCollateralToLiquidate; uint256 principalAmountNeeded; uint256 healthFactor; IAToken collateralAtoken; bool isCollateralEnabled; ReserveLogic.InterestRateMode borrowRateMode; address principalAToken; uint256 errorCode; string errorMsg; } struct AvailableCollateralToLiquidateLocalVars { uint256 userCompoundedBorrowBalance; uint256 liquidationBonus; uint256 collateralPrice; uint256 principalCurrencyPrice; uint256 maxAmountCollateralToLiquidate; uint256 principalDecimals; uint256 collateralDecimals; } /** * @dev as the contract extends the VersionedInitializable contract to match the state * of the LendingPool contract, the getRevision() function is needed. */ function getRevision() internal pure override returns (uint256) { return 0; } /** * @dev users can invoke this function to liquidate an undercollateralized position. * @param collateral the address of the collateral to liquidated * @param principal the address of the principal reserve * @param user the address of the borrower * @param purchaseAmount the amount of principal that the liquidator wants to repay * @param receiveAToken true if the liquidators wants to receive the aTokens, false if * he wants to receive the underlying asset directly **/ function liquidationCall( address collateral, address principal, address user, uint256 purchaseAmount, bool receiveAToken ) external returns (uint256, string memory) { ReserveLogic.ReserveData storage collateralReserve = _reserves[collateral]; ReserveLogic.ReserveData storage principalReserve = _reserves[principal]; UserConfiguration.Map storage userConfig = _usersConfig[user]; LiquidationCallLocalVars memory vars; (, , , , vars.healthFactor) = GenericLogic.calculateUserAccountData( user, _reserves, userConfig, _reservesList, _reservesCount, _addressesProvider.getPriceOracle() ); //if the user hasn't borrowed the specific currency defined by asset, it cannot be liquidated (vars.userStableDebt, vars.userVariableDebt) = Helpers.getUserCurrentDebt( user, principalReserve ); (vars.errorCode, vars.errorMsg) = ValidationLogic.validateLiquidationCall( collateralReserve, principalReserve, userConfig, vars.healthFactor, vars.userStableDebt, vars.userVariableDebt ); if (Errors.CollateralManagerErrors(vars.errorCode) != Errors.CollateralManagerErrors.NO_ERROR) { return (vars.errorCode, vars.errorMsg); } vars.collateralAtoken = IAToken(collateralReserve.aTokenAddress); vars.userCollateralBalance = vars.collateralAtoken.balanceOf(user); vars.maxPrincipalAmountToLiquidate = vars.userStableDebt.add(vars.userVariableDebt).percentMul( LIQUIDATION_CLOSE_FACTOR_PERCENT ); vars.actualAmountToLiquidate = purchaseAmount > vars.maxPrincipalAmountToLiquidate ? vars.maxPrincipalAmountToLiquidate : purchaseAmount; ( vars.maxCollateralToLiquidate, vars.principalAmountNeeded ) = _calculateAvailableCollateralToLiquidate( collateralReserve, principalReserve, collateral, principal, vars.actualAmountToLiquidate, vars.userCollateralBalance ); //if principalAmountNeeded < vars.ActualAmountToLiquidate, there isn't enough //of collateral to cover the actual amount that is being liquidated, hence we liquidate //a smaller amount if (vars.principalAmountNeeded < vars.actualAmountToLiquidate) { vars.actualAmountToLiquidate = vars.principalAmountNeeded; } //if liquidator reclaims the underlying asset, we make sure there is enough available collateral in the reserve if (!receiveAToken) { uint256 currentAvailableCollateral = IERC20(collateral).balanceOf(address(vars.collateralAtoken)); if (currentAvailableCollateral < vars.maxCollateralToLiquidate) { return ( uint256(Errors.CollateralManagerErrors.NOT_ENOUGH_LIQUIDITY), Errors.LPCM_NOT_ENOUGH_LIQUIDITY_TO_LIQUIDATE ); } } //update the principal reserve principalReserve.updateState(); if (vars.userVariableDebt >= vars.actualAmountToLiquidate) { IVariableDebtToken(principalReserve.variableDebtTokenAddress).burn( user, vars.actualAmountToLiquidate, principalReserve.variableBorrowIndex ); } else { //if the user does not have variable debt, no need to try to burn variable //debt tokens if (vars.userVariableDebt > 0) { IVariableDebtToken(principalReserve.variableDebtTokenAddress).burn( user, vars.userVariableDebt, principalReserve.variableBorrowIndex ); } IStableDebtToken(principalReserve.stableDebtTokenAddress).burn( user, vars.actualAmountToLiquidate.sub(vars.userVariableDebt) ); } principalReserve.updateInterestRates( principal, principalReserve.aTokenAddress, vars.actualAmountToLiquidate, 0 ); //if liquidator reclaims the aToken, he receives the equivalent atoken amount if (receiveAToken) { vars.collateralAtoken.transferOnLiquidation(user, msg.sender, vars.maxCollateralToLiquidate); } else { //otherwise receives the underlying asset //updating collateral reserve collateralReserve.updateState(); collateralReserve.updateInterestRates( collateral, address(vars.collateralAtoken), 0, vars.maxCollateralToLiquidate ); //burn the equivalent amount of atoken vars.collateralAtoken.burn( user, msg.sender, vars.maxCollateralToLiquidate, collateralReserve.liquidityIndex ); } //if the collateral being liquidated is equal to the user balance, //we set the currency as not being used as collateral anymore if (vars.maxCollateralToLiquidate == vars.userCollateralBalance) { userConfig.setUsingAsCollateral(collateralReserve.id, false); emit ReserveUsedAsCollateralDisabled(collateral, user); } //transfers the principal currency to the aToken IERC20(principal).safeTransferFrom( msg.sender, principalReserve.aTokenAddress, vars.actualAmountToLiquidate ); emit LiquidationCall( collateral, principal, user, vars.actualAmountToLiquidate, vars.maxCollateralToLiquidate, msg.sender, receiveAToken ); return (uint256(Errors.CollateralManagerErrors.NO_ERROR), Errors.LPCM_NO_ERRORS); } /** * @dev calculates how much of a specific collateral can be liquidated, given * a certain amount of principal currency. This function needs to be called after * all the checks to validate the liquidation have been performed, otherwise it might fail. * @param collateralAddress the collateral to be liquidated * @param principalAddress the principal currency to be liquidated * @param purchaseAmount the amount of principal being liquidated * @param userCollateralBalance the collatera balance for the specific collateral asset of the user being liquidated * @return collateralAmount the maximum amount that is possible to liquidated given all the liquidation constraints (user balance, close factor) * @return principalAmountNeeded the purchase amount **/ function _calculateAvailableCollateralToLiquidate( ReserveLogic.ReserveData storage collateralReserve, ReserveLogic.ReserveData storage principalReserve, address collateralAddress, address principalAddress, uint256 purchaseAmount, uint256 userCollateralBalance ) internal view returns (uint256, uint256) { uint256 collateralAmount = 0; uint256 principalAmountNeeded = 0; IPriceOracleGetter oracle = IPriceOracleGetter(_addressesProvider.getPriceOracle()); AvailableCollateralToLiquidateLocalVars memory vars; vars.collateralPrice = oracle.getAssetPrice(collateralAddress); vars.principalCurrencyPrice = oracle.getAssetPrice(principalAddress); (, , vars.liquidationBonus, vars.collateralDecimals, ) = collateralReserve .configuration .getParams(); vars.principalDecimals = principalReserve.configuration.getDecimals(); //this is the maximum possible amount of the selected collateral that can be liquidated, given the //max amount of principal currency that is available for liquidation. vars.maxAmountCollateralToLiquidate = vars .principalCurrencyPrice .mul(purchaseAmount) .mul(10**vars.collateralDecimals) .percentMul(vars.liquidationBonus) .div(vars.collateralPrice.mul(10**vars.principalDecimals)); if (vars.maxAmountCollateralToLiquidate > userCollateralBalance) { collateralAmount = userCollateralBalance; principalAmountNeeded = vars .collateralPrice .mul(collateralAmount) .mul(10**vars.principalDecimals) .div(vars.principalCurrencyPrice.mul(10**vars.collateralDecimals)) .percentDiv(vars.liquidationBonus); } else { collateralAmount = vars.maxAmountCollateralToLiquidate; principalAmountNeeded = purchaseAmount; } return (collateralAmount, principalAmountNeeded); } }