
December 3, 2020

AAVE
PROTOCOL V2

SMART
CONTRACTS

AUDIT

TABLE OF
CONTENTS

INTRODUCTION TO THE AUDIT
 General provisions
 Scope of audit
SECURITY ASSESSMENT PRINCIPLES
 Classification of issues
 Security assessment methodology
DETECTED ISSUES
 Critical
 Major
 1. ReserveConfiguration.sol#L18
 2. ReserveConfiguration.sol#L46
 3. ValidationLogic.sol#L68
 4. ValidationLogic.sol#L200
 5. LendingPoolConfigurator.sol#L533
 6. ReserveLogic.sol#L341-347
 7. LendingPool.sol#L582
 8. LendingPoolCollateralManager.sol#L227-232
 9. LendingPool.sol#L511
 Warning
 1. LendingPoolAddressesProviderRegistry.sol#L38-50
 2. LendingPoolAddressesProviderRegistry.sol#L77-81
 3. LendingPool.sol#L953
 4. MathUtils.sol#L27-30
 5. ReserveConfiguration.sol#L23
 6. IncentivizedERC20.sol#L83
 7. LendingPool.sol#L919
 8. ValidationLogic.sol#L113
 9. LendingPoolAddressesProvider.sol#L46-49
 10. LendingPoolAddressesProviderRegistry.sol#L57
 11. AToken.sol#L45
 12. AToken.sol#L111
 13. IncentivizedERC20.sol#L126-130
 14. AToken.sol#L153-155
 15. StableDebtToken.sol#L121-124
 16. StableDebtToken.sol#L134-137
 17. StableDebtToken.sol#L142
 18. StableDebtToken.sol#L202
 19. LendingPoolConfigurator.sol#L440
 20. ValidationLogic.sol#L59
 21. LendingPool.sol#L158
 22. GenericLogic.sol#L250
 23. ValidationLogic.sol#L180-181
 24. LendingPoolCollateralManager.sol#L253-275
 25. LendingPoolCollateralManager.sol#L301
 26. LendingPoolCollateralManager.sol#L415
 27. LendingPoolCollateralManager.sol#L309
 28. LendingPoolCollateralManager.sol#L505
 29. VersionedInitializable.sol#L19-27

... 3
... 3

... 3
.. 4

... 4
.. 4

... 5
... 5

.. 5
..................................... 5
..................................... 6

.. 6
... 6

................................. 7
... 7

... 8
........................ 9

.. 10
... 11

................. 11

................. 11
.. 12
.. 12

.................................... 12
....................................... 13

.. 13
.. 13

......................... 13
................... 14

... 14
.. 14

................................. 14
.. 15

................................... 15

................................... 16
....................................... 16
....................................... 17

............................... 17
.. 17

... 18
.. 18

................................... 19
...................... 19

.......................... 19

.......................... 20

.......................... 20

.......................... 20
.............................. 21

 30. LendingPoolConfigurator.sol#L487
 31. LendingPool.sol
 32. LendingPoolConfigurator.sol#L506
 33. LendingPoolCollateralManager.sol#L255
 34. LendingPoolCollateralManager.sol#L415-433
 35. LendingPool.sol#L593
 36. Interest excess in case of a disabled stable rate
 37. High stable borrowing rate rebalance threshold
 38. GenericLogic.sol#L99-109
 39. ReserveLogic.sol#L253
 40. LendingPoolConfigurator.sol#L376
 41. ValidationLogic.sol#L194
 42. ValidationLogic.sol#L200
 43. DelegationAwareAToken.sol#L55-63
 44. Reentrancy in the liquidation process
 Comments
 1. ValidationLogic.sol#L53
 2. MathUtils.sol#L11
 3. ReserveConfiguration.sol#L46
 4. LendingPool.sol#L67
 5. IncentivizedERC20.sol#L184
 6. LendingPool.sol#L896
 7. Errors.sol
 8. ReserveConfiguration.sol#L55
 9. ReserveConfiguration.sol#L155
 10. LendingPoolAddressesProviderRegistry.sol#L23
 11. LendingPoolAddressesProviderRegistry.sol#L36
 12. LendingPoolAddressesProviderRegistry.sol#L88
 13. PercentageMath.sol
 14. LendingPool.sol#L888
 15. LendingPool.sol#L925
 16. LendingPoolAddressesProvider.sol#L18
 17. LendingPoolAddressesProvider.sol#L40
 18. ReserveConfiguration.sol#L88
 19. ReserveConfiguration.sol#L227-230
 20. UserConfiguration.sol#L28
 21. LendingPoolConfigurator.sol#L29-178
 22. LendingPoolConfigurator.sol#L373
 23. LendingPool.sol#L92
 24. LendingPoolConfigurator.sol#L337-339
 25. ValidationLogic.sol#L193
 26. ReserveLogic.sol#L80
 27. ReserveLogic.sol#L207-214
 28. LendingPool.sol#L96
 29. ValidationLogic.sol#L308-319
 30. AToken.sol#L304
 31. LendingPool.sol#L197
 32. StableDebtToken.sol#L157
 33. ReserveLogic.sol#L169 and other 1<<128
 to type(uint128).max replacings
 34. LendingPool.sol#L401
 Smart Contract Deployment Review
CONCLUSION AND RESULTS
ABOUT MIXBYTES
DISCLAIMER

............................... 21
.. 21

............................... 22
.......................... 22

...................... 22
... 23

.............. 24
................. 24

....................................... 25
.. 25

............................... 26
....................................... 26
....................................... 27

............................... 27
........................... 28

.. 29
... 29

... 29
.................................... 29

... 30
...................................... 30

.. 30
.. 30

.................................... 31
................................... 31

................... 31

................... 31

................... 32
... 32
... 32
... 32

........................... 33

........................... 33
................................... 33

.............................. 33
...................................... 34

............................ 34
............................... 34

.. 35
........................... 36

....................................... 36
... 36

...................................... 36
.. 37

................................... 38
.. 38

... 38
....................................... 39

................................ 39
... 39

...................................... 40
... 42

... 44
... 44

01 INTRODUCTION TO

THE AUDIT

General Provisions

Aave is a decentralized non-custodial money market protocol where users

can participate as depositors or borrowers. Depositors provide liquidity

to the market to earn a passive income, while borrowers are able to borrow

in an overcollateralized (perpetually) or undercollateralized (one-block

liquidity) fashion.

Scope of audit

LendingPoolAddressesProvider.sol

LendingPoolAddressesProviderRegistry.sol

IAaveIncentivesController.sol

IChainlinkAggregator.sol

IERC20.sol

IERC20Detailed.sol

IExchangeAdapter.sol

ILendingPool.sol

ILendingPoolAddressesProvider.sol

ILendingPoolAddressesProviderRegistry.sol

ILendingRateOracle.sol

IPriceOracle.sol

IPriceOracleGetter.sol

IReserveInterestRateStrategy.sol

ISwapAdapter.sol

IUniswapExchange.sol

DefaultReserveInterestRateStrategy.sol

LendingPool.sol

LendingPoolCollateralManager.sol

LendingPoolConfigurator.sol

LendingPoolStorage.sol

ReserveConfiguration.sol

UserConfiguration.sol

GenericLogic.sol

ReserveLogic.sol

ValidationLogic.sol

Errors.sol

Helpers.sol

GenericLogic.sol

ReserveLogic.sol

ValidationLogic.sol

MathUtils.sol

PercentageMath.sol

Context.sol

IERC20DetailedBytes.sol

AToken.sol
IncentivizedERC20.sol

StableDebtToken.sol

VariableDebtToken.sol

DebtTokenBase.sol

IAToken.sol

IScaledBalanceToken.sol

IStableDebtToken.sol

IVariableDebtToken.sol

3

https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/configuration/LendingPoolAddressesProvider.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/configuration/LendingPoolAddressesProviderRegistry.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/IAaveIncentivesController.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/IChainlinkAggregator.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/IERC20.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/IERC20Detailed.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/IExchangeAdapter.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/ILendingPool.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/ILendingPoolAddressesProvider.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/ILendingPoolAddressesProviderRegistry.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/ILendingRateOracle.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/IPriceOracle.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/IPriceOracleGetter.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/IReserveInterestRateStrategy.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/ISwapAdapter.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/interfaces/IUniswapExchange.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/lendingpool/DefaultReserveInterestRateStrategy.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/lendingpool/LendingPool.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/lendingpool/LendingPoolCollateralManager.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/lendingpool/LendingPoolConfigurator.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/lendingpool/LendingPoolStorage.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/configuration/ReserveConfiguration.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/configuration/UserConfiguration.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/logic/GenericLogic.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/logic/ReserveLogic.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/logic/ValidationLogic.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/helpers/Errors.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/helpers/Helpers.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/logic/GenericLogic.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/logic/ReserveLogic.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/logic/ValidationLogic.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/math/MathUtils.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/math/PercentageMath.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/misc/Context.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/misc/IERC20DetailedBytes.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/tokenization/AToken.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/tokenization/IncentivizedERC20.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/tokenization/StableDebtToken.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/tokenization/VariableDebtToken.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/tokenization/base/DebtTokenBase.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/tokenization/interfaces/IAToken.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/tokenization/interfaces/IScaledBalanceToken.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/tokenization/interfaces/IStableDebtToken.sol
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/tokenization/interfaces/IVariableDebtToken.sol

02 SECURITY ASSESSMENT

PRINCIPLES

Classification of Issues

CRITICAL: Bugs leading to Ether or token theft, fund access locking

or any other loss of Ether/tokens to be transferred to any party (for

example, dividends).

MAJOR: Bugs that can trigger a contract failure. Further recovery is

possible only by manual modification of the contract state or

replacement.

WARNINGS: Bugs that can break the intended contract logic or expose

it to DoS attacks.

COMMENTS: Other issues and recommendations reported to/ acknowledged

by the team.

Security Assessment Methodology

Two auditors independently verified the code.

Stages of the audit were as follows:

“Blind” manual check of the code and its model

“Guided” manual code review

Checking the code compliance with the customer requirements

Discussion of independent audit results

Report preparation

4

03 DETECTED

ISSUES

CRITICAL

Not found

MAJOR

1. ReserveConfiguration.sol#L18

One leading F is missing in this mask.

uint256 constant LIQUIDATION_BONUS_MASK = 0xFFFFFFF0000FFFFFFFF;

This fact results in the corruption of four bits in the reserve factor

field during the operations on the liquidation bonus field.

getLiquidationBonus is also affected.

We suggest fixing the mask. We also recommend adding tests for each

ReserveConfiguration field which have other fields set to some values,

perform some actions, restore the field to the original value and make

sure that the entire mask is intact.

Status

Fixed at 5ddd98c5

5

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L18
https://github.com/aave/protocol-v2/commit/5ddd98c52993cbe0093e4a32d14d2aec62939f00

2. ReserveConfiguration.sol#L46

ReserveConfiguration.sol#L63

ReserveConfiguration.sol#L84

ReserveConfiguration.sol#L106

ReserveConfiguration.sol#L128

Bit lengths of the provided values are not checked against bit lengths of

the corresponding fields in the data .

For example, here

function setLtv(ReserveConfiguration.Map memory self, uint256 ltv) internal

pure {

self.data = (self.data & LTV_MASK) | ltv;

providing a value greater than 65535 as ltv will result in a corruption

of the liquidation threshold field. We recommend making sure that passed

values fit in the corresponding fields.

Status

Fixed at b3cc9d1a

3. ValidationLogic.sol#L68

It looks like userBalance is erroneously used instead of amount . This

will result in overly strict restrictions on withdrawals. We suggest

replacing the argument.

Status

Fixed at b4f85927

4. ValidationLogic.sol#L200

The vars.availableLiquidity field is not initialized before usage.

//calculate the max available loan size in stable rate mode as a percentage of

the

//available liquidity

uint256 maxLoanSizeStable =

vars.availableLiquidity.percentMul(maxStableLoanPercent);

Proper initialization should be added.

Status

Fixed at 3f714b9d

6

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L46
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L63
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L84
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L106
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L128
https://github.com/aave/protocol-v2/commit/b3cc9d1a62464998e512cf337c35a87ab459a360
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L68
https://github.com/aave/protocol-v2/commit/b4f8592775f41e9e52e0068b3c531a08d0b8750c
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L200
https://github.com/aave/protocol-v2/commit/3f714b9dc848d28d1753fd8a673038fda4f024ed

5. LendingPoolConfigurator.sol#L533

Changing the decimals here will not automatically change the decimals

either in the aToken or in the debt tokens.

function setReserveDecimals(address asset, uint256 decimals) external

onlyAaveAdmin {

ReserveConfiguration.Map memory currentConfig =

pool.getConfiguration(asset);

currentConfig.setDecimals(decimals);

pool.setConfiguration(asset, currentConfig.data);

Additionally, the oracle must be updated simultaneously to consider the

new value of the decimals. Otherwise, significant mispricing and

liquidations may occur. We suggest removing this function. Alternatively,

the change may be allowed only for inactive reserve and must be

propagated to the tokens.

Status

Fixed at bfa26634

6. ReserveLogic.sol#L341-347

Value vars.previousStableDebt calculated this way is actually the current

stable debt and always equals to vars.currentStableDebt .

//calculate the stable debt until the last timestamp update

vars.cumulatedStableInterest = MathUtils.calculateCompoundedInterest(

vars.avgStableRate,

vars.stableSupplyUpdatedTimestamp

);

vars.previousStableDebt =

vars.principalStableDebt.rayMul(vars.cumulatedStableInterest);

As a result, the stable debt difference is not taken into account.

Moreover, the processed stable debt increment is not recorded in any way.

One possible solution is to treat vars.principalStableDebt as the previous

stable debt and update StableDebtToken 's _totalSupply and

_totalSupplyTimestamp after the operation.

Status

Fixed at 276dee49

7

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L533
https://github.com/aave/protocol-v2/commit/bfa26634a61347391f5f1251e837c18e2d381c0e
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ReserveLogic.sol#L341-L347
https://github.com/aave/protocol-v2/commit/276dee4918d1b76b236195e674132fa7d4ba2324

7. LendingPool.sol#L582

IERC20(asset).safeTransferFrom(receiverAddress, vars.aTokenAddress,

vars.amountPlusPremium);

reserve.updateState();

reserve.cumulateToLiquidityIndex(IERC20(vars.aTokenAddress).totalSupply(),

vars.premium);

reserve.updateInterestRates(asset, vars.aTokenAddress, vars.premium, 0);

LendingPoolCollateralManager.sol#L521

IERC20(toAsset).safeTransferFrom(

receiverAddress,

address(vars.toReserveAToken),

vars.amountToReceive

);

if (vars.toReserveAToken.balanceOf(msg.sender) == 0) {

_usersConfig[msg.sender].setUsingAsCollateral(toReserve.id, true);

}

vars.toReserveAToken.mint(msg.sender, vars.amountToReceive,

toReserve.liquidityIndex);

toReserve.updateInterestRates(

toAsset,

address(vars.toReserveAToken),

vars.amountToReceive,

0

);

updateInterestRates needs to be called with liquidityAdded set to 0 since

liquidity was already transferred to the pool's balance. Otherwise,

overestimated liquidity would lead to too low debt interest rates.

Status

Fixed at a2e2450b

8

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L582
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L521
https://github.com/aave/protocol-v2/commit/a2e2450bb351844086f749ee24c005df03bc0e4a

8. LendingPoolCollateralManager.sol#L227-232

principalReserve.updateInterestRates(

principal,

principalReserve.aTokenAddress,

vars.actualAmountToLiquidate,

0

);

if (vars.userVariableDebt >= vars.actualAmountToLiquidate) {

IVariableDebtToken(principalReserve.variableDebtTokenAddress).burn(

user,

vars.actualAmountToLiquidate,

principalReserve.variableBorrowIndex

);

} else {

IVariableDebtToken(principalReserve.variableDebtTokenAddress).burn(

user,

vars.userVariableDebt,

principalReserve.variableBorrowIndex

);

IStableDebtToken(principalReserve.stableDebtTokenAddress).burn(

user,

vars.actualAmountToLiquidate.sub(vars.userVariableDebt)

);

}

LendingPoolCollateralManager.sol#L409-414

debtReserve.updateInterestRates(

principal,

vars.principalAToken,

vars.actualAmountToLiquidate,

0

);

IERC20(principal).safeTransferFrom(receiver, vars.principalAToken,

vars.actualAmountToLiquidate);

if (vars.userVariableDebt >= vars.actualAmountToLiquidate) {

IVariableDebtToken(debtReserve.variableDebtTokenAddress).burn(

user,

vars.actualAmountToLiquidate,

debtReserve.variableBorrowIndex

);

} else {

IVariableDebtToken(debtReserve.variableDebtTokenAddress).burn(

user,

vars.userVariableDebt,

debtReserve.variableBorrowIndex

);

IStableDebtToken(debtReserve.stableDebtTokenAddress).burn(

user,

vars.actualAmountToLiquidate.sub(vars.userVariableDebt)

);

}

9

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L227-L232
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L409-L414

Debt reserve interest rates are updated before debt burning takes place.

As a result, stale total debt values are used during interest rates

calculation. We suggest switching updateInterestRates and the if

statement.

Status

Fixed at c5d7bb5e

9. LendingPool.sol#L511

The liquidityAdded parameter of the updateInterestRates call seems to be

incorrect as the flashloan body is yet to be transferred thus it will not

be included in the interest rates calculation.

Status

Fixed at 584a5676

10

https://github.com/aave/protocol-v2/commit/c5d7bb5e80e08a7c901cd7bb41b7bb839c2e0f0e
https://github.com/aave/protocol-v2/blob/56d25e81cb0fdfcac785d669d3577b1ef2d9286e/contracts/lendingpool/LendingPool.sol#L511
https://github.com/aave/protocol-v2/commit/584a567635ad4817c7ef105304d62f25158eb120

WARNINGS

1. LendingPoolAddressesProviderRegistry.sol#L38-50

Unoptimized usage of storage-allocated list addressesProvidersList .

Reading of a single element of a list requires 2 SLOAD s (due to overflow

checks), and loop bounds check requires 1 SLOAD (3*N SLOAD s total).

Caching uint[] memory _addressesProvidersList = addressesProvidersList;

requires only N+1 SLOAD s.

We recommend to rewrite the function as

function getAddressesProvidersList() external override view returns (address[]

memory) {

uint256 maxLength = addressesProvidersList.length;

address[] memory _addressesProvidersList = addressesProvidersList;

address[] memory activeProviders = new address[]

(_addressesProvidersList.length);

for (uint256 i = 0; i < _addressesProvidersList.length; i++) {

if (addressesProviders[_addressesProvidersList[i]] > 0) {

activeProviders[i] = addressesProvidersList[i];

}

}

return activeProviders;

}

Status

Fixed at 8a82c8f1

2. LendingPoolAddressesProviderRegistry.sol#L77-81

for (uint256 i = 0; i < addressesProvidersList.length; i++) {

if (addressesProvidersList[i] == provider) {

return;

}

}

Unoptimized loop. addressesProvidersList.length provides multiple SLOAD s

inside the loop. We recommend you to replace a storage allocated variable

to a memory cached one.

Status

Fixed at c14ea749

11

https://github.com/aave/protocol-v2/blob/23f99d30f0698b1a5b64fd000c99bbff83df5d76/contracts/configuration/LendingPoolAddressesProviderRegistry.sol#L38-L50
https://github.com/aave/protocol-v2/commit/8a82c8f1c0a0ccd4766d6d8fc067edbc932ea73a
https://github.com/aave/protocol-v2/blob/23f99d30f0698b1a5b64fd000c99bbff83df5d76/contracts/configuration/LendingPoolAddressesProviderRegistry.sol#L77-L81
https://github.com/aave/protocol-v2/commit/c14ea749c467fc8b65b580d5891291e780b935e8

3. LendingPool.sol#L953

for (uint256 i = 0; i < _reservesList.length; i++)

if (_reservesList[i] == asset) {

reserveAlreadyAdded = true;

}

if (!reserveAlreadyAdded) {

_reserves[asset].id = uint8(_reservesList.length);

_reservesList.push(asset);

}

Unoptimized reserveAlreadyAdded computation. It could be computed with the

following expression with O(1) complexity:

bool reserveAlreadyAdded = _reserves[asset].id != 0 || (_reservesList.length >

0 &&_reservesList[0]==asset);

Status

Fixed at 232743c3

4. MathUtils.sol#L27-30

We recommend replacing computation with the following. Precision is

better, gas cost is smaller. Also, the same types are used for time, as

in calculateCompoundedInterest .

return rate.mul(timeDifference).div(SECONDS_PER_YEAR).add(WadRayMath.ray());

Status

Fixed at e88d9dc8

5. ReserveConfiguration.sol#L23

The mask is incorrect for a bit field manipulation.

uint256 constant STABLE_BORROWING_MASK = 0xFFFF07FFFFFFFFFFFFFF;

It looks like it should be 0xFFFFF7FFFFFFFFFFFFFF . However, the issue

doesn't cause troubles at the moment since bits 60-63 are presently

unused. If they are unused on purpose, we suggest explicitly stating it

in the Map's comment.

Status

Fixed at 5ddd98c5

12

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L953
https://github.com/aave/protocol-v2/commit/232743c332f9db6b4ee0f0e95e459eb2bff75b02
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/math/MathUtils.sol#L27-L30
https://github.com/aave/protocol-v2/commit/e88d9dc81b009a5ce5f9ce4ef9dac06aa09b7ee1
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L23
https://github.com/aave/protocol-v2/commit/5ddd98c52993cbe0093e4a32d14d2aec62939f00

6. IncentivizedERC20.sol#L83

DebtTokenBase.sol#L29

msg.sender is erroneously used instead of _msgSender() . Since the

contracts inherit from Context they should use _msgSender() instead of

msg.sender to properly support Context .

The issue comes up when some GSN-like solutions are used together with

the tokens. The issue affects off-chain clients and DApps listening for

the event. We suggest making an appropriate replacement. Also, we

recommend getting rid of msg.sender mentions in the files altogether.

Status

Fixed at 87bbfb95

7. LendingPool.sol#L919

Checking reservesCount > 0 is important. Otherwise reserveAlreadyAdded is

computed wrong if asset is zero and _reservesList is empty.

Status

Acknowledged

8. ValidationLogic.sol#L113

We suggest checking that amount != 0 .

Status

Fixed at ee1e2056

9. LendingPoolAddressesProvider.sol#L46-49

It is not tracked if a proxy is used for each particular address id. As a

result, the transition from a non-proxied mode into a proxied one is

impossible (upgradeToAndCall will fail

LendingPoolAddressesProvider.sol#L167). Also, an unintended transition

from a proxied mode into a non-proxied one is possible. We suggest

tracking the fact of proxy usage for each particular address id and

making mode transition explicit.

Status

Acknowledged

13

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/IncentivizedERC20.sol#L83
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/base/DebtTokenBase.sol#L29
https://github.com/aave/protocol-v2/commit/87bbfb957144e5adec2b5af851435833eb8773ce
https://github.com/aave/protocol-v2/blob/4e4fbe65395540304251e9d81232c9921abc4453/contracts/lendingpool/LendingPool.sol#L919
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L113
https://github.com/aave/protocol-v2/commit/ee1e20568b4d62c20ec3eb2cb083967d75e9f277
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/configuration/LendingPoolAddressesProvider.sol#L46-L49
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/configuration/LendingPoolAddressesProvider.sol#L167

10. LendingPoolAddressesProviderRegistry.sol#L57

Zero lending pool id is used as an indicator of an inactive/absent

lending pool. Therefore, we suggest prohibiting passing 0 as an id

parameter value.

function registerAddressesProvider(address provider, uint256 id) external

override onlyOwner {

_addressesProviders[provider] = id;

Status

Fixed at b3cc9d1a

11. AToken.sol#L45

msg.sender is erroneously used instead of _msgSender() . Since the

contracts inherit from Context they should use _msgSender() instead of

msg.sender to properly support Context . We suggest making an appropriate

replacement.

Status

Fixed at b3cc9d1a

12. AToken.sol#L111

msg.sender is erroneously used instead of user . We suggest making an

appropriate replacement.

Status

Fixed at 9fddcd0a

13. IncentivizedERC20.sol#L126-130

During this call, an Approval event will be emitted. It is not obvious

that an allowance decrease during a transferFrom operation should fire

this event. Event listeners could mix this up with “regular“
Approval events happening during approve and similar operations.

Status

Acknowledged

14

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/configuration/LendingPoolAddressesProviderRegistry.sol#L57
https://github.com/aave/protocol-v2/commit/b3cc9d1a62464998e512cf337c35a87ab459a360
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/AToken.sol#L45
https://github.com/aave/protocol-v2/commit/b3cc9d1a62464998e512cf337c35a87ab459a360
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/AToken.sol#L111
https://github.com/aave/protocol-v2/commit/9fddcd0a20e9191ae18f58daa0651053f5f69629
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/IncentivizedERC20.sol#L126-L130

14. AToken.sol#L153-155

A Transfer event is not emitted during _transfer and super._transfer . As

a result, event listeners will not be able to track transfers of

collateral during liquidations. We recommend emitting an appropriate

event.

Status

Fixed at 727bc12d

15. StableDebtToken.sol#L121-124

An average stable rate calculated this way will not compound equivalently

to a pair of individual debt positions as the time passes. The cause is

the exponentiation during the debt calculation. A simple script

illustrates the issue:

SECONDS_PER_YEAR = 365 * 86400

delta_t = 2 * SECONDS_PER_YEAR

balanceOf = lambda principal, rate: principal * ((1. + rate / SECONDS_PER_YEAR)

** delta_t)

principal_A = 200

rate_A = 0.5

principal_B = 500

rate_B = 0.1

principal_sum = principal_A + principal_B

rate_avg = (principal_A * rate_A + principal_B * rate_B) / principal_sum

debt_separate = balanceOf(principal_A, rate_A) + balanceOf(principal_B, rate_B)

debt_unified = balanceOf(principal_sum, rate_avg)

print('Separate accounts total debt: {:.0f}'.format(debt_separate))

print('Avg rate of unified debt: {:.2f}'.format(rate_avg))

print('Total unified debt: {:.0f}'.format(debt_unified))

print('Debt calculation difference: {:.0f}%'.format(100 * (debt_separate -

debt_unified) / debt_separate))

Which yields:

Separate accounts total debt: 1154

Avg rate of unified debt: 0.21

Total unified debt: 1075

Debt calculation difference: 7%

Make sure that this behavior is acceptable.

Status

Acknowledged. See below.

15

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/AToken.sol#L153-L155
https://github.com/aave/protocol-v2/commit/727bc12d8007cb5075aef1342caa1532468f9090
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/StableDebtToken.sol#L121-L124

16. StableDebtToken.sol#L134-137

StableDebtToken.sol#L178-181

Due to the reason stated in the previous issue, it is incorrect to

calculate totalSupply based on the average stable rate calculated this

way. An important consequence is that totalSupply will not match the sum

of all user debt balances. Moreover, as the time passes it may

significantly drift away from the right value. At the moment it is

impossible to accurately know on-chain the total stable debt of an asset.

Underestimated debt, in its turn, affects the interest rates. Make sure

that this risk is acceptable.

Status

Acknowledged

Client: yes, not a problem. It's part of the issue that it's

impossible to calculate an accurate avgStableRate onchain, because of the

compounding on the interest. It will create an excess of interest

generated by the borrowers that is not distributed to depositors (most

likely to be handled when this version of the protocol will be

dismissed). It will be up to the governance when we are in this situation

to decide what to do with the excess.

17. StableDebtToken.sol#L142

Accrued interest added to the principal (balanceIncrease) is not added to

the amount during the Transfer event emission.

_mint(user, amount.add(balanceIncrease), vars.previousSupply);

// transfer event to track balances

emit Transfer(address(0), user, amount);

As a result, event listeners will not be able to track the stable debt of

the user without consulting the balanceOf function. Make sure that this

is the desired behavior.

Status

Acknowledged

The event is implemented this way for the sake of consistency between the

debt and liquidity tokens.

16

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/StableDebtToken.sol#L134-L137
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/StableDebtToken.sol#L178-L181
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/StableDebtToken.sol#L142

18. StableDebtToken.sol#L202

Accrued interest (balanceIncrease) is not taken into consideration during

the Transfer event emission.

if (balanceIncrease > amount) {

_mint(user, balanceIncrease.sub(amount), previousSupply);

} else {

_burn(user, amount.sub(balanceIncrease), previousSupply);

}

// transfer event to track balances

emit Transfer(user, address(0), amount);

As a result, event listeners will not be able to track the stable debt of

the user without consulting the balanceOf function. In some cases the

stable debt decreases and in some cases it increases. We suggest emitting

the events in the branches of the if statement with the proper values.

Status

Acknowledged

The event is implemented this way for the sake of consistency between the

debt and liquidity tokens.

19. LendingPoolConfigurator.sol#L440

A reserve increase as a result of a swapLiquidity operation is enabled

for a reserve in the frozen state. Make sure that this is the desired

behavior.

Status

Fixed at b7efa920

20. ValidationLogic.sol#L59

LendingPool.sol#L366

LendingPool.sol#L554

There are no checks that the reserve is active. As a result, withdraw ,

rebalanceStableBorrowRate , flashLoan operations are enabled for an

inactive reserve. Make sure that this is the desired behavior.

Status

Fixed at 57ed9efd, f87873a6

17

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/StableDebtToken.sol#L202
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L440
https://github.com/aave/protocol-v2/commit/b7efa920ca21c4f5c67c471c3ea6e27921bfb013
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L59
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L366
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L554
https://github.com/aave/protocol-v2/commit/57ed9efd58260c11f133c61c684a441b2a4d2aed
https://github.com/aave/protocol-v2/commit/f87873a6dea9f94ae737536bdae82a51d5fc1edb

21. LendingPool.sol#L158

In the case of a bank run on a reserve, there is a period when the

reserve can not service all withdrawal requests. This liquidity deficit

will last until high interest rates (caused by the high usage ratio) kick

in. Potentially it may take a long time.

In an adverse edge case of the fast devaluation of an asset, debtors may

prefer to keep the debt despite high interest rates, profiting from the

short position. In this case, lenders are stuck in lossmaking long

positions. One possible solution is to use exponential interest rates in

the 98% - 100% usage ratio scenario instead of a linear slope in

DefaultReserveInterestRateStrategy .

Status

Acknowledged

Client: no action, consequence on the model and managed on the interest

strategies.

22. GenericLogic.sol#L250

During a health factor calculation, liquidation bonuses must be taken

into account one way or another. Otherwise, the user's collateral would

not have enough funds to repay the borrowed assets and liquidator's

bonuses. The first possible solution is to include bonuses explicitly in

the HF calculation. Another solution is to ensure that an asset

liquidation threshold is lower than 1 / liquidationBonus (although some

extra margin should be included to tackle the price slippage).

Status

Fixed at 43d64c45

18

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L158
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/GenericLogic.sol#L250
https://github.com/aave/protocol-v2/commit/43d64c4509b2a9dff8fc2fa9186f245e6c9fd76e

23. ValidationLogic.sol#L180-181

ValidationLogic.sol#L194

ValidationLogic.sol#L278-279

These checks can be entirely bypassed as it is not enforced during

deposits or other increases of the user's aToken balance.

Consider this sequence of operations:

User deposits asset B

User borrows asset A

User deposits asset A

User withdraws asset B

Eventually, the user will be able to have any amount of deposited funds

in the same asset as long as it is bigger than the debt.

Moreover, since interest rate strategies do not work on a per-user basis,

an attacker can employ multiple accounts to manipulate reserve rates and

bypass these checks.

Status

Acknowledged

Client: if you bypass the condition, you will end up with a higher stable

rate.

24. LendingPoolCollateralManager.sol#L253-275

There is no userConfig.setUsingAsCollateral(collateralReserve.id, false) call in the

case of the total depletion of this kind of user's collateral.

We suggest adding the call.

Status

Fixed at a3ee5d2c

25. LendingPoolCollateralManager.sol#L301

This requirement is not satisfied - the collateral may be completely

liquidated, as it can be seen below:

vars.maxPrincipalAmountToLiquidate =

vars.userStableDebt.add(vars.userVariableDebt);

Status

Fixed at b7efa920

19

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L180-L181
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L194
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L278-L279
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L253-L275
https://github.com/aave/protocol-v2/commit/a3ee5d2ce695f3fb668c9622c5e16facc3ca8424
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L301
https://github.com/aave/protocol-v2/commit/b7efa920ca21c4f5c67c471c3ea6e27921bfb013

26. LendingPoolCollateralManager.sol#L415

There may be some amount of the principal left behind on the receiver 's

balance because of a stale or time-averaged conversion price provided by

the oracle or because of the liquidation bonus paid.

Also, if a position is liquidated by the owner, the owner unnecessary

pays the liquidation bonus. Make sure that this is the desired behavior.

Status

Fixed at b7efa920

27. LendingPoolCollateralManager.sol#L309

A liquidator does not get any bonus for calling repayWithCollateral . Make

sure that this is the desired behavior.

Status

Fixed at b7efa920

28. LendingPoolCollateralManager.sol#L505

There may be some dust of the toAsset on the balance of receiverAddress

sent by a third party or funds of other users. LendingPoolCollateralManager

would not have the approval to spend these funds, rendering any

swapLiquidity operations via the receiverAddress impossible.

Status

Fixed at b7efa920

20

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L415
https://github.com/aave/protocol-v2/commit/b7efa920ca21c4f5c67c471c3ea6e27921bfb013
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L309
https://github.com/aave/protocol-v2/commit/b7efa920ca21c4f5c67c471c3ea6e27921bfb013
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L505
https://github.com/aave/protocol-v2/commit/b7efa920ca21c4f5c67c471c3ea6e27921bfb013

29. VersionedInitializable.sol#L19-27

We suggest using explicitly computed storage slots for any fields

responsible for proxy mechanics since their location must be consistent

across the code versions and any collisions with business fields must be

prevented. A good example of the explicitly computing storage slots

technique can be found BaseUpgradeabilityProxy.sol#L20-37.

As a possible issue example consider DebtTokenBase.sol#L20. The field

order is determined by the inheritance order, VersionedInitializable

fields go after IncentivizedERC20 . Any addition of new non-mapping fields

in a new version of IncentivizedERC20 would overwrite the

lastInitializedRevision and initializing fields.

The issue proof of concept:

https://github.com/Eenae/VersionedInitializable-issue-PoC

Status

Acknowledged

Client: we will make sure the future implementations keep track of the

proper chain of inheritance and storatge layout.

30. LendingPoolConfigurator.sol#L487

LendingPoolConfigurator.sol#L503

LendingPoolConfigurator.sol#L518

LendingPoolConfigurator.sol#L344-345

We suggest specifying units of measurement for these parameters as well

as acceptable value ranges in the comments. Parameter validation will be

helpful as well. Incorrectly set ltv and liquidationThreshold lead to

fund losses.

Status

Fixed at 92e2ecab

31. LendingPool.sol

_reservesList is fully loaded to memory on a huge set of user's

actions. If SLOAD cost is increased up to 2100 at EIP-2929, for 128-

sized list length it will take 2100*(128+1)=270900 gas.

In most cases, it is enough to get information only about the reserve

touched by the user at the transaction.

Status

Fixed at 7a0d201f

21

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/openzeppelin-upgradeability/VersionedInitializable.sol#L19-L27
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/openzeppelin-upgradeability/BaseUpgradeabilityProxy.sol#L20-L37
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/base/DebtTokenBase.sol#L20
https://github.com/Eenae/VersionedInitializable-issue-PoC
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L487
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L503
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L518
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L344-L345
https://github.com/aave/protocol-v2/commit/92e2ecab5198dda4dd4fedd98e158af957918fd4
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol
https://eips.ethereum.org/EIPS/eip-2929
https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/66/diffs
https://github.com/aave/protocol-v2/commit/7a0d201f006fd9667959c49f789dc8bb7e09dc08

32. LendingPoolConfigurator.sol#L506

When setting threshold to zero, some positions may instantly become

undercollaterized and, what is more important, non-liquidatable. We
suggest requiring availableLiquidity == 0 in this case.

Another possible solution is to rewrite ValidationLogic.sol#L362-363

bool isCollateralEnabled =

collateralReserve.configuration.getLiquidationThreshold() > 0 &&

userConfig.isUsingAsCollateral(collateralReserve.id);

as

bool isCollateralEnabled =

userConfig.isUsingAsCollateral(collateralReserve.id);

so that collateral could be liquidated if and only if the user allows it

so. Plus, isUsingAsCollateral should be set to true by default only if

getLiquidationThreshold() > 0 and setUserUseReserveAsCollateral(true) should

be allowed only if getLiquidationThreshold() > 0 . Liquidation of collateral

by itself won't be a problem if the user authorized it and if the

oracle provides a fair price for the asset. That way you will be able to

instantly switch off some collateral, a lot of positions may become

liquidatable, but liquidations will be fair (except for some losses on

liquidation bonuses). Graceful threshold decreases and public warnings

are still recommended.

Status

Fixed at 948bd960

33. LendingPoolCollateralManager.sol#L255

There is no _usersConfig[msg.sender].setUsingAsCollateral(collateralReserve.id,

true) call in the case when the liquidator received an amount of

collateral aToken for the first time. We suggest adding the call.

Status

Fixed at 3f070d67

34. LendingPoolCollateralManager.sol#L415-433

There is no userConfig.setBorrowing(debtReserve.id, false); call in the case

of complete liquidation of the user debt. We suggest adding the call.

Status

Fixed at b7efa920

22

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L506
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L362-L363
https://github.com/aave/protocol-v2/commit/948bd960be1bc345b2c54171271717039e0e076f
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L255
https://github.com/aave/protocol-v2/commit/3f070d67ecddfb3a66189fd998b4fe72d25ec937
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L415-L433
https://github.com/aave/protocol-v2/commit/b7efa920ca21c4f5c67c471c3ea6e27921bfb013

35. LendingPool.sol#L593

//if the user didn't choose to return the funds, the system checks if there

//is enough collateral and eventually open a position

_executeBorrow(

ExecuteBorrowParams(

asset,

msg.sender,

msg.sender,

vars.amountPlusPremium,

mode,

vars.aTokenAddress,

referralCode,

false

)

);

vars.amountPlusPremium is used as a loan principal instead of amount . It

means that eventually the pool will be repaid extra vars.premium above

the lender deposits. These extra funds are not accounted and distributed

either to the treasury or to lenders. An extreme example can be

described: suppose someone pulls the entire asset as a flashloan with the

variable rate mode and then repays it in the same block. The procedure is

repeated 100 times. At the end of the block the pool asset balance is 9%

more than before the block. The liquidity and variable borrow indexes did

not change since the beginning of the block, so the flashloans did not

accrue any interest. The 9% will remain undistributed.

We suggest either using amount as a flashloan borrow principal or

distributing the premium using cumulateToLiquidityIndex or eliminating

flashloan borrows at all.

Status

Fixed at a2e2450b

23

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L593
https://github.com/aave/protocol-v2/commit/a2e2450bb351844086f749ee24c005df03bc0e4a

36. Interest excess in case of a disabled stable rate

In the case of disabled stable rate borrowing, there will be some excess

interest for the asset because borrowers pay a compounded interest and

lenders receive a linear one. That interest won't be withdrawable in

any way (only a code upgrade will help). Make sure that this is the

desired behavior.

Status

Acknowledged.

Client: it is intended, V1 is like that as well. The idea was that this

would create a small cushion between what the borrowers are paying and

what the depositors are receiving, so to account for potential rounding

errors (at least it should ensure that there isn't liquidity missing

for depositors withdrawal at the end, even if this means getting slightly

underpaid). Conceptually I don't think the difference will be much

higher, for two reasons: 1. The compounding on borrowing is approximated

so the borrowers are already slightly undercharged. 2. The interest on

the depositors' side is linear between actions, but it compounds on

every action so with an activity like the one we are seeing in V1, the

difference compared to a pure compounded interest is most likely

negligible with the positive side effect of being less gas-intensive.

37. High stable borrowing rate rebalance threshold

If the utilization rate of an asset is below 95%, no rebalances happen.

Suppose a lot of stable debt was borrowed cheaply, and then the liquidity

rate goes over the stable borrowing rate of some position due to a market

move. That would endanger the solvency of the asset pool.

Status

Acknowledged.

Client conveyed that the ultimate solution in this rare case is a change

of REBALANCE_UP_USAGE_RATIO_THRESHOLD via a code upgrade.

24

38. GenericLogic.sol#L99-109

In all appearances, Loan To Value and Liquidation Threshold are initial

margin and maintenance margin in classic terms. A user cannot borrow

further if the weight-averaged Loan To Value is reached. However, they

can withdraw collateral as long as the position is above the Liquidation

Threshold. This way using transient collateral, obtained with a

flashloan, perhaps, users can bypass the Loan To Value check rendering it

ineffective. We suggest using Loan To Value while deciding on a balance

decrease approval.

Status

Acknowledged

Client: we had this discussion internally for quite a long time, and we

were aware of the fact that LTV was a soft restriction and could be

bypassed. The goal of the LTV is mainly to avoid having normal users

opening a position and getting instantly liquidated, which would happen

if we use the ltv for both borrowing power and maintenance margin.

39. ReserveLogic.sol#L253

Real token balance could be manipulated by flashloans. We recommend to

use virtual balances (not affected by flashloans) for available liquidity

computations.

Status

Acknowledged

25

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/GenericLogic.sol#L99-L109
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ReserveLogic.sol#L253

40. LendingPoolConfigurator.sol#L376

The constraint seems to be incorrect as liquidationBonus is in inverse

relation to liquidationThreshold - the lower the threshold the more excess

collateral is available as a bonus.

//we also need to require that the liq threshold is lower or equal than the

liquidation bonus, to ensure that

//there is always enough margin for liquidators to receive the bonus.

require(liquidationThreshold.add(absoluteBonus) <=

PercentageMath.PERCENTAGE_FACTOR, Errors.LPC_INVALID_CONFIGURATION);

Consider liquidationThreshold = 1% as an extreme example. The current

constraint limits liquidationBonus to 199% in this case. However, since

liquidation happens when collateral * 0.01 < debt, the market value of

the collateral can be up to one hundred times the value of the debt i.e.,

liquidationBonus can be up to 10 000%.

In fact, liquidationThreshold * liquidationBonus should be less or equal to

PERCENTAGE_FACTOR .

Status

Fixed at 43d64c45

41. ValidationLogic.sol#L194

The current stable debt of the user is not added to the amount in this

comparison.

require(

!userConfig.isUsingAsCollateral(reserve.id) ||

reserve.configuration.getLtv() == 0 ||

amount > IERC20(reserve.aTokenAddress).balanceOf(userAddress),

Errors.CALLATERAL_SAME_AS_BORROWING_CURRENCY

);

As a result, relatively small increments to the current stable debt will

be prohibited. We suggest taking the current stable debt into

consideration similarly to this check ValidationLogic.sol#L278-279 .

Status

Acknowledged

26

https://github.com/aave/protocol-v2/blob/56d25e81cb0fdfcac785d669d3577b1ef2d9286e/contracts/lendingpool/LendingPoolConfigurator.sol#L376
https://github.com/aave/protocol-v2/commit/43d64c4509b2a9dff8fc2fa9186f245e6c9fd76e
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L194
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L278-L279

42. ValidationLogic.sol#L200

This check may be bypassed by iterative small stable debt increases. We

suggest adding the total stable debt to the amount .

//calculate the max available loan size in stable rate mode as a percentage of

the

//available liquidity

uint256 maxLoanSizeStable =

vars.availableLiquidity.percentMul(maxStableLoanPercent);

require(amount <= maxLoanSizeStable,

Errors.AMOUNT_BIGGER_THAN_MAX_LOAN_SIZE_STABLE);

Moreover, MAX_STABLE_RATE_BORROW_SIZE_PERCENT constraint is not checked

during swapBorrowRateMode , withdraw , swapLiquidity operations, as well as

liquidations. That may render the constraint ineffective.

Status

Acknowledged

Client: if you bypass the condition, you will end up with a higher stable

rate.

43. DelegationAwareAToken.sol#L55-63

A new initialize implementation shadows the base contract implementation.

As a result, the DOMAIN_SEPARATOR field is uninitialized, resulting in

broken permit functionality. We suggest removing the new implementation.

Status

Fixed at b2a871f8

27

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L200
https://github.com/aave/protocol-v2/blob/56d25e81cb0fdfcac785d669d3577b1ef2d9286e/contracts/tokenization/DelegationAwareAToken.sol#L55-L63
https://github.com/aave/protocol-v2/commit/b2a871f8f780597b5c04026ee08ad4def75a215c

44. Reentrancy in the liquidation process

Status

Acknowledged

28

Client: no [token] listing can be done without deep analysis of that aspect

The difficulty of the exploitation is high (see prerequisites), however,

the impact is high as well.

Prerequisites:

• Token T is used as an asset with a non-zero liquidation threshold and

loan to value.

• Token T issues a callback to the receiver on transfer(receiver, amount).

Attack scenario:

1. An attacker has 100 T tokens as collateral.

2. Health factor of the attacker’s position goes below 1 (position becomes

liquidatable).

3. The attacker liquidates himself, selecting T as collateral to liquidate,

opting not to receiveAToken, and providing such amount of debtToCover that

maxCollateralToLiquidate == userCollateralBalance .

4. During the vars.collateralAtoken.burn call the attacker uses the reentrancy

of T,

4.1. making a 1 000 000 T deposit as the user .

4.2. borrowing the maximum possible amount of other assets on behalf

of the user .

5. The userConfig.setUsingAsCollateral(collateralReserve.id, false); line gets

executed.

6. The attacker repays the initial debt of the liquidation.

7. Now the attacker ended up with the 1 000 000 T deposit which has the

isUsingAsCollateral set to false and a huge debt.

8. The attacker now can withdraw 1 000 000 T collateral since

balanceDecreaseAllowed returns true when isUsingAsCollateral is set to false .

The first remediation step is to look up the actual collateral balance here

https://github.com/aave/proto-

col-v2/blob/750920303e33b66bc29862ea3b85206dda9ce786/contracts/protocol/len

dingpool/LendingPoolCollateralManager.sol#L222. Additionally, any tokens

making external calls in transfer and transferFrom should be avoided. Alter-

natively, a reentrancy guard can be used.

https://github.com/aave/proto-
col-v2/blob/750920303e33b66bc29862ea3b85206dda9ce786/contracts/protocol/len dingpool/LendingPoolCollateralManager.sol#L222
https://github.com/aave/protocol-v2/blob/750920303e33b66bc29862ea3b85206dda9ce786/contracts/protocol/lendingpool/LendingPoolCollateralManager.sol#L212-L225

COMMENTS

1. ValidationLogic.sol#L53

function validateWithdraw(

address reserveAddress,

address aTokenAddress,

uint256 amount,

uint256 userBalance,

mapping(address => ReserveLogic.ReserveData) storage reservesData,

UserConfiguration.Map storage userConfig,

address[] calldata reserves,

address oracle

) external view {

Check that variable aTokenAddress should be unused and comment it's

name.

Status

Fixed at 2e30bb8b

2. MathUtils.sol#L11

uint256 internal constant SECONDS_PER_YEAR = 365 days;

This is not correct for leap years. We recommend you to add a comment

that you ignore leap seconds or rename the variable.

Status

Fixed at 2fd3fe14

3. ReserveConfiguration.sol#L46

self.data = (self.data & RESERVE_FACTOR_MASK) | reserveFactor << 64;

We recommend you to use the same code style for all bit mask selectors

(put the right part into brackets or remove brackets to other places for

the same cases).

Status

Fixed at d56a7a27

29

https://github.com/aave/protocol-v2/blob/23f99d30f0698b1a5b64fd000c99bbff83df5d76/contracts/libraries/logic/ValidationLogic.sol#L53
https://github.com/aave/protocol-v2/commit/2e30bb8b858bd33c00df00b74ca797947747cccb
https://github.com/aave/protocol-v2/blob/23f99d30f0698b1a5b64fd000c99bbff83df5d76/contracts/libraries/math/MathUtils.sol#L11
https://github.com/aave/protocol-v2/commit/2fd3fe141a43fceb8309a6183ef5d1ce1fb10c43
https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/libraries/configuration/ReserveConfiguration.sol#L46
https://github.com/aave/protocol-v2/commit/d56a7a27797dedae3822e0ae914be469c2733eda
https://github.com/aave/protocol-v2/commit/2fd3fe141a43fceb8309a6183ef5d1ce1fb10c43

4. LendingPool.sol#L67

_whenNotPaused() is used only as a modifier. We recommend to rewrite it

as a modifier.

Status

FIXED at 3fc812e7

5. IncentivizedERC20.sol#L184

uint256 totalSupply = _totalSupply;

We recommend avoiding global variables shadowing.

Status

Fixed at cb03bab6

6. LendingPool.sol#L896

We recommend to move all bitfield-related optimizations to corresponding

functions.

Here is the example for setBorrowing :

function setBorrowing(

UserConfiguration.Map storage self,

uint256 reserveIndex,

bool borrowing

) internal {

uint _data = self.data;

uint _data_new =(_data & ~(1 << (reserveIndex * 2))) |

(uint256(borrowing ? 1 : 0) << (reserveIndex * 2));

if (_data != _data_new) {

self.data = _data_new;

}

}

The same optimizations could be applied to ReserveConfiguration.

Status

Fixed at 386138cc

7. Errors.sol

We recommend to use uint-typed codes here to reduce the size of the

contract.

Status

Acknowledged

30

https://github.com/aave/protocol-v2/blob/12d97f9f13a3f04c206c6a72b93c23126b869572/contracts/lendingpool/LendingPool.sol#L67
https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/152
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/IncentivizedERC20.sol#L184
https://github.com/aave/protocol-v2/commit/cb03bab6eaed0489353fe1c9602ac28fbc7a9f84
https://github.com/aave/protocol-v2/blob/a7861f8cbaa2049ec047b22713628b297d608831/contracts/lendingpool/LendingPool.sol#L896
https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/110
https://github.com/aave/protocol-v2/blob/a7861f8cbaa2049ec047b22713628b297d608831/contracts/libraries/helpers/Errors.sol
https://github.com/aave/protocol-v2/commit/3fc812e7fb4fdc383271c1ce34bfe5b58d7a1c83
https://github.com/aave/protocol-v2/commit/cb03bab6eaed0489353fe1c9602ac28fbc7a9f84
https://github.com/aave/protocol-v2/commit/386138cc9cf8f05ac64281bef0f6c16374665c1b

8. ReserveConfiguration.sol#L55

The mask application & ~RESERVE_FACTOR_MASK can be omitted because the

other fields are shifted during the >> 64 operation. We recommend

removing excess code.

Status

Acknowledged

Client: no action, to not need to change the logic if we add extra fields

to the mask in the future.

9. ReserveConfiguration.sol#L155

ReserveConfiguration.sol#L173

ReserveConfiguration.sol#L191

ReserveConfiguration.sol#L215

ReserveConfiguration.sol#L236-239

The bit shift operations (>> 56 , >> 57 , etc.) can be omitted since they

do not change the boolean outcome. We recommend removing excess code.

Status

Fixed at 6cd18c43

10. LendingPoolAddressesProviderRegistry.sol#L23

The return value is documented erroneously because a number is returned,

not a boolean value. We suggest correcting the comment.

Status

Fixed at a9a863fc

11. LendingPoolAddressesProviderRegistry.sol#L36

The resulting array is sparse (contains zeros for unregistered address

providers), we suggest mentioning it in the documenting comment.

Status

Fixed at a9a863fc

31

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L55
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L155
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L173
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L191
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L215
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L236-L239
https://github.com/aave/protocol-v2/commit/6cd18c4320dd072e9ac77bfb4528ef48bd345df1
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/configuration/LendingPoolAddressesProviderRegistry.sol#L23
https://github.com/aave/protocol-v2/commit/a9a863fcb468ab757a94ab99ef44c0170b541727
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/configuration/LendingPoolAddressesProviderRegistry.sol#L36
https://github.com/aave/protocol-v2/commit/a9a863fcb468ab757a94ab99ef44c0170b541727

12. LendingPoolAddressesProviderRegistry.sol#L88

The return value is documented erroneously, because in the case of absent

address provider uint256(0) is returned. We suggest correcting the

comment.

Status

Fixed at a9a863fc

13. PercentageMath.sol

We recommend simplifying PercentageMath mul and div operations. Both

rational mul and div reduce to computing res:=round(a * x / y), where (x,

y) is the 2nd argument in rational form.

In solidity there is the following expression:

res = (a * x + half_y)/y;

We should check the term for overflow. As we can see, it is a growing

function over x and half_y. It means that not overflowing a_max(x, half_y)

= floor((MAX_u256 - half_y)/x) exists.

In solidity it could be implemented as follows:

require(a<=(MAX_U256 - half_y)/x);

This approach could be used at both WadRayMath and PercentageMath.

Status

Fixed at 47d00a0e

14. LendingPool.sol#L888

We recommend cache _reservesCount . Then there will be 3 SLOAD less.

Status

Partially fixed (check comment 15) at a9c3a033

15. LendingPool.sol#L925

We recommend replacing _reservesCount++; with

_reservesCount=reservesCount+1; , it is 1 SLOAD less.

Status

Fixed at ec600e56

32

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/configuration/LendingPoolAddressesProviderRegistry.sol#L88
https://github.com/aave/protocol-v2/commit/a9a863fcb468ab757a94ab99ef44c0170b541727
https://github.com/aave/protocol-v2/blob/614244272e0ee802f324f30bc93b9f0054d50f34/contracts/libraries/math/PercentageMath.sol
https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/100
https://github.com/aave/protocol-v2/blob/614244272e0ee802f324f30bc93b9f0054d50f34/contracts/lendingpool/LendingPool.sol#L888
https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/105
https://github.com/aave/protocol-v2/blob/232743c332f9db6b4ee0f0e95e459eb2bff75b02/contracts/lendingpool/LendingPool.sol#L925
https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/149
https://github.com/aave/protocol-v2/commit/47d00a0e3a17ebae3cefb1ebe20dfce12423d23e
https://github.com/aave/protocol-v2/commit/a9c3a033ace0ad51268913074ac1f2ce5f464d7f
https://github.com/aave/protocol-v2/commit/ec600e56e71d16fa0dd08956679b1e581aea5d65

16. LendingPoolAddressesProvider.sol#L18

LendingPoolAddressesProvider.sol#L121

Some addresses, namely the owner of the LendingPoolAddressesProvider

contract and the Aave admin, have substantial power over a lending pool.

We suggest using multisignature or DAO solutions to control these

addresses.

Status

Acknowledged

Client: it will be that way.

17. LendingPoolAddressesProvider.sol#L40

We recommend splitting this function into two separate functions since

they solve different tasks which are visible in the form of two if

statement branches.

Status

Fixed at c81047ca

18. ReserveConfiguration.sol#L88

The function is documented incorrectly. We suggest updating the comment.

Status

Fixed at 643ed2f9

19. ReserveConfiguration.sol#L227-230

ReserveConfiguration.sol#L252-255

We recommend naming the return values explicitly. That way they will be

available as named properties in the JS API and in the ABI.

Status

Acknowledged

Client: no named return by our style guidelines.

33

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/configuration/LendingPoolAddressesProvider.sol#L18
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/configuration/LendingPoolAddressesProvider.sol#L121
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/configuration/LendingPoolAddressesProvider.sol#L40
https://github.com/aave/protocol-v2/commit/c81047ca93bcd93e74ef768aa928e83d79ba87fb
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L88
https://github.com/aave/protocol-v2/commit/643ed2f9bcfaee21a8c92e258aa8b0d3080b37ed
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L227-L230
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/ReserveConfiguration.sol#L252-L255

20. UserConfiguration.sol#L28

UserConfiguration.sol#L44

UserConfiguration.sol#L58

UserConfiguration.sol#L72

UserConfiguration.sol#L86

Assertions can be added to ensure that reserveIndex does not exceed 127.

Status

Fixed at 6460dd9e

21. LendingPoolConfigurator.sol#L29-178

Some lending pool configurator events have asset parameter indexed and

some do not. Indexing allows searching for particular asset events in a

block range. Make sure that no indexed attributes are forgotten.

Status

Fixed at e4dc22e5

22. LendingPoolConfigurator.sol#L373

LendingPoolConfigurator.sol#L387

Stable rate borrowing setting manipulation is permitted for a reserve

with disabled borrowing. This behavior does not cause any harm, however,

may be counterintuitive and even dangerous.

Status

Acknowledged

Client: no action, no risk

34

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/UserConfiguration.sol#L28
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/UserConfiguration.sol#L44
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/UserConfiguration.sol#L58
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/UserConfiguration.sol#L72
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/configuration/UserConfiguration.sol#L86
https://github.com/aave/protocol-v2/commit/6460dd9e034bf74b882f9f0e02a46ba1282a4d7e
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L29-L178
https://github.com/aave/protocol-v2/commit/e4dc22e50ed2864787f06fd8154b1bc46483f571
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L373
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L387

23. LendingPool.sol#L92

LendingPool.sol#125

LendingPool.sol#174

LendingPool.sol#189

LendingPool.sol#211

LendingPool.sol#252

LendingPool.sol#313

LendingPool.sol#365

LendingPool.sol#417

LendingPool.sol#549

LendingPool.sol#645

LendingPool.sol#680

LendingPool.sol#699

LendingPool.sol#766

LendingPool.sol#833

LendingPool.sol#841

LendingPool.sol#846

LendingPool.sol#968

LendingPool.sol#977

LendingPool.sol#993

LendingPoolCollateralManager.sol#L140-141

LendingPoolCollateralManager.sol#L310-311

LendingPoolCollateralManager.sol#L457-458

We recommend adding explicit checks that referenced assets exist.

Stopping execution as soon as an error emerges is a good security

practice and may prevent some complicated vulnerabilities.

Status

Fixed at LendingPool.sol

35

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L92
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#125
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#174
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#189
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#211
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#252
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#313
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#365
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#417
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#549
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#645
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#680
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#699
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#766
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#833
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#841
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#846
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#968
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#977
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#993
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L140-L141
v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L310-L311
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolCollateralManager.sol#L457-L458
https://github.com/aave/protocol-v2/blob/56d25e81cb0fdfcac785d669d3577b1ef2d9286e/contracts/lendingpool/LendingPool.sol

24. LendingPoolConfigurator.sol#L337-339

LendingPoolConfigurator.sol#L472

LendingPoolConfigurator.sol#L503

LendingPoolConfigurator.sol#L518

We suggest checking that ltv is lower than liquidationThreshold /

liquidationBonus . Otherwise, ltv would not serve its purpose.

Status

Fixed at 948bd960

25. ValidationLogic.sol#L193

ValidationLogic.sol#L277

It looks like the getLtv function is used to check if a reserve can be

used as collateral. However, getLiquidationThreshold is mostly used for

this purpose. We recommend using a uniform approach throughout the code.

Such an approach can be defined as a one expression function in

ReserveConfiguration .

Status

Acknowledged

26. ReserveLogic.sol#L80

Actually, one unit of income has been accrued. With the original unit

that gives us 2*1e27.

Status

Fixed at fed8c798

27. ReserveLogic.sol#L207-214

It looks like at this execution point there is no way the reserve was

initialized before.

Status

Fixed at f125eeb0

36

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L337-L339
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L472
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L503
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L518
https://github.com/aave/protocol-v2/commit/948bd960be1bc345b2c54171271717039e0e076f
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L193
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L277
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ReserveLogic.sol#L80
https://github.com/aave/protocol-v2/commit/fed8c7988464a0febb711941392c6e32d07ae998
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ReserveLogic.sol#L207-L214
https://github.com/aave/protocol-v2/commit/f125eeb0c5378e5d0da31bde9d01707b5ec62014

28. LendingPool.sol#L96

LendingPool.sol#L125

LendingPool.sol#L193

LendingPool.sol#L216

LendingPool.sol#L256

LendingPool.sol#L454

LendingPool.sol#L498

LendingPool.sol#L554

LendingPool.sol#L617

We suggest using a reentrancy guard for each public-facing function that

transfers any funds. This may sound like a dull and limiting step.

However, it is much safer to prevent any possible reentrancy rather than

to keep in mind the exponential amount of possible attack vector

combinations. This article gives a prominent example.

One possible reentrancy attack vector is re-entering deposit and

withdraw if the asset allows external calls before the actual token

transfer. However, this reentrancy affects only updateInterestRates with

incorrect available liquidity. Moreover, this minor incorrectness will be

corrected during the next updateInterestRates call.

Status

Acknowledged

Client conveyed that the auditing of asset tokens, as well as the usage

of the Checks-Effects-Interactions pattern, provide a sufficient level of

security.

37

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L96
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L125
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L193
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L216
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L256
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L454
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L498
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L554
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L617
https://medium.com/consensys-diligence/uniswap-audit-b90335ac007

29. ValidationLogic.sol#L308-319

balanceDecreaseAllowed consulted even in the case when the user wants to

enable the reserve as collateral.

require(

GenericLogic.balanceDecreaseAllowed(

reserveAddress,

msg.sender,

underlyingBalance,

reservesData,

userConfig,

reserves,

oracle

),

Errors.DEPOSIT_ALREADY_IN_USE

);

Although, adding more collateral is not prohibited because of a check in

balanceDecreaseAllowed . Still, we suggest calling balanceDecreaseAllowed

only in the case of the balance decrease.

Status

Fixed at 0c8efc22

30. AToken.sol#L304

The receiver does not have the UsingAsCollateral flag set by default. Make

sure that this is the desired behavior.

Status

Fixed at 9e55ea12

31. LendingPool.sol#L197

Borrow allowance is a subject to a double withdrawal (in this case -

double borrow) attack. Plain IERC20.approve is subject to the same

attack. More details and mitigation strategies can be found at

https://blockchain-projects.readthedocs.io/multiple_withdrawal.html.

Status

Acknowledged

38

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L308-L319
https://github.com/aave/protocol-v2/commit/0c8efc2261ef9c69524b99816f27c0f3bd1f53eb
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/AToken.sol#L304
https://github.com/aave/protocol-v2/commit/9e55ea12b67f20b7e762e027e8048cbb5f38e147
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L197
https://blockchain-projects.readthedocs.io/multiple_withdrawal.html

32. StableDebtToken.sol#L157

StableDebtToken.sol#L211

StableDebtToken.sol#L281

VariableDebtToken.sol#L30

LendingPoolConfigurator.sol#L168

LendingPoolConfigurator.sol#L176

LendingPoolConfigurator.sol#L273

LendingPoolConfigurator.sol#L286

DefaultReserveInterestRateStrategy.sol#L115-117

ValidationLogic.sol#L19

GenericLogic.sol#L146

LendingPool.sol#L441

There are some factual slips in the comments, mostly caused by copy-

pasting. We suggest correcting them.

Status

Fixed at 0431f0dc

33. ReserveLogic.sol#L169 and other 1<<128 to type(uint128).max
replacings

1<<128 is not equal to type(uint128).max . So, to ensure that result is

uint128 , non-strict checks are enough.

Status

Acknowledged

34. LendingPool.sol#L401

Typo in description for 1st parameter.

Status

Fixed at f98335cb

39

https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/StableDebtToken.sol#L157
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/StableDebtToken.sol#L211
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/StableDebtToken.sol#L281
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/tokenization/VariableDebtToken.sol#L30
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L168
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L176
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L273
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPoolConfigurator.sol#L286
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/DefaultReserveInterestRateStrategy.sol#L115-L117
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/ValidationLogic.sol#L19
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/libraries/logic/GenericLogic.sol#L146
https://github.com/aave/protocol-v2/blob/f435b2fa0ac589852ca3dd6ae2b0fbfbc7079d54/contracts/lendingpool/LendingPool.sol#L441
https://github.com/aave/protocol-v2/blob/0431f0dcbc3604f5f0ac03b442c2c54eab773e21/contracts/
https://github.com/aave/protocol-v2/blob/cfc002dcd161e05029d0932b587cb20e370f097c/contracts/libraries/logic/ReserveLogic.sol#L169
https://github.com/aave/protocol-v2/blob/cfc002dcd161e05029d0932b587cb20e370f097c/contracts/lendingpool/LendingPool.sol#L401
https://github.com/aave/protocol-v2/commit/f98335cb68e95003b114d31b20218e903c1b5b58
https://github.com/aave/protocol-v2/blob/cfc002dcd161e05029d0932b587cb20e370f097c/contracts/libraries/logic/ReserveLogic.sol#L169

The following contracts were deployed as part of Aave protocol v2:

LendingPoolAddressesProvider

This contract is entry point of Aave protocol v2. The constructor was

executed with marketId parameter "Aave genesis market" .

Bytecode is verified.

Related addresses

Pool admin

0xbd723fc4f1d737dcfc48a07fe7336766d34cad5f

0xbb94a575935772d7d8ba78cd33caa64d4fb61d6b

Emergency admin

0xbd723fc4f1d737dcfc48a07fe7336766d34cad5f

LendingPool

0x987115c38fd9fd2aa2c6f1718451d167c13a3186

LendingPoolConfigurator

0x3a95ee42f080ff7289c8b4a14eb483a8644d7521

Aave oracle:

0xa50ba011c48153de246e5192c8f9258a2ba79ca9

Lending rate oracle:

0x8a32f49ffba88aba6eff96f45d8bd1d4b3f35c7d

LendingPoolCollateralManager

0xbd4765210d4167ce2a5b87280d9e8ee316d5ec7c

LendingPool

Bytecode is verified.

SMART CONTRACT DEPLOYMENT REVIEW

40

https://etherscan.io/address/0xB53C1a33016B2DC2fF3653530bfF1848a515c8c5
https://etherscan.io/address/0xbd723fc4f1d737dcfc48a07fe7336766d34cad5f
https://etherscan.io/address/0xbb94a575935772d7d8ba78cd33caa64d4fb61d6b
https://etherscan.io/address/0xbd723fc4f1d737dcfc48a07fe7336766d34cad5f
https://etherscan.io/address/0x987115c38fd9fd2aa2c6f1718451d167c13a3186
https://etherscan.io/address/0x3a95ee42f080ff7289c8b4a14eb483a8644d7521
https://etherscan.io/address/0xa50ba011c48153de246e5192c8f9258a2ba79ca9
https://etherscan.io/address/0x8a32f49ffba88aba6eff96f45d8bd1d4b3f35c7d
https://etherscan.io/address/0xbd4765210d4167ce2a5b87280d9e8ee316d5ec7c
https://etherscan.io/address/0x987115c38fd9fd2aa2c6f1718451d167c13a3186

Related addresses

ValidationLogic

0xdd6f15b39ca5147ae9b5e6046645d55b0e5baf0c

ReserveLogic

0xdce33de861d200d8da88c751dc00c18eda3251f5

GenericLogic

0x123fba7a76b29547df94dc59933332b751206fdf

LendingPoolConfigurator

Bytecode is verified.

LendingPoolCollateralManager

Bytecode is verified.

ValidationLogic

Bytecode is verified.

ReserveLogic

Bytecode is verified.

GenericLogic

Bytecode is verified.

Summary

All contracts from the scope of the audit, deployed for Aave protocol v2,

are corresponding to code freeze at https://github.com/aave/protocol-

v2/tree/750920303e33b66bc29862ea3b85206dda9ce786 and

https://gitlab.com/aave-tech/protocol-

v2/-/tree/750920303e33b66bc29862ea3b85206dda9ce786.

41

https://etherscan.io/address/0xdd6f15b39ca5147ae9b5e6046645d55b0e5baf0c
https://etherscan.io/address/0xdce33de861d200d8da88c751dc00c18eda3251f5
https://etherscan.io/address/0x123fba7a76b29547df94dc59933332b751206fdf
https://etherscan.io/address/0x3a95ee42f080ff7289c8b4a14eb483a8644d7521
https://etherscan.io/address/0xbd4765210d4167ce2a5b87280d9e8ee316d5ec7c
https://etherscan.io/address/0xdd6f15b39ca5147ae9b5e6046645d55b0e5baf0c
https://etherscan.io/address/0xdce33de861d200d8da88c751dc00c18eda3251f5
https://etherscan.io/address/0x123fba7a76b29547df94dc59933332b751206fdf
https://github.com/aave/protocol-v2/tree/750920303e33b66bc29862ea3b85206dda9ce786
https://gitlab.com/aave-tech/protocol-v2/-/tree/750920303e33b66bc29862ea3b85206dda9ce786

04 CONCLUSION

AND RESULTS

MixBytes was approached by Aave to provide a security assessment of the

second version of the Aave protocol implementation. The whole audit

process started on September 16 and ended on December 3, 2020. The audit

effort was led by Alexey Makeev. MixBytes additionally engaged an

independent highly professional contractor Igor Gulamov. The scope of the

audit is listed above. Oracle, treasury, and governance implementations

are out of the scope.

The protocol allows end-users to lend and borrow ERC 20 compatible tokens.

Moreover, the protocol supports so-called flash loans. That, in its turn,

enables several more sophisticated strategies including short selling. Key

improvements introduced in the second version include debt tokenization,

upgradeability of the protocol tokens, credit delegation, and gas

optimizations. Lenders are rewarded with interest paid on their assets.

Borrowers pay interest on their debts together with payments to the asset

treasury that constitutes fund flow equilibrium for some particular assets.

A particular asset in isolation, in essence, is a fractional reserve system

managed by an interest rate strategy in an automated way. However, as a

whole, the protocol strives to be overcollateralized. Of course, some

parameters of reserves, such as liquidation thresholds, are configured

externally and may require changes in accordance with the current market

conditions for the protocol to stay overcollateralized.

The auditing process consisted of several stages, each of them containing

several passes or checks. The scope was reviewed many times from

different angles. One of the most time-consuming stages, the blind stage,

took more than one month. Some local issues and slips were discovered

early during this stage, e.g. bitmask manipulation issues. Crucial

protocol properties were also formulated during this stage. Then, during

the guided stage, the intended protocol behavior was compared with a

reverse-engineered one. We rethought the protocol operations taking into

consideration protocol properties. Fund flows were analyzed as well.

Subsequently, about two weeks were devoted to pattern analysis including

automated checks and DeFi-specific attack vectors. Since the Aave team

was providing fixes in a timely fashion, we checked the code changes

shortly after providing an interim report. Although, it still took about

two weeks since many checks described above were re-run to guard against

newly introduced issues. That paid off a couple of times. Overall, we are
impressed by the Aave team's dedication to safe code provision.

42

Level Amount

CRITICAL -

MAJOR 9

WARNING 43

COMMENT 34

No critical issues were found as no way to steal funds was detected. Key

areas of found issues can be summarized as follows:

Bitmask manipulation and some other misses which most likely can be

attributed to the work-in-progress state of the audited code

revision.

Several updateInterestRates invocation issues can be described as

complications of concurrent state update. There was no obvious

alternative to such an approach because the Checks-Effects-

Interactions pattern was used.

User flags handling attracted our attention as it is a typical

dangerous setup caused by state duplication. A few issues were

discovered there.

Some excess gas usage issues were discovered and further improvement

paths were given.

We highlighted some potential fund flow issues which ultimately have

to be mitigated by interest rate strategies and/or code upgrade.

We suggested implementing as many as possible automated checks of

reserve parameters to rule out the human factor.

We see tokenization which allows self-consistent balance updates as a key

security factor in the protocol even in the face of reentrancy.

Simplicity and limited attack surface contribute to the protocol security

as well.

The audit started when the codebase was still undergoing some changes.

However, during the last weeks of the audit, the client devoted

significant effort to finalize the codebase to the production-ready

state. Some challenges imposed by the EVM and the Solidity compiler were

faced and solved, one way or another. Some notable practices were

employed, e.g. WadRayMath library.

We consider the commit 750920303e33b66bc29862ea3b85206dda9ce786 as a safe

version from the informational security point of view.

43

 Findings list:

https://github.com/aave/protocol-v2/tree/750920303e33b66bc29862ea3b85206dda9ce786

About MixBytes

MixBytes is a team of blockchain developers, auditors and analysts keen on

decentralized systems. We build open-source solutions, smart contracts and

blockchain protocols, perform security audits, work on benchmarking and

software testing solutions, do research and tech consultancy.

Contacts

https://github.com/mixbytes/audits_public

https://mixbytes.io/

hello@mixbytes.io

https://t.me/MixBytes

Disclaimer

The audit makes no statements or warranties about utility of the code, safety

of the code, suitability of the business model, investment advice,

endorsement of the platform or its products, regulatory regime for the

business model, or any other statements about fitness of the contracts to

purpose, or their bug free status. The audit documentation is for discussion

purposes only. The information presented in this report is confidential and

privileged. If you are reading this report, you agree to keep it confidential,

not to copy, disclose or disseminate without the agreement of Aave. If you are

not the intended recipient(s) of this document, please note that any

disclosure, copying or dissemination of its content is strictly forbidden.

44

	Blank Page

