
Public

SMART CONTRACT AUDIT REPORT

for

AAVE

Prepared By: Shuxiao Wang

Hangzhou, China
December 3, 2020

1/66 PeckShield Audit Report #: 2020-58

sxwang@peckshield.com

Public

Document Properties

Client Aave
Title Smart Contract Audit Report
Target Aave V2
Version 1.0
Author Xuxian Jiang
Auditors Xuxian Jiang, Huaguo Shi, Jeff Liu
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 December 3, 2020 Xuxian Jiang Final Release
1.0-rc2 November 4, 2020 Xuxian Jiang Release Candidate #2
1.0-rc1 November 2, 2020 Xuxian Jiang Release Candidate #1
0.5 October 28, 2020 Xuxian Jiang Add More Findings #4
0.4 October 20, 2020 Xuxian Jiang Add More Findings #3
0.3 October 13, 2020 Xuxian Jiang Add More Findings #2
0.2 October 6, 2020 Xuxian Jiang Add More Findings #1
0.1 September 29, 2020 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/66 PeckShield Audit Report #: 2020-58

Public

Contents

1 Introduction 5
1.1 About Aave V2 . 5
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 7

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 13
3.1 Improved Sanity Checks of registerAddressesProvider() 13
3.2 Race Condition Between delegateBorrowAllowance() And borrow() 15
3.3 Incompatibility with Deflationary/Rebasing Tokens 17
3.4 Simplification And Improvement of the repay() Logic 19
3.5 Validation of transferFrom() Return Values . 22
3.6 Improved Precision By Multiplication-Before-Division 24
3.7 Improved STABLE_BORROWING_MASK . 26
3.8 Inaccurate Burn Events in AToken . 28
3.9 Asset Consistency Between Reserve and AToken . 29
3.10 Inaccurate Calculation of Mints To Treasury . 31
3.11 Premature Updates of updateInterestRates() Before DebtToken Changes 33
3.12 Late Updates of updateInterestRates() After AToken Changes 35
3.13 Inconsistency Between Document and Implementation 39
3.14 Removal of Unused Code . 41
3.15 Possible Fund Loss From (Permissive) Smart Wallets With Allowances to LendingPool 42
3.16 Improved Business Logic in validateWithdraw() . 44
3.17 Improved Event Generation With Indexed Assets . 46
3.18 Performance Optimization in _updateIndexes() . 47

3/66 PeckShield Audit Report #: 2020-58

Public

3.19 Inconsistent Handling of healthFactor Corner Cases 50
3.20 Inaccurate previousStableDebt Calculation in _mintToTreasury() 52
3.21 Flashloan-Lowered StableBorrowRate For Mode-Switching Users 54
3.22 Bypassed Enforcement of LIQUIDATION_CLOSE_FACTOR_PERCENT 56

4 Conclusion 59

5 Appendix 60
5.1 Basic Coding Bugs . 60

5.1.1 Constructor Mismatch . 60
5.1.2 Ownership Takeover . 60
5.1.3 Redundant Fallback Function . 60
5.1.4 Overflows & Underflows . 60
5.1.5 Reentrancy . 61
5.1.6 Money-Giving Bug . 61
5.1.7 Blackhole . 61
5.1.8 Unauthorized Self-Destruct . 61
5.1.9 Revert DoS . 61
5.1.10 Unchecked External Call . 62
5.1.11 Gasless Send . 62
5.1.12 Send Instead Of Transfer . 62
5.1.13 Costly Loop . 62
5.1.14 (Unsafe) Use Of Untrusted Libraries . 62
5.1.15 (Unsafe) Use Of Predictable Variables . 63
5.1.16 Transaction Ordering Dependence . 63
5.1.17 Deprecated Uses . 63

5.2 Semantic Consistency Checks . 63
5.3 Additional Recommendations . 63

5.3.1 Avoid Use of Variadic Byte Array . 63
5.3.2 Make Visibility Level Explicit . 64
5.3.3 Make Type Inference Explicit . 64
5.3.4 Adhere To Function Declaration Strictly . 64

References 65

4/66 PeckShield Audit Report #: 2020-58

Public

1 | Introduction

Given the opportunity to review the Aave V2 design document and related smart contract source
code, we outline in the report our systematic approach to evaluate potential security issues in the
smart contract implementation, expose possible semantic inconsistencies between smart contract code
and design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About Aave V2

Aave is a decentralized non-custodial money market protocol where users can participate as depositors
or borrowers. Depositors provide liquidity to the market to earn a passive income, while borrowers
are able to borrow in an over-collateralized (perpetually) or under-collateralized (one-block liquidity)
fashion. Aave V2 not only addresses some of the suboptimal solutions implemented in V1 (e.g., by
allowing for AToken upgradeability and simplified overall architecture amenable for automated fuzzers
and formal verification tools), but also provides additional features, e.g., debt tokenization, collateral
trading, and new flashloans.

The basic information of Aave V2 is as follows:

Table 1.1: Basic Information of Aave V2

Item Description
Issuer Aave

Website https://aave.com/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report December 3, 2020

In the following, we show the Git repository of reviewed files and the commit hash value used

5/66 PeckShield Audit Report #: 2020-58

Public

in this audit. Note that Aave V2 assumes a trusted price oracle with timely market price feeds for
supported assets and a lending oracle with timely market lending rates. These two oracles are not
part of this audit.

• https://github.com/aave/protocol-v2.git (f756f44)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/aave/protocol-v2.git (7509203)

1.2 About PeckShield

PeckShield Inc. [19] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of the current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [14]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

6/66 PeckShield Audit Report #: 2020-58

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [13], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contract(s). Last but not least, this security audit should not be used
as investment advice.

7/66 PeckShield Audit Report #: 2020-58

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

8/66 PeckShield Audit Report #: 2020-58

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/66 PeckShield Audit Report #: 2020-58

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Aave V2 implementation. During the first
phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 1

High 2

Medium 6

Low 8

Informational 5

Total 22

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/66 PeckShield Audit Report #: 2020-58

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 critical-severity vulner-
ability, 2 high-severity vulnerabilities, 6 medium-severity vulnerabilities, 8 low-severity vulnerabilities,
and 5 informational recommendations.

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/66 PeckShield Audit Report #: 2020-58

Public

Table 2.1: Key Aave V2 Audit Findings

ID Severity Title Category Status
PVE-001 Informational Improved Sanity Checks of registerAddress-

esProvider()
Coding Practices Fixed

PVE-002 Low Race Condition Between delegateBorrowAl-
lowance() And borrow()

Time and State Confirmed

PVE-003 Low Incompatibility With Deflationary/Rebasing
Tokens

Business Logic Confirmed

PVE-004 Low Simplification And Improvement of the re-
pay() Logic

Coding Practices Fixed

PVE-005 Medium Validation of transferFrom() Return Values Coding Practices Fixed
PVE-006 Low Improved Precision By Multiplication-Before-

Division
Numeric Errors Fixed

PVE-007 Low Improved STABLE_BORROWING_MASK Numeric Errors Fixed
PVE-008 Low Inaccurate Burn Events in AToken Business Logic Fixed
PVE-009 Informational Asset Consistency Between Reserve and ATo-

ken
Time and State Fixed

PVE-010 Medium Inaccurate Calculation of Mints To Treasury Business Logic Fixed
PVE-011 High Premature Updates of updateInterestRates()

Before DebtToken Changes
Business Logic Fixed

PVE-012 High Late Updates of updateInterestRates() After
AToken Changes

Business Logic Fixed

PVE-013 Informational Inconsistency Between Document and Imple-
mentation

Coding Practices Fixed

PVE-014 Informational Removal of Unused Code Coding Practices Fixed
PVE-015 Critical Possible Fund Loss From (Permissive) Smart

Wallets With Allowances to LendingPool
Business Logic Fixed

PVE-016 Medium Improved Business Logic in validateWith-
draw()

Business Logic Fixed

PVE-017 Informational Improved Event Generation With Indexed As-
sets

Business Logic Fixed

PVE-018 Low Performance Optimization in _updateIn-
dexes()

Coding Practices Fixed

PVE-019 Low Inconsistent Handling of healthFactor Corner
Cases

Coding Practices Fixed

PVE-020 Medium Inaccurate previousStableDebt Calculation in
_mintToTreasury()

Business Logic Fixed

PVE-021 Medium Flashloan-Lowered StableBorrowRate For
Mode-Switching Users

Time and State Confirmed

PVE-022 Medium Bypassed Enforcement of LIQUIDATION_-
CLOSE_FACTOR_PERCENT

Business Logic Fixed

12/66 PeckShield Audit Report #: 2020-58

Public

3 | Detailed Results

3.1 Improved Sanity Checks of registerAddressesProvider()

• ID: PVE-001

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: LendingPoolAddressesProviderRegistry

• Category: Coding Practices [10]

• CWE subcategory: CWE-1041 [3]

Description

Aave V2 implements a modular architecture that makes the entire protocol extensible and pluggable.
To facilitate the modular architecture, Aave V2 has a contract named LendingPoolAddressesProviderRegistry

that contains the list of active addresses providers. Each address provider has an internal mapping
record that can be used to retrieve the current implementation or logic contract for different com-
ponents in Aave V2.

During our analysis of LendingPoolAddressesProviderRegistry, we notice that it has a restricted
public routine, i.e., registerAddressesProvider(). This routine can only be invoked by the privileged
owner and, as the name indicates, allows for the registration of a new address provider. Each
registered address provider has an associated id for unique identification.

52 /**
53 * @dev adds a lending pool to the list of registered lending pools
54 * @param provider the pool address to be registered
55 **/
56 f unc t i on r e g i s t e r A d d r e s s e s P r o v i d e r (address p r o v i d e r , uint256 i d) ex te rna l o v e r r i d e

onlyOwner {
57 _add r e s s e sP r o v i d e r s [p r o v i d e r] = i d ;
58 _addToAdd r e s s e sP rov i d e r sL i s t (p r o v i d e r) ;
59 emit Add r e s s e sP r o v i d e rR e g i s t e r e d (p r o v i d e r) ;
60 }

62 /**
63 * @dev removes a lending pool from the list of registered lending pools

13/66 PeckShield Audit Report #: 2020-58

Public

64 * @param provider the pool address to be unregistered
65 **/
66 f unc t i on u n r e g i s t e r A d d r e s s e s P r o v i d e r (address p r o v i d e r) ex te rna l o v e r r i d e onlyOwner {
67 r equ i r e (_add r e s s e sP r o v i d e r s [p r o v i d e r] > 0 , E r r o r s .PROVIDER_NOT_REGISTERED) ;
68 _add r e s s e sP r o v i d e r s [p r o v i d e r] = 0 ;
69 emit Add r e s s e sP r o v i d e rUn r e g i s t e r e d (p r o v i d e r) ;
70 }

Listing 3.1: LendingPoolAddressesProviderRegistry . sol

When there is a need to unregister a previously registered address provider, the corresponding id is
simply reset to 0. With that, there is a need to apply additional sanity checks in registerAddressesProvider

() to ensure the associated id is not equal to 0.

Recommendation Ensure the associated id>0 for the registered address provider as follows:

52 /**
53 * @dev adds a lending pool to the list of registered lending pools
54 * @param provider the pool address to be registered
55 **/
56 f unc t i on r e g i s t e r A d d r e s s e s P r o v i d e r (address p r o v i d e r , uint256 i d) ex te rna l o v e r r i d e

onlyOwner {
57 r equ i r e (i d !=0 , E r r o r s .PROVIDER_NOT_REGISTERED) ;
58 _add r e s s e sP r o v i d e r s [p r o v i d e r] = i d ;
59 _addToAdd r e s s e sP rov i d e r sL i s t (p r o v i d e r) ;
60 emit Add r e s s e sP r o v i d e rR e g i s t e r e d (p r o v i d e r) ;
61 }

63 /**
64 * @dev removes a lending pool from the list of registered lending pools
65 * @param provider the pool address to be unregistered
66 **/
67 f unc t i on u n r e g i s t e r A d d r e s s e s P r o v i d e r (address p r o v i d e r) ex te rna l o v e r r i d e onlyOwner {
68 r equ i r e (_add r e s s e sP r o v i d e r s [p r o v i d e r] > 0 , E r r o r s .PROVIDER_NOT_REGISTERED) ;
69 _add r e s s e sP r o v i d e r s [p r o v i d e r] = 0 ;
70 emit Add r e s s e sP r o v i d e rUn r e g i s t e r e d (p r o v i d e r) ;
71 }

Listing 3.2: LendingPoolAddressesProviderRegistry . sol (revised)

Status The issue has been confirmed and accordingly fixed by this merge request: 82.

14/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/82/diffs#4af1dfde67989c5b17ab6beb677cb6f82512ced6_57_57

Public

3.2 Race Condition Between delegateBorrowAllowance() And
borrow()

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: LendingPool

• Category: Time and State [9]

• CWE subcategory: CWE-362 [5]

Description

LendingPool is a core pool contract in Aave V2 that implements a variety of innovative features. One
of them is the so-called credit delegation, which in essence allows an user to take uncollateralized
loans as long as the user receives delegation from other users that provide the collateral. The feature
is mainly implemented with a pair of related routines, i.e., delegateBorrowAllowance() and borrow().

To elaborate, we show below related code snippet of these two routines. The delegateBorrowAllowance
() routine sets the intended allowance (_borrowAllowance at line 197) to borrow on a certain type
of debt asset for a specific user address while the allowance will be reduced when the user indeed
requests to borrow() from the pool.

181 /**
182 * @dev Sets allowance to borrow on a certain type of debt asset for a certain user

address
183 * @param asset The underlying asset of the debt token
184 * @param user The user to give allowance to
185 * @param interestRateMode Type of debt: 1 for stable , 2 for variable
186 * @param amount Allowance amount to borrow
187 **/
188 f unc t i on de l ega t eBo r rowA l l owance (
189 address a s s e t ,
190 address use r ,
191 uint256 i n t e r e s tRateMode ,
192 uint256 amount
193) ex te rna l o v e r r i d e {
194 _whenNotPaused () ;
195 address debtToken = _re s e r v e s [a s s e t] . getDebtTokenAddress (i n t e r e s tRa t eMode) ;

197 _borrowAl lowance [debtToken] [msg . sender] [u s e r] = amount ;
198 emit BorrowAl lowanceDe legated (a s s e t , msg . sender , u se r , i n t e r e s tRateMode , amount) ;
199 }

201 /**
202 * @dev Allows users to borrow a specific amount of the reserve currency , provided

that the borrower
203 * already deposited enough collateral.
204 * @param asset the address of the reserve

15/66 PeckShield Audit Report #: 2020-58

Public

205 * @param amount the amount to be borrowed
206 * @param interestRateMode the interest rate mode at which the user wants to borrow.

Can be 0 (STABLE) or 1 (VARIABLE)
207 * @param referralCode a referral code for integrators
208 * @param onBehalfOf address of the user who will receive the debt
209 **/
210 f unc t i on borrow (
211 address a s s e t ,
212 uint256 amount ,
213 uint256 i n t e r e s tRateMode ,
214 uint16 r e f e r r a l C o d e ,
215 address onBeha l fOf
216) ex te rna l o v e r r i d e {
217 _whenNotPaused () ;
218 Res e r v eLog i c . ReserveData storage r e s e r v e = _re s e r v e s [a s s e t] ;

220 i f (onBeha l fOf != msg . sender) {
221 address debtToken = r e s e r v e . getDebtTokenAddress (i n t e r e s tRa t eMode) ;

223 _borrowAl lowance [debtToken] [onBeha l fOf] [msg
224 . sender] = _borrowAl lowance [debtToken] [onBeha l fOf] [msg . sender] . sub (
225 amount ,
226 E r r o r s .BORROW_ALLOWANCE_ARE_NOT_ENOUGH
227) ;
228 }
229 _executeBorrow (
230 ExecuteBorrowParams (
231 a s s e t ,
232 msg . sender ,
233 onBehal fOf ,
234 amount ,
235 i n t e r e s tRateMode ,
236 r e s e r v e . aTokenAddress ,
237 r e f e r r a l C o d e ,
238 t rue
239)
240) ;
241 }

Listing 3.3: LendingPool.sol

This pair of routines resembles the ERC20-specified approve() / transferFrom() pair and shares a
similar known race condition issue [2]. Specifically, when a user intends to reduce the _borrowAllowance

borrow amount previously approved from, say, 10 DAI to 1 DAI. The user may race to borrow up to
the previously approved _borrowAllowance (the 10 DAI) and then additionally borrow the new amount
just approved (1 DAI). This breaks the user’s intention of restricting the borrow allowance to the new
amount, not the sum of old amount and new amount.

In order to properly approve the _borrowAllowance, there also exists a known workaround: users
can utilize the increaseBorrowApproval() and decreaseBorrowApproval() functions versus the traditional

16/66 PeckShield Audit Report #: 2020-58

Public

delegateBorrowAllowance() function.

Recommendation Add the suggested workaround functions increaseBorrowApproval() and
decreaseBorrowApproval(). However, considering the difficulty and possible lean gains in exploiting
the race condition, we also think it is reasonable to leave it as is.

Status This issue has been confirmed. Like in the approval()/transferFrom() pattern, there is
no easy fix. The team plans to make sure builders and users are aware of this limitation.

3.3 Incompatibility with Deflationary/Rebasing Tokens

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: LendingPool

• Category: Business Logic [11]

• CWE subcategory: CWE-841 [8]

Description

In Aave V2, the LendingPool contract is designed to be the main entry for interaction with bor-
rowing/lending users. In particular, one entry routine, i.e., deposit(), accepts asset transfer-in and
mints the corresponding AToken to represent the depositor’s share in the lending pool. Naturally, the
contract implements a number of low-level helper routines to transfer assets into or out of Aave V2.
These asset-transferring routines work as expected with standard ERC20 tokens: namely the vault’s
internal asset balances are always consistent with actual token balances maintained in individual
ERC20 token contract.

91 /**
92 * @dev deposits The underlying asset into the reserve. A corresponding amount of the

overlying asset (aTokens)
93 * is minted.
94 * @param asset the address of the reserve
95 * @param amount the amount to be deposited
96 * @param referralCode integrators are assigned a referral code and can potentially

receive rewards.
97 **/
98 f unc t i on d e p o s i t (
99 address a s s e t ,
100 uint256 amount ,
101 address onBehal fOf ,
102 uint16 r e f e r r a l C o d e
103) ex te rna l o v e r r i d e {
104 _whenNotPaused () ;
105 Res e r v eLog i c . ReserveData storage r e s e r v e = _re s e r v e s [a s s e t] ;

17/66 PeckShield Audit Report #: 2020-58

Public

107 Va l i d a t i o n L o g i c . v a l i d a t eD e p o s i t (r e s e r v e , amount) ;

109 address aToken = r e s e r v e . aTokenAddress ;

111 r e s e r v e . upda teS ta t e () ;
112 r e s e r v e . u p d a t e I n t e r e s t R a t e s (a s s e t , aToken , amount , 0) ;

114 bool i s F i r s t D e p o s i t = IAToken (aToken) . ba lanceOf (onBeha l fOf) == 0 ;
115 i f (i s F i r s t D e p o s i t) {
116 _use r sCon f i g [onBeha l fOf] . s e t U s i n gA sC o l l a t e r a l (r e s e r v e . id , t rue) ;
117 }

119 IAToken (aToken) . mint (onBehal fOf , amount , r e s e r v e . l i q u i d i t y I n d e x) ;

121 // transfer to the aToken contract
122 IERC20 (a s s e t) . s a f eT ran s f e rF rom (msg . sender , aToken , amount) ;

124 emit Depos i t (a s s e t , msg . sender , onBehal fOf , amount , r e f e r r a l C o d e) ;
125 }

Listing 3.4: LendingPool.sol

However, there exist other ERC20 tokens that may make certain customizations to their ERC20
contracts. One type of these tokens is deflationary tokens that charge a certain fee for every transfer

() or transferFrom(). (Another type is rebasing tokens such as YAM.) As a result, this may not meet the
assumption behind these low-level asset-transferring routines. In other words, the above operations,
such as deposit(), may introduce unexpected balance inconsistencies when comparing internal asset
records with external ERC20 token contracts.

One possible mitigation is to measure the asset change right before and after the asset-transferring
routines. In other words, instead of expecting the amount parameter in transfer() or transferFrom()
will always result in full transfer, we need to ensure the increased or decreased amount in the pool
before and after the transfer() or transferFrom() is expected and aligned well with our operation.
Though these additional checks cost additional gas usage, we consider they are necessary to deal
with deflationary tokens or other customized ones if their support is deemed necessary.

Another mitigation is to regulate the set of ERC20 tokens that are permitted into Aave V2 for
borrowing/lending. In fact, Aave V2 is indeed in the position to effectively regulate the set of assets
that can be listed. Meanwhile, there exist certain assets that may exhibit control switches that can
be dynamically exercised to convert into deflationary.

Recommendation If current codebase needs to support deflationary tokens, it is necessary to
check the balance before and after the transfer()/transferFrom() call to ensure the book-keeping
amount is accurate. This support may bring additional gas cost. Also, keep in mind that certain
tokens may not be deflationary for the time being. However, they could have a control switch that
can be exercised to turn them into deflationary tokens. One example is the widely-adopted USDT.

18/66 PeckShield Audit Report #: 2020-58

Public

Status This issue has been acknowledged by the team. Since a specific AToken can be developed
for each asset, a different AToken implementation will be used to eventually list balance changing
tokens.

3.4 Simplification And Improvement of the repay() Logic

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: LendingPool

• Category: Coding Practices [10]

• CWE subcategory: CWE-1041 [3]

Description

The LendingPool contract implements a number of core functionalities in borrowing and lending.
One of them is the repay() operation that allows to repay partial or full amount of a borrower’s
debt position. While reviewing the repay() logic, we notice that its execution logic can be further
improved.

To elaborate, we show below the code snippet of repay(). The execution logic is rather straight-
forward in firstly updating/validating the borrower’s debt position, then calculating either partial or
full paybackAmount and performing the intended repayment, and finally updating the pool’s interest
rates and redirecting the payment to the AToken contract.

251 f unc t i on r epay (
252 address a s s e t ,
253 uint256 amount ,
254 uint256 rateMode ,
255 address onBeha l fOf
256) ex te rna l o v e r r i d e {
257 _whenNotPaused () ;

259 Res e r v eLog i c . ReserveData storage r e s e r v e = _re s e r v e s [a s s e t] ;

261 (uint256 s tab l eDebt , uint256 v a r i a b l eD eb t) = He l p e r s . ge tUse rCur r en tDebt (onBehal fOf ,
r e s e r v e) ;

263 Res e r v eLog i c . I n t e r e s tRa teMode in t e r e s tRa t eMode = Res e r v eLog i c . I n t e r e s tRa teMode (
rateMode) ;

265 // default to max amount
266 uint256 paybackAmount = in t e r e s tRa t eMode == Res e r v eLog i c . I n t e r e s tRa teMode . STABLE
267 ? s t ab l eDeb t
268 : v a r i a b l eD eb t ;

270 i f (amount != type (uint256) . max && amount < paybackAmount) {

19/66 PeckShield Audit Report #: 2020-58

Public

271 paybackAmount = amount ;
272 }

274 Va l i d a t i o n L o g i c . v a l i d a t eRepa y (
275 r e s e r v e ,
276 amount ,
277 i n t e r e s tRateMode ,
278 onBehal fOf ,
279 s tab l eDebt ,
280 v a r i a b l eD eb t
281) ;

283 r e s e r v e . upda teS ta t e () ;

285 //burns an equivalent amount of debt tokens
286 i f (i n t e r e s tRa t eMode == Res e r v eLog i c . I n t e r e s tRa teMode . STABLE) {
287 IS tab l eDebtToken (r e s e r v e . s tab l eDebtTokenAddre s s) . burn (onBehal fOf , paybackAmount) ;
288 } e l s e {
289 IVa r i ab l eDebtToken (r e s e r v e . va r i ab l eDeb tTokenAddre s s) . burn (
290 onBehal fOf ,
291 paybackAmount ,
292 r e s e r v e . v a r i a b l eBo r r ow I nd e x
293) ;
294 }

296 address aToken = r e s e r v e . aTokenAddress ;
297 r e s e r v e . u p d a t e I n t e r e s t R a t e s (a s s e t , aToken , paybackAmount , 0) ;

299 i f (s t ab l eDeb t . add (v a r i a b l eD eb t) . sub (paybackAmount) == 0) {
300 _use r sCon f i g [onBeha l fOf] . s e tBo r r ow ing (r e s e r v e . id , f a l s e) ;
301 }

303 IERC20 (a s s e t) . s a f eT ran s f e rF rom (msg . sender , aToken , paybackAmount) ;

305 emit Repay (a s s e t , onBehal fOf , msg . sender , paybackAmount) ;
306 }

Listing 3.5: LendingPool.sol

The optimization is related to the paybackAmount calculation (lines 270 − 272): if (amount !=

type(uint256).max && amount < paybackAmount) paybackAmount = amount. The condition of amount !=

type(uint256).max is essentially a no-op and therefore the calculation can be simplified as if (amount

< paybackAmount) paybackAmount = amount.
Moreover, Aave V2 provides a number of helper routines to validate the given arguments to a

number of core operations, including deposit(), withdraw(), borrow(), repay(), and etc. In repay(),
the way to perform validateRepay() needs to be revised. In particular, the amount to be included
in validateRepay() should not be the function argument (lines 274 − 281). Instead, it should be the
paybackAmount (lines 266 − 272).

20/66 PeckShield Audit Report #: 2020-58

Public

Recommendation Revise the repay() logic as follows:

251 f unc t i on r epay (
252 address a s s e t ,
253 uint256 amount ,
254 uint256 rateMode ,
255 address onBeha l fOf
256) ex te rna l o v e r r i d e {
257 _whenNotPaused () ;

259 Res e r v eLog i c . ReserveData storage r e s e r v e = _re s e r v e s [a s s e t] ;

261 (uint256 s tab l eDebt , uint256 v a r i a b l eD eb t) = He l p e r s . ge tUse rCur r en tDebt (onBehal fOf ,
r e s e r v e) ;

263 Res e r v eLog i c . I n t e r e s tRa teMode in t e r e s tRa t eMode = Res e r v eLog i c . I n t e r e s tRa teMode (
rateMode) ;

265 // default to max amount
266 uint256 paybackAmount = in t e r e s tRa t eMode == Res e r v eLog i c . I n t e r e s tRa teMode . STABLE
267 ? s t ab l eDeb t
268 : v a r i a b l eD eb t ;

270 i f (amount < paybackAmount) {paybackAmount = amount ; }

272 Va l i d a t i o n L o g i c . v a l i d a t eRepa y (
273 r e s e r v e ,
274 paybackAmount ,
275 i n t e r e s tRateMode ,
276 onBehal fOf ,
277 s tab l eDebt ,
278 v a r i a b l eD eb t
279) ;

281 r e s e r v e . upda teS ta t e () ;

283 //burns an equivalent amount of debt tokens
284 i f (i n t e r e s tRa t eMode == Res e r v eLog i c . I n t e r e s tRa teMode . STABLE) {
285 IS tab l eDebtToken (r e s e r v e . s tab l eDebtTokenAddre s s) . burn (onBehal fOf , paybackAmount) ;
286 } e l s e {
287 IVa r i ab l eDebtToken (r e s e r v e . va r i ab l eDeb tTokenAddre s s) . burn (
288 onBehal fOf ,
289 paybackAmount ,
290 r e s e r v e . v a r i a b l eBo r r ow I nd e x
291) ;
292 }

294 address aToken = r e s e r v e . aTokenAddress ;
295 r e s e r v e . u p d a t e I n t e r e s t R a t e s (a s s e t , aToken , paybackAmount , 0) ;

297 i f (s t ab l eDeb t . add (v a r i a b l eD eb t) . sub (paybackAmount) == 0) {
298 _use r sCon f i g [onBeha l fOf] . s e tBo r r ow ing (r e s e r v e . id , f a l s e) ;
299 }

21/66 PeckShield Audit Report #: 2020-58

Public

301 IERC20 (a s s e t) . s a f eT ran s f e rF rom (msg . sender , aToken , paybackAmount) ;

303 emit Repay (a s s e t , onBehal fOf , msg . sender , paybackAmount) ;
304 }

Listing 3.6: LendingPool.sol

Status The issue has been confirmed and accordingly fixed by this merge request: 82.

3.5 Validation of transferFrom() Return Values

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: LendingPool

• Category: Coding Practices [10]

• CWE subcategory: CWE-1041 [3]

Description

Another core functionality implemented in the LendingPool contract is the new flashloan feature.
This feature allows the creation of a variety of tools for refinance, collateral swap, arbitrage and
liquidations. It further addresses the limitation of earlier versions by allowing the flashloans to be
used within the Aave protocol (by carefully taking care of potential reentrancy concerns and other
limitations).

To elaborate, we show below the code snippet of flashLoan(). This routine works in two different
modes: The first mode simply maintains an invariant in guaranteeing the final balance of lending
pool is larger than the earlier balance plus the premium charged for this flashloan; The second mode
allows the flashloan to be borrowed from the pool with the assumption of this borrow is backed up
with earlier collateral.

574 f unc t i on f l a s hLoan (
575 address r e c e i v e rAdd r e s s ,
576 address a s s e t ,
577 uint256 amount ,
578 uint256 mode ,
579 bytes c a l l d a t a params ,
580 uint16 r e f e r r a l C o d e
581) ex te rna l o v e r r i d e {
582 _whenNotPaused () ;
583 Res e r v eLog i c . ReserveData storage r e s e r v e = _re s e r v e s [a s s e t] ;
584 F la shLoanLoca lVa r s memory v a r s ;

586 v a r s . aTokenAddress = r e s e r v e . aTokenAddress ;

22/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/82/diffs#f32d1b0823e1b657d11caa63b3c186b8912d8067_271_270

Public

588 v a r s . premium = amount . mul (FLASHLOAN_PREMIUM_TOTAL) . d i v (10000) ;

590 Va l i d a t i o n L o g i c . v a l i d a t e F l a s h l o a n (mode , v a r s . premium) ;

592 Res e r v eLog i c . I n t e r e s tRa teMode debtMode = Res e r v eLog i c . I n t e r e s tRa teMode (mode) ;

594 v a r s . r e c e i v e r = IF l a s hLo anRe c e i v e r (r e c e i v e r A d d r e s s) ;

596 // transfer funds to the receiver
597 IAToken (v a r s . aTokenAddress) . t r a n s f e rUnd e r l y i n gTo (r e c e i v e rAdd r e s s , amount) ;

599 // execute action of the receiver
600 v a r s . r e c e i v e r . e x e cu t eOpe r a t i on (a s s e t , amount , v a r s . premium , params) ;

602 v a r s . amountPlusPremium = amount . add (v a r s . premium) ;

604 i f (debtMode == Res e r v eLog i c . I n t e r e s tRa teMode .NONE) {
605 IERC20 (a s s e t) . t r a n s f e rF r om (r e c e i v e rAdd r e s s , v a r s . aTokenAddress , v a r s .

amountPlusPremium) ;

607 r e s e r v e . upda teS ta t e () ;
608 r e s e r v e . c umu l a t eToL i qu i d i t y I n d e x (IERC20 (v a r s . aTokenAddress) . t o t a l S u p p l y () , v a r s .

premium) ;
609 r e s e r v e . u p d a t e I n t e r e s t R a t e s (a s s e t , v a r s . aTokenAddress , v a r s . premium , 0) ;

611 emit FlashLoan (r e c e i v e rAdd r e s s , a s s e t , amount , v a r s . premium , r e f e r r a l C o d e) ;
612 } e l s e {
613 // If the transfer didn’t succeed , the receiver either didn’t return the funds , or

didn’t approve the transfer.
614 _executeBorrow (
615 ExecuteBorrowParams (
616 a s s e t ,
617 msg . sender ,
618 msg . sender ,
619 v a r s . amountPlusPremium ,
620 mode ,
621 v a r s . aTokenAddress ,
622 r e f e r r a l C o d e ,
623 f a l s e
624)
625) ;
626 }
627 }

Listing 3.7: LendingPool.sol

While reviewing the first mode, we notice that when the flashloan is transferred to the bor-
rower, it is properly handled with safeTransfer() (line 245 in AToken contract) that safely validates
the return value. However, when the flashloan is being returned back the pool with the necessary
premium, it is handled with transferFrom() that does not validate the return value. To better accom-
modate various idiosyncrasies associated with different implementations/customizations of ERC20

23/66 PeckShield Audit Report #: 2020-58

Public

tokens, we strongly suggest to replace all occurrences of transferFrom() with the safe version of
safeTransferFrom() from OpenZeppelin. The issue is also applicable to other two unsafe transfers in
LendingPoolCollateralManager.

Recommendation Replace all occurrences of transferFrom() with the safe version of safeTransferFrom
() from OpenZeppelin. Similarly, replace unsafe transfer(), if any, with safeTransfer() as well.

Status This issue has been confirmed and accordingly fixed by replacing transferFrom() with
safeTransferFrom() in the merge request: 56.

3.6 Improved Precision By Multiplication-Before-Division

• ID: PVE-006

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: DefaultReserveInterestRateStrategy

• Category: Numeric Errors [12]

• CWE subcategory: CWE-190 [4]

Description

SafeMath is a widely-used Solidity math library that is designed to support safe math operations by
preventing common overflow or underflow issues when working with uint256 operands. While it
indeed blocks common overflow or underflow issues, the lack of float support in Solidity may
introduce another subtle, but troublesome issue: precision loss. In this section, we examine one
possible precision loss source that stems from the different orders when both multiplication (mul) and
division (div) are involved.

In particular, we use the calculateInterestRates() (in DefaultReserveInterestRateStrategy con-
tract) as an example. This routine is used to calculate the interest rate due to changes related to
the lending pool, either from new borrows or deposits.

119 f unc t i on c a l c u l a t e I n t e r e s t R a t e s (
120 address r e s e r v e ,
121 uint256 a v a i l a b l e L i q u i d i t y ,
122 uint256 t o t a l S t ab l eDeb t ,
123 uint256 t o t a lV a r i a b l eDeb t ,
124 uint256 ave rageStab l eBor rowRate ,
125 uint256 r e s e r v e F a c t o r
126)
127 ex te rna l
128 o v e r r i d e
129 view
130 r e tu rn s (

24/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/56

Public

131 uint256 ,
132 uint256 ,
133 uint256
134)
135 {

137 Ca l c I n t e r e s t R a t e s L o c a l V a r s memory v a r s ;

139 v a r s . t o t a lBo r r ow s = t o t a l S t a b l eDeb t . add (t o t a l V a r i a b l eD e b t) ;
140 v a r s . c u r r e n tVa r i a b l eBo r r owRa t e = 0 ;
141 v a r s . c u r r en tS t ab l eBo r r owRa t e = 0 ;
142 v a r s . c u r r e n t L i q u i d i t y R a t e = 0 ;

144 uint256 u t i l i z a t i o n R a t e = va r s . t o t a lBo r r ows == 0
145 ? 0
146 : v a r s . t o t a lBo r r ows . r ayD iv (a v a i l a b l e L i q u i d i t y . add (v a r s . t o t a lBo r r ow s)) ;

148 v a r s . c u r r en tS t ab l eBo r r owRa t e = ILend i ngRa t eOra c l e (a d d r e s s e s P r o v i d e r .
g e tLend ingRa t eOrac l e ())

149 . getMarketBorrowRate (r e s e r v e) ;

151 i f (u t i l i z a t i o n R a t e > OPTIMAL_UTILIZATION_RATE) {
152 uint256 e x c e s s U t i l i z a t i o n R a t e R a t i o = u t i l i z a t i o n R a t e . sub (OPTIMAL_UTILIZATION_RATE)

. r ayD iv (
153 EXCESS_UTILIZATION_RATE
154) ;

156 v a r s . c u r r en tS t ab l eBo r r owRa t e = va r s . c u r r en tS t ab l eBo r r owRa t e . add (_s tab l eRateS lope1)
. add (

157 _stab l eRateS lope2 . rayMul (e x c e s s U t i l i z a t i o n R a t e R a t i o)
158) ;

160 v a r s . c u r r e n tVa r i a b l eBo r r owRa t e = _baseVar iab leBor rowRate . add (_va r i ab l eRa t eS l ope1) .
add (

161 _va r i ab l eRa t eS l ope2 . rayMul (e x c e s s U t i l i z a t i o n R a t e R a t i o)
162) ;
163 } e l s e {
164 v a r s . c u r r en tS t ab l eBo r r owRa t e = va r s . c u r r en tS t ab l eBo r r owRa t e . add (
165 _stab l eRateS lope1 . rayMul (u t i l i z a t i o n R a t e . r ayD iv (OPTIMAL_UTILIZATION_RATE))
166) ;
167 v a r s . c u r r e n tVa r i a b l eBo r r owRa t e = _baseVar iab leBor rowRate . add (
168 u t i l i z a t i o n R a t e . r ayD iv (OPTIMAL_UTILIZATION_RATE) . rayMul (_va r i ab l eRa t eS l ope1)
169) ;
170 }

172 v a r s . c u r r e n t L i q u i d i t y R a t e = _getOvera l lBor rowRate (
173 t o t a l S t ab l eDeb t ,
174 t o t a lV a r i a b l eDeb t ,
175 v a r s . cu r r en tVa r i ab l eBo r r owRat e ,
176 ave rageStab l eBo r rowRate
177)
178 . rayMul (u t i l i z a t i o n R a t e)

25/66 PeckShield Audit Report #: 2020-58

Public

179 . pe rcentMul (PercentageMath .PERCENTAGE_FACTOR. sub (r e s e r v e F a c t o r)) ;

181 re tu rn (v a r s . c u r r e n t L i q u i d i t y R a t e , v a r s . cu r r en tS tab l eBo r rowRate , v a r s .
c u r r e n tVa r i a b l eBo r r owRa t e) ;

182 }

Listing 3.8: DefaultReserveInterestRateStrategy . sol

We notice the calculation of the currentVariableBorrowRate (lines 167 − 169) involves mixed
multiplication and devision. For improved precision, it is better to calculate the multiplication before
the division, i.e., baseVariableBorrowRate.add(utilizationRate.rayMul(_variableRateSlope1).rayDiv(

OPTIMAL_UTILIZATION_RATE)). Similarly, the calculation of calculateAvailableCollateralToLiquidate()
in LendingPoolCollateralManager contract (line 584) can be accordingly adjusted. Note that the
resulting precision loss may be just a small number, but it plays a critical role when certain boundary
conditions are met. And it is always the preferred choice if we can avoid the precision loss as much
as possible.

Recommendation Revise the above calculations to better mitigate possible precision loss.

Status The issue has been confirmed and accordingly fixed by these two merge requests: 82

and 88.

3.7 Improved STABLE_BORROWING_MASK

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ReserveConfiguration

• Category: Coding Practices [10]

• CWE subcategory: CWE-1041 [3]

Description

For gas efficiency and improved scalability, Aave V2 introduces a bitmask to store the reserve con-
figuration. The bitmask is defined as follows:

Figure 3.1: The Reserve Configuration Bitmask in Aave V2

26/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/82/diffs#7571317e522e2a9ce520d8af36442 960bfd00a01_166_165
https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/88

Public

Specifically, the bitmask has a 256 bit size and is divided into 11 segments: LTV, Liquidation

Threshold, Liquidation Bonus, Decimal, isActive, isFreezed, Bororowing Enabled, Stable Bororowing

Enabled, Reserved, Reserve Factor, and Unused. The above segments occupy 16 bits, 16 bits, 16 bits,
8 bits, 1 bit, 1 bit, 1 bit, 1 bit, 5 bits, 16 bits, and 175 bits, respectively.

15 l i b r a r y Re s e r v eCon f i g u r a t i o n {
16 uint256 constant LTV_MASK = 0xFFFFFFFFFFFFFFFF0000 ;
17 uint256 constant LIQUIDATION_THRESHOLD_MASK = 0xFFFFFFFFFFFF0000FFFF ;
18 uint256 constant LIQUIDATION_BONUS_MASK = 0xFFFFFFF0000FFFFFFFF ;
19 uint256 constant DECIMALS_MASK = 0xFFFFFF00FFFFFFFFFFFF ;
20 uint256 constant ACTIVE_MASK = 0xFFFFFEFFFFFFFFFFFFFF ;
21 uint256 constant FROZEN_MASK = 0xFFFFFDFFFFFFFFFFFFFF ;
22 uint256 constant BORROWING_MASK = 0xFFFFFBFFFFFFFFFFFFFF ;
23 uint256 constant STABLE_BORROWING_MASK = 0xFFFF07FFFFFFFFFFFFFF ;
24 uint256 constant RESERVE_FACTOR_MASK = 0xFFFFFFFFFFFFFFFF ;
25 . . .
26 }

Listing 3.9: ReserveConfiguration . sol

We have examined the bitmask for each specific segment and notice that the STABLE_BORROWING_MASK
= 0xFFFF07FFFFFFFFFFFFFF takes 5 bits, instead of 1. With an incorrect mask for Stable Borrowing

Enabled, it unnecessarily affects the adjacent 4 bits (even though these 4 bits are currently reserved)1

via the affiliated getStableRateBorrowingEnabled()/setStableRateBorrowingEnabled() routines.

194 /**
195 * @dev enables or disables stable rate borrowing on the reserve
196 * @param self the reserve configuration
197 * @param enabled true if the stable rate borrowing needs to be enabled , false

otherwise
198 **/
199 f unc t i on s e tS t ab l eRa t eBo r r ow ingEnab l ed (R e s e r v eCon f i g u r a t i o n .Map memory s e l f , bool

enab l ed)
200 i n t e r n a l pure
201 {
202 s e l f . data = (s e l f . data & STABLE_BORROWING_MASK) | (uint256 (enab l ed ? 1 : 0) « 59) ;
203 }
204
205 /**
206 * @dev gets the stable rate borrowing state of the reserve
207 * @param self the reserve configuration
208 * @return the stable rate borrowing state
209 **/
210 f unc t i on ge tS tab l eRa t eBo r row ingEnab l ed (R e s e r v eCon f i g u r a t i o n .Map storage s e l f)
211 i n t e r n a l
212 view
213 r e tu rn s (bool)
214 {

1A follow-up discussion with the team further shows that the LIQUIDATION_BONUS_MASK misses an F in its mask.
In other words, it should be 0xFFFFFFFF0000FFFFFFFF instead of 0xFFFFFFF0000FFFFFFFF .

27/66 PeckShield Audit Report #: 2020-58

Public

215 re tu rn ((s e l f . data & ~STABLE_BORROWING_MASK) » 59) != 0 ;
216 }

Listing 3.10: ReserveConfiguration . sol

Recommendation Match the mask of each segment with the number of occupied bits (by the
segment).

Status This issue has been confirmed and accordingly fixed by correcting the wrong mask in
the merge request: 63.

3.8 Inaccurate Burn Events in AToken

• ID: PVE-008

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: AToken

• Category: Business Logic [11]

• CWE subcategory: CWE-841 [8]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

In the following, we use the AToken contract as an example. This contract is designed to tokenize
the assets deposited into the lending pool. The tokenized AToken can therefore be minted, transferred,
or burned. While examining the events that reflect the AToken dynamics, we notice the emitted
Burn event (line 111) contains incorrect information. Specifically, the event is defined as event

Burn(address indexed from, address indexed target, uint256 value, uint256 index) with a number
of parameters: the first parameter from encodes the address that performs the redeem/burn operation;
the second parameter target shows the amount to be redeemed, while the last parameter index

indicates the last index of the reserve when the redeem happens. The emitted event contains an
incorrect from information, which should not be msg.sender. Instead, from here should be user, the
first function argument to burn().

93 /**
94 * @dev burns the aTokens and sends the equivalent amount of underlying to the target.
95 * only lending pools can call this function
96 * @param amount the amount being burned

28/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/63

Public

97 **/
98 f unc t i on burn (
99 address use r ,
100 address r e c e i v e rO fUnd e r l y i n g ,
101 uint256 amount ,
102 uint256 i n d e x
103) ex te rna l o v e r r i d e on l yLend i ngPoo l {
104 _burn (use r , amount . r ayD iv (i nd ex)) ;
105
106 // transfers the underlying to the target
107 IERC20 (UNDERLYING_ASSET_ADDRESS) . s a f eT r a n s f e r (r e c e i v e rO fUnd e r l y i n g , amount) ;
108
109 // transfer event to track balances
110 emit Trans fer (use r , address (0) , amount) ;
111 emit Burn (msg . sender , r e c e i v e rO fUnd e r l y i n g , amount , i nd ex) ;
112 }

Listing 3.11: AToken.sol

Recommendation Properly emit the Burn event with accurate information to timely reflect
state changes. This is very helpful for external analytics and reporting tools.

Status The issue has been confirmed and accordingly fixed by this merge request: 107.

3.9 Asset Consistency Between Reserve and AToken

• ID: PVE-009

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: ReserveLogic

• Category: Business Logic [11]

• CWE subcategory: CWE-841 [8]

Description

As mentioned in Section 3.2, LendingPool is a core pool contract in Aave V2. At the heart of
LendingPool is the concept of reserve: every pool holds a reserve that is specific to the supported
crypto-currency, with the total amount in Ethereum defined as total liquidity. A reserve accepts
deposits from lenders with assets actually stored in the asset-specific AToken. Users can borrow these
funds, granted that they lock a greater value as collateral, which backs the borrow position.

Evidently, there is a one-to-one mapping between the supported asset and its AToken. There also
exists one-to-one mapping between the supported asset and the respective reserve. As a result, the
mapping between a reserve and AToken should also be one-to-one. Accordingly, it is helpful to enforce
the consistency so that the reserve is initialized with the corresponding AToken that shares the same
underlying asset.

29/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/107

Public

To elaborate, we show below the initialization routine (initReserve()) of a new reserve. The ini-
tialization routine takes five parameters, i.e., asset, aTokenAddress, stableDebtAddress, variableDebtAddress
, and interestRateStrategyAddress. Naturally, the first parameter asset needs to be consistent with
the underlying asset behind the second parameter aTokenAddress. Note that aTokenAddress has an
internal immutable member UNDERLYING_ASSET_ADDRESS. Therefore, we can enforce the consistency
between asset and UNDERLYING_ASSET_ADDRESS.

803 /**
804 * @dev initializes a reserve
805 * @param asset the address of the reserve
806 * @param aTokenAddress the address of the overlying aToken contract
807 * @param interestRateStrategyAddress the address of the interest rate strategy

contract
808 **/
809 f unc t i on i n i t R e s e r v e (
810 address a s s e t ,
811 address aTokenAddress ,
812 address s t ab l eDeb tAddre s s ,
813 address va r i a b l eDeb tAdd r e s s ,
814 address i n t e r e s t R a t e S t r a t e g yAdd r e s s
815) ex te rna l o v e r r i d e {
816 _on l yLend i ngPoo lCon f i gu r a to r () ;
817 _re s e r v e s [a s s e t] . i n i t (
818 aTokenAddress ,
819 s t ab l eDeb tAddre s s ,
820 va r i a b l eDeb tAdd r e s s ,
821 i n t e r e s t R a t e S t r a t e g yAdd r e s s
822) ;
823 _addReserveToLis t (a s s e t) ;
824 }

Listing 3.12: LendingPool.sol

Recommendation Enforce the asset consistency between the reserve and the asset-corresponding
AToken.

Status The issue has been confirmed and accordingly fixed by this merge request: 82. The fix
involves the LendingPoolConfigurator, where the initReserve() function now fetches the asset from the
AToken and enforces the correctness of the underlying asset and the lending pool address across AToken
, variable debt token and stable debt token. The fix involved a small change to DebtTokenBase to
have a common interface for the POOL and UNDERLYING_ASSET_ADDRESS between ATokens and DebtTokens.

30/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/82

Public

3.10 Inaccurate Calculation of Mints To Treasury

• ID: PVE-010

• Severity: Medium

• Likelihood: High

• Impact: Low

• Target: AToken

• Category: Numeric Errors [12]

• CWE subcategory: CWE-190 [4]

Description

As mentioned in Section 3.6, SafeMath is a widely-used Solidity math library that is designed to support
safe math operations by preventing common overflow or underflow issues when working with uint256

operands. While it indeed blocks common overflow or underflow issues, the lack of float support
in Solidity may introduce another subtle, but troublesome issue: precision loss. In this section, we
examine one issue related to precision loss.

Specifically, Aave V2 implements the WadRayMath library that provides mul and div functions for
wads (decimal numbers with 18 digits precision) and rays (decimals with 27 digits). If an arithmetic
calculation operates on rays, not wads, the higher precision is helpful to reduce potential precision
loss. As an example, we show below the code snippet of rayDiv() that divides two ray numbers, with
the result rounding half up to the nearest ray.

116 /**
117 * @dev divides two ray , rounding half up to the nearest ray
118 * @param a ray
119 * @param b ray
120 * @return the result of a/b, in ray
121 **/
122 f unc t i on r ayD iv (uint256 a , uint256 b) i n t e r n a l pure re tu rn s (uint256) {
123 r equ i r e (b != 0 , E r r o r s .DIVISION_BY_ZERO) ;

125 uint256 ha l fB = b / 2 ;

127 uint256 r e s u l t = a ∗ RAY;

129 r equ i r e (r e s u l t / RAY == a , E r r o r s .MULTIPLICATION_OVERFLOW) ;

131 r e s u l t += ha l fB ;

133 r equ i r e (r e s u l t >= hal fB , E r r o r s .ADDITION_OVERFLOW) ;

135 re tu rn r e s u l t / b ;
136 }

Listing 3.13: WadRayMath.sol

31/66 PeckShield Audit Report #: 2020-58

Public

For reduced precision loss, Aave V2 takes the convention in using rays for the calculation of
interest rates and indexes, and using wads for token balances and amounts. We have accordingly
examined the enforcement of this convention and notice that one routine, i.e., mintToTreasury(),
violates this convention.

To elaborate, we show the mintToTreasury() routine below. To accommodate the ever-changing
indexes in the lending pool, AToken internally keeps the scaled number. Therefore, the minted amount
to the treasury should be calculated as amount.rayDiv(index), not amount.div(index). In other words,
the current implementation (line 134) violates this convention and yields the wrong amount minted
to the treasury. As the decimal difference between wads and rays is 9, the currently minted amount
to the treasury becomes dramatically smaller with only 1∕(10 ∗∗ 9) of the intended amount.

133 f unc t i on mintToTreasury (uint256 amount , uint256 i n d e x) ex te rna l o v e r r i d e
on l yLend ingPoo l {

134 _mint (RESERVE_TREASURY_ADDRESS, amount . d i v (i nd ex)) ;

136 // transfer event to track balances
137 emit Trans fer (address (0) , RESERVE_TREASURY_ADDRESS, amount) ;
138 emit Mint (RESERVE_TREASURY_ADDRESS, amount , i nd e x) ;
139 }

Listing 3.14: AToken.sol

Recommendation Replace the amount.div(index) division in mintToTreasury() with amount.

rayDiv(index).

133 f unc t i on mintToTreasury (uint256 amount , uint256 i n d e x) ex te rna l o v e r r i d e
on l yLend ingPoo l {

134 _mint (RESERVE_TREASURY_ADDRESS, amount . r ayD iv (i nd ex)) ;

136 // transfer event to track balances
137 emit Trans fer (address (0) , RESERVE_TREASURY_ADDRESS, amount) ;
138 emit Mint (RESERVE_TREASURY_ADDRESS, amount , i nd e x) ;
139 }

Listing 3.15: AToken.sol

Status The issue has been confirmed and accordingly fixed by this merge request: 65.

32/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/65

Public

3.11 Premature Updates of updateInterestRates() Before
DebtToken Changes

• ID: PVE-011

• Severity: High

• Likelihood: High

• Impact: Medium

• Target: LendingPoolCollateralManager

• Category: Business Logic [11]

• CWE subcategory: CWE-841 [8]

Description

The LendingPool contract provides a number of core routines for borrowing/lending users to interact
with, including deposit(), withdraw(), borrow(), repay(), flashloan(), and etc. To facilitate the
execution of each core routine, Aave V2 validates the given arguments to these core routines with
corresponding validation routines in ValidationLogic, such as validateDeposit(), validateWithdraw(),
validateBorrow(), validateRepay(), validateFlashloan(), and etc.

More importantly, all the actions performed in each core routine follow a specific sequence:

• Step I: It firstly validates the given arguments as well as current state. If current state cannot
meet the pre-conditions required for the intended action, the transaction will be reverted.

• Step II: It then updates reserve state to reflect the latest borrow/liquidity indexes (up to the
current block height) and further calculates the new amount that will be minted to the treasury.
The updated indexes are necessary to get the reserve ready for the execution of the intended
action.

• Step III: It next “executes” the intended action that may need to update the user accounting
and reserve balance as the action could involve transferring assets into or out of the reserve.
The updates could lead to minting or burning of tokens that are related to lending/borrow-
ing positions of current user. The tokens are represented as ATokens, StableDebtTokens, or
VariableDebtTokens.

• Step IV: Due to possible changes to the reserve from the action, such as resulting in a different
utilization rate from either borrowing or lending, it also needs to accordingly adjust the interest
rates to accurately accrue interests.

• Step V: By following the known best practice of the checks-effects-interactions pattern, it
finally performs the external interactions, if any.

33/66 PeckShield Audit Report #: 2020-58

Public

One of the advanced features implemented in Aave V2 is the tokenization of both lending and
borrowing positions. When a user deposits assets into a specific reserve, the user receives the
corresponding amount of ATokens to represent the liquidity deposited and accrue the interests. When
a user opens or increases a borrow position, the user receives the corresponding amount of DebtTokens
(either StableDebtTokens or VariableDebtTokens depending on the borrow mode) to represent the debt
position and further accrue the debt interests.

The above order sequence needs to be properly maintained. Our analysis shows that in several
routines, the updateInterestRates() (Step IV) is executed prematurally before the updates to the
internal accounting data associated with users (Step III).

To elaborate, we show below the code snippet from liquidationCall() that handles the liquidation
request for a default user. Specifically, updateInterestRates() (line 227) is performed before user
debt updates (lines 234 − 251). This out-of-order execution could lead to higher interest rates being
calculated and accrued at the cost of borrowing users!

224 // update the principal reserve
225 p r i n c i p a l R e s e r v e . upda teS ta t e () ;

227 p r i n c i p a l R e s e r v e . u p d a t e I n t e r e s t R a t e s (
228 p r i n c i p a l ,
229 p r i n c i p a l R e s e r v e . aTokenAddress ,
230 v a r s . actua lAmountToLiqu idate ,
231 0
232) ;

234 i f (v a r s . u s e rVa r i a b l eDeb t >= va r s . ac tua lAmountToL iqu idate) {
235 IVa r i ab l eDebtToken (p r i n c i p a l R e s e r v e . va r i ab l eDeb tTokenAddre s s) . burn (
236 use r ,
237 v a r s . actua lAmountToLiqu idate ,
238 p r i n c i p a l R e s e r v e . v a r i a b l eBo r r ow I nd e x
239) ;
240 } e l s e {
241 IVa r i ab l eDebtToken (p r i n c i p a l R e s e r v e . va r i ab l eDeb tTokenAddre s s) . burn (
242 use r ,
243 v a r s . u s e rVa r i ab l eDeb t ,
244 p r i n c i p a l R e s e r v e . v a r i a b l eBo r r ow I nd e x
245) ;

247 IS tab l eDebtToken (p r i n c i p a l R e s e r v e . s tab l eDebtTokenAddres s) . burn (
248 use r ,
249 v a r s . ac tua lAmountToL iqu idate . sub (v a r s . u s e rVa r i a b l eDeb t)
250) ;
251 }

Listing 3.16: LendingPoolCollateralManager. sol

Recommendation Maintain the right order between updateInterestRates() and debt token
changes. An example revision to the above code snippet is shown below.

34/66 PeckShield Audit Report #: 2020-58

Public

224 // update the principal reserve
225 p r i n c i p a l R e s e r v e . upda teS ta t e () ;

227 i f (v a r s . u s e rVa r i a b l eDeb t >= va r s . ac tua lAmountToL iqu idate) {
228 IVa r i ab l eDebtToken (p r i n c i p a l R e s e r v e . va r i ab l eDeb tTokenAddre s s) . burn (
229 use r ,
230 v a r s . actua lAmountToLiqu idate ,
231 p r i n c i p a l R e s e r v e . v a r i a b l eBo r r ow I nd e x
232) ;
233 } e l s e {
234 IVa r i ab l eDebtToken (p r i n c i p a l R e s e r v e . va r i ab l eDeb tTokenAddre s s) . burn (
235 use r ,
236 v a r s . u s e rVa r i ab l eDeb t ,
237 p r i n c i p a l R e s e r v e . v a r i a b l eBo r r ow I nd e x
238) ;

240 IS tab l eDebtToken (p r i n c i p a l R e s e r v e . s tab l eDebtTokenAddres s) . burn (
241 use r ,
242 v a r s . ac tua lAmountToL iqu idate . sub (v a r s . u s e rVa r i a b l eDeb t)
243) ;
244 }

246 p r i n c i p a l R e s e r v e . u p d a t e I n t e r e s t R a t e s (
247 p r i n c i p a l ,
248 p r i n c i p a l R e s e r v e . aTokenAddress ,
249 v a r s . actua lAmountToLiqu idate ,
250 0
251) ;

Listing 3.17: LendingPoolCollateralManager. sol

Status The issue has been confirmed and accordingly fixed by this merge request: 88.

3.12 Late Updates of updateInterestRates() After AToken
Changes

• ID: PVE-012

• Severity: High

• Likelihood: High

• Impact: Medium

• Target: LendingPoolCollateralManager

• Category: Business Logic [11]

• CWE subcategory: CWE-841 [8]

Description

As mentioned in Section 3.11, the LendingPool contract provides a number of core routines for
borrowing/lending users to access its functionalities. In the same section, we also elaborate an

35/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/88

Public

issue that is introduced due to the premature updates of system-wide interest rates before the debt
positions have been finalized. In this section, we further analyze the interest rate calculation and
report another issue that is caused from the out-of-order execution between the interest rate update
and the AToken changes.

Specifically, when there is any transfer into or out of the reserve from an user, the user’s lending
position, represented by the holding amount of AToken, will be properly updated. In the meantime,
we need to properly maintain the execution order in order to accurately calculate the interest rates
of updated reserves.

To elaborate, we show below the code snippet of the swapLiquidity() routine.

455 f unc t i on swapL i q u i d i t y (
456 address r e c e i v e rAdd r e s s ,
457 address f romAsset ,
458 address toAsse t ,
459 uint256 amountToSwap ,
460 bytes c a l l d a t a params
461) ex te rna l r e tu rn s (uint256 , s t r i n g memory) {
462 Res e r v eLog i c . ReserveData storage f r omRese rve = _re s e r v e s [f romAsse t] ;
463 Res e r v eLog i c . ReserveData storage t oRe s e r v e = _re s e r v e s [t oAs s e t] ;

465 SwapL i qu i d i t yLo ca lVa r s memory v a r s ;

467 (v a r s . e r ro rCode , v a r s . e r ro rMsg) = Va l i d a t i o n L o g i c . v a l i d a t e Sw a pL i q u i d i t y (
468 f romReserve ,
469 toRese rve ,
470 f romAsset ,
471 t oAs s e t
472) ;

474 i f (E r r o r s . C o l l a t e r a lMan a g e r E r r o r s (v a r s . e r r o rCode) != E r r o r s . C o l l a t e r a lMan a g e r E r r o r s
.NO_ERROR) {

475 re tu rn (v a r s . e r ro rCode , v a r s . e r ro rMsg) ;
476 }

478 v a r s . f romReserveAToken = IAToken (f romRese rve . aTokenAddress) ;
479 v a r s . toReserveAToken = IAToken (t oRe s e r v e . aTokenAddress) ;

481 f r omRese rve . upda t eS ta t e () ;
482 t oRe s e r v e . upda t eS ta t e () ;

484 i f (v a r s . f romReserveAToken . ba lanceOf (msg . sender) == amountToSwap) {
485 _use r sCon f i g [msg . sender] . s e t U s i n gA sC o l l a t e r a l (f romRese rve . id , f a l s e) ;
486 }

488 f r omRese rve . u p d a t e I n t e r e s t R a t e s (f romAsset , address (v a r s . f romReserveAToken) , 0 ,
amountToSwap) ;

490 v a r s . f romReserveAToken . burn (
491 msg . sender ,

36/66 PeckShield Audit Report #: 2020-58

Public

492 r e c e i v e rAdd r e s s ,
493 amountToSwap ,
494 f r omRese rve . l i q u i d i t y I n d e x
495) ;
496 // Notifies the receiver to proceed , sending as param the underlying already

transferred
497 ISwapAdapter (r e c e i v e r A d d r e s s) . e x e cu t eOpe r a t i on (
498 f romAsset ,
499 toAsse t ,
500 amountToSwap ,
501 address (t h i s) ,
502 params
503) ;

505 v a r s . amountToReceive = IERC20 (t oAs s e t) . ba lanceOf (r e c e i v e r A d d r e s s) ;
506 i f (v a r s . amountToReceive != 0) {
507 IERC20 (t oAs s e t) . t r a n s f e rF r om (
508 r e c e i v e rAdd r e s s ,
509 address (v a r s . toReserveAToken) ,
510 v a r s . amountToReceive
511) ;

513 i f (v a r s . toReserveAToken . ba lanceOf (msg . sender) == 0) {
514 _use r sCon f i g [msg . sender] . s e t U s i n gA sC o l l a t e r a l (t oRe s e r v e . id , t rue) ;
515 }

517 v a r s . toReserveAToken . mint (msg . sender , v a r s . amountToReceive , t oRe s e r v e .
l i q u i d i t y I n d e x) ;

518 t oRe s e r v e . u p d a t e I n t e r e s t R a t e s (
519 toAsse t ,
520 address (v a r s . toReserveAToken) ,
521 v a r s . amountToReceive ,
522 0
523) ;
524 }

526 . . .
527 }

Listing 3.18: LendingPoolCollateralManager. sol

If we pay attention to toReserve.updateInterestRates() (lines 518 − 523), the interest rates have
been inappropriately updated after toAsset has been transferred into the respective reserve and the
related ATokens have been minted. In other words, the amountToReceive number has been taken
into account twice, leading to the wrong calculation of having a doubled transfer-in amount: 2 *

amountToReceive. As a result, this calculation makes the reserve in having a lower utilization rate at
the cost of lending users with less accrued interests!

Recommendation Maintain the right order between updateInterestRates() and AToken changes.
An example revision to the above code snippet is shown below.

37/66 PeckShield Audit Report #: 2020-58

Public

455 f unc t i on swapL i q u i d i t y (
456 address r e c e i v e rAdd r e s s ,
457 address f romAsset ,
458 address toAsse t ,
459 uint256 amountToSwap ,
460 bytes c a l l d a t a params
461) ex te rna l r e tu rn s (uint256 , s t r i n g memory) {
462 Res e r v eLog i c . ReserveData storage f r omRese rve = _re s e r v e s [f romAsse t] ;
463 Res e r v eLog i c . ReserveData storage t oRe s e r v e = _re s e r v e s [t oAs s e t] ;

465 SwapL i qu i d i t yLo ca lVa r s memory v a r s ;

467 (v a r s . e r ro rCode , v a r s . e r ro rMsg) = Va l i d a t i o n L o g i c . v a l i d a t e Sw a pL i q u i d i t y (
468 f romReserve ,
469 toRese rve ,
470 f romAsset ,
471 t oAs s e t
472) ;

474 i f (E r r o r s . C o l l a t e r a lMan a g e r E r r o r s (v a r s . e r r o rCode) != E r r o r s . C o l l a t e r a lMan a g e r E r r o r s
.NO_ERROR) {

475 re tu rn (v a r s . e r ro rCode , v a r s . e r ro rMsg) ;
476 }

478 v a r s . f romReserveAToken = IAToken (f romRese rve . aTokenAddress) ;
479 v a r s . toReserveAToken = IAToken (t oRe s e r v e . aTokenAddress) ;

481 f r omRese rve . upda t eS ta t e () ;
482 t oRe s e r v e . upda t eS ta t e () ;

484 i f (v a r s . f romReserveAToken . ba lanceOf (msg . sender) == amountToSwap) {
485 _use r sCon f i g [msg . sender] . s e t U s i n gA sC o l l a t e r a l (f romRese rve . id , f a l s e) ;
486 }

488 f r omRese rve . u p d a t e I n t e r e s t R a t e s (f romAsset , address (v a r s . f romReserveAToken) , 0 ,
amountToSwap) ;

490 v a r s . f romReserveAToken . burn (
491 msg . sender ,
492 r e c e i v e rAdd r e s s ,
493 amountToSwap ,
494 f r omRese rve . l i q u i d i t y I n d e x
495) ;
496 // Notifies the receiver to proceed , sending as param the underlying already

transferred
497 ISwapAdapter (r e c e i v e r A d d r e s s) . e x e cu t eOpe r a t i on (
498 f romAsset ,
499 toAsse t ,
500 amountToSwap ,
501 address (t h i s) ,
502 params
503) ;

38/66 PeckShield Audit Report #: 2020-58

Public

505 v a r s . amountToReceive = IERC20 (t oAs s e t) . ba lanceOf (r e c e i v e r A d d r e s s) ;
506 i f (v a r s . amountToReceive != 0) {
507 t oRe s e r v e . u p d a t e I n t e r e s t R a t e s (
508 toAsse t ,
509 address (v a r s . toReserveAToken) ,
510 v a r s . amountToReceive ,
511 0
512) ;
513 IERC20 (t oAs s e t) . t r a n s f e rF r om (
514 r e c e i v e rAdd r e s s ,
515 address (v a r s . toReserveAToken) ,
516 v a r s . amountToReceive
517) ;

519 i f (v a r s . toReserveAToken . ba lanceOf (msg . sender) == 0) {
520 _use r sCon f i g [msg . sender] . s e t U s i n gA sC o l l a t e r a l (t oRe s e r v e . id , t rue) ;
521 }

523 v a r s . toReserveAToken . mint (msg . sender , v a r s . amountToReceive , t oRe s e r v e .
l i q u i d i t y I n d e x) ;

524 }

526 . . .
527 }

Listing 3.19: LendingPoolCollateralManager. sol

Status The issue has been confirmed and accordingly fixed by this merge request: 87. And the
transferFrom() of the currency has been relocated to after the calculation of the interest rates.

3.13 Inconsistency Between Document and Implementation

• ID: PVE-013

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [10]

• CWE subcategory: CWE-1041 [3]

Description

There are a few misleading comments embedded among lines of solidity code, which bring unnecessary
hurdles to understand and/or maintain the software.

A few example comments can be found in line 359 of LendingPool::rebalanceStableBorrowRate(),
line 211 of StableDebtToken::_calculateBalanceIncrease(), and line 301 of LendingPoolCollateralManager
::repayWithCollateral(), Using the rebalanceStableBorrowRate() routine as an example, the preceding

39/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/87

Public

function summary indicates that the stable interest rate of a user will not be rebalanced if current
liquidity rate is larger than the user stable rate. However, the enforcement (lines 394−399) indicates
two other specific requirements in usageRatio and currentLiquidityRate, but not related to the user
stable rate.

358 /**
359 * @dev rebalances the stable interest rate of a user if current liquidity rate > user

stable rate.
360 * this is regulated by Aave to ensure that the protocol is not abused , and the user

is paying a fair
361 * rate. Anyone can call this function.
362 * @param asset the address of the reserve
363 * @param user the address of the user to be rebalanced
364 **/
365 f unc t i on r e ba l anc eS tab l eBo r r owRat e (address a s s e t , address u s e r) ex te rna l o v e r r i d e {
366
367 _whenNotPaused () ;
368
369 Res e r v eLog i c . ReserveData storage r e s e r v e = _re s e r v e s [a s s e t] ;
370
371 IERC20 stab leDebtToken = IERC20 (r e s e r v e . s tab l eDebtTokenAddre s s) ;
372 IERC20 va r i ab l eDebtToken = IERC20 (r e s e r v e . va r i ab l eDebtTokenAddre s s) ;
373 address aTokenAddress = r e s e r v e . aTokenAddress ;
374
375 uint256 s t ab l eBo r r owBa l ance = IERC20 (s tab leDebtToken) . ba lanceOf (u s e r) ;
376
377 //if the utilization rate is below 95%, no rebalances are needed
378 uint256 t o t a lBo r r ows = stab leDebtToken . t o t a l S u p p l y () . add (va r i ab l eDebtToken .

t o t a l S u p p l y ()) . wadToRay () ;
379 uint256 a v a i l a b l e L i q u i d i t y = IERC20 (a s s e t) . ba lanceOf (aTokenAddress) . wadToRay () ;
380 uint256 usageRat i o = to t a lBo r r ows == 0
381 ? 0
382 : t o t a lBo r r ows . r ayD iv (a v a i l a b l e L i q u i d i t y . add (t o t a lBo r r ows)) ;
383
384 //if the liquidity rate is below REBALANCE_UP_THRESHOLD of the max variable APR at

95% usage ,
385 //then we allow rebalancing of the stable rate positions.
386
387 uint256 c u r r e n t L i q u i d i t y R a t e = r e s e r v e . c u r r e n t L i q u i d i t y R a t e ;
388 uint256 maxVar iab leBorrowRate = I R e s e r v e I n t e r e s t R a t e S t r a t e g y (
389 r e s e r v e
390 . i n t e r e s t R a t e S t r a t e g yAdd r e s s
391)
392 . ge tMaxVar iab leBor rowRate () ;
393
394 r equ i r e (
395 usageRat i o >= REBALANCE_UP_USAGE_RATIO_THRESHOLD &&
396 c u r r e n t L i q u i d i t y R a t e <=
397 maxVar iab leBorrowRate . pe rcentMul (REBALANCE_UP_LIQUIDITY_RATE_THRESHOLD) ,
398 E r r o r s . INTEREST_RATE_REBALANCE_CONDITIONS_NOT_MET
399) ;
400

40/66 PeckShield Audit Report #: 2020-58

Public

401 r e s e r v e . upda teS ta t e () ;
402
403 IS tab l eDebtToken (address (s tab leDebtToken)) . burn (use r , s t ab l eBo r r owBa l ance) ;
404 IS tab l eDebtToken (address (s tab leDebtToken)) . mint (use r , s t ab l eBor rowBa lance , r e s e r v e .

cu r r en tS t ab l eBo r r owRa t e) ;
405
406 r e s e r v e . u p d a t e I n t e r e s t R a t e s (a s s e t , aTokenAddress , 0 , 0) ;
407
408 emit Reba lanceStab l eBor rowRate (a s s e t , u s e r) ;
409
410 }

Listing 3.20: LendingPool.sol

Recommendation Ensure the consistency between documents (including embedded comments)
and implementation.

Status The issue has been confirmed and accordingly fixed by this merge request: 87.

3.14 Removal of Unused Code

• ID: PVE-014

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: GenericLogic

• Category: Coding Practices [10]

• CWE subcategory: CWE-563 [6]

Description

Aave V2 makes good use of a number of reference contracts, such as ERC20, SafeERC20, SafeMath,
VersionedInitializable, and Ownable, to facilitate its code implementation and organization. For ex-
ample, the LendingPool smart contract has so far imported at least five reference contracts. However,
we observe the inclusion of certain unused code or the presence of unnecessary redundancies that
can be safely removed.

For example, if we examine closely the GenericLogic contract, there is a defined constant that is
not used anymore: HEALTH_FACTOR_CRITICAL_THRESHOLD, This constant is apparently left behind from a
deprecated feature.

19 l i b r a r y Gene r i c L og i c {
20 us ing Res e r v eLog i c f o r Res e r v eLog i c . ReserveData ;
21 us ing SafeMath f o r u int256 ;
22 us ing WadRayMath f o r u int256 ;
23 us ing PercentageMath f o r u int256 ;
24 us ing Re s e r v eCon f i g u r a t i o n f o r Re s e r v eCon f i g u r a t i o n .Map ;
25 us ing Us e rCon f i g u r a t i o n f o r Us e rCon f i g u r a t i o n .Map ;

41/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/87

Public

26
27 uint256 pub l i c constant HEALTH_FACTOR_LIQUIDATION_THRESHOLD = 1 ether ;
28 uint256 pub l i c constant HEALTH_FACTOR_CRITICAL_THRESHOLD = 0.98 ether ;
29 . . .
30 }

Listing 3.21: GenericLogic . sol

In addition, there are a number of unused constant variables defined in LendingPoolAddressesProvider

and these unused constants can be removed as well. Examples include WALLET_BALANCE_PROVIDER,
LENDING_POOL_CORE, LENDING_POOL_FLASHLOAN_PROVIDER, and DATA_PROVIDER.

Recommendation Consider the removal of the unused code and the unused constants.

Status The issue has been confirmed and accordingly fixed by this merge request: 87.

3.15 Possible Fund Loss From (Permissive) Smart Wallets With
Allowances to LendingPool

• ID: PVE-015

• Severity: Critical

• Likelihood: High

• Impact: High

• Target: LendingPoolCollateralManager,

LendingPool

• Category: Business Logic [11]

• CWE subcategory: CWE-841 [8]

Description

Among all core functionalities provided in LendingPool, flashloan is a disruptive one that allows users
to borrow from the reserves within a single transaction, as long as the user returns the borrowed
amount plus additional premium. In this section, we report an issue related to the flashloan feature.
The flashloan feature improves earlier versions by allowing the borrowed flashloans to be used in
Aave V2 as well (with proper workarounds against potential reentrancy risks). Moreover, it seamlessly
integrates the borrow functionality to avoid returning back the flashloan within the same transaction.

To elaborate, we show below the code snippet of flashLoan() behind the feature.

547 f unc t i on f l a s hLoan (
548 address r e c e i v e rAdd r e s s ,
549 address a s s e t ,
550 uint256 amount ,
551 uint256 mode ,
552 bytes c a l l d a t a params ,
553 uint16 r e f e r r a l C o d e
554) ex te rna l o v e r r i d e {
555 _whenNotPaused () ;
556 Res e r v eLog i c . ReserveData storage r e s e r v e = _re s e r v e s [a s s e t] ;

42/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/87

Public

557 F la shLoanLoca lVa r s memory v a r s ;
558
559 v a r s . aTokenAddress = r e s e r v e . aTokenAddress ;
560
561 v a r s . premium = amount . mul (FLASHLOAN_PREMIUM_TOTAL) . d i v (10000) ;
562
563 Va l i d a t i o n L o g i c . v a l i d a t e F l a s h l o a n (mode , v a r s . premium) ;
564
565 Res e r v eLog i c . I n t e r e s tRa teMode debtMode = Res e r v eLog i c . I n t e r e s tRa teMode (mode) ;
566
567 v a r s . r e c e i v e r = IF l a s hLo anRe c e i v e r (r e c e i v e r A d d r e s s) ;
568
569 // transfer funds to the receiver
570 IAToken (v a r s . aTokenAddress) . t r a n s f e rUnd e r l y i n gTo (r e c e i v e rAdd r e s s , amount) ;
571
572 // execute action of the receiver
573 v a r s . r e c e i v e r . e x e cu t eOpe r a t i on (a s s e t , amount , v a r s . premium , params) ;
574
575 v a r s . amountPlusPremium = amount . add (v a r s . premium) ;
576
577 i f (debtMode == Res e r v eLog i c . I n t e r e s tRa teMode .NONE) {
578 IERC20 (a s s e t) . t r a n s f e rF r om (r e c e i v e rAdd r e s s , v a r s . aTokenAddress , v a r s .

amountPlusPremium) ;
579
580 r e s e r v e . upda teS ta t e () ;
581 r e s e r v e . c umu l a t eToL i qu i d i t y I n d e x (IERC20 (v a r s . aTokenAddress) . t o t a l S u p p l y () , v a r s .

premium) ;
582 r e s e r v e . u p d a t e I n t e r e s t R a t e s (a s s e t , v a r s . aTokenAddress , v a r s . premium , 0) ;
583
584 emit FlashLoan (r e c e i v e rAdd r e s s , a s s e t , amount , v a r s . premium , r e f e r r a l C o d e) ;
585 } e l s e {
586 // If the transfer didn’t succeed , the receiver either didn’t return the funds , or

didn’t approve the transfer.
587 _executeBorrow (
588 ExecuteBorrowParams (
589 a s s e t ,
590 msg . sender ,
591 msg . sender ,
592 v a r s . amountPlusPremium ,
593 mode ,
594 v a r s . aTokenAddress ,
595 r e f e r r a l C o d e ,
596 f a l s e
597)
598) ;
599 }
600 }

Listing 3.22: LendingPool.sol

This particular routine implements the flashloan feature in a straightforward manner: It firstly
transfers the funds to the specified receiver, then invokes the designated operation (executeOperation

43/66 PeckShield Audit Report #: 2020-58

Public

- line 573), next transfers back the funds from the receiver or creates an equivalent borrow.
However, our analysis shows that the above logic may be abused to cause fund loss of an

innocent user if the user previously specified certain allowances to LendingPool. Specifically, if a
flashloan is launched by specifying the innocent user an the receiverAddress argument, the flashLoan

()) execution follows the logic by firstly transferring the loan amount to receiverAddress, invoking
executeOperation() on the receiver, and then transferring the amountPlusPremium (no larger than the
allowed spending amount) from the receiver back to the pool. Note that this flashloan is not initiated
by the receiverAddress, who unfortunately pays the premium associated with the flashloan.

The same issue is also applicable to two other routines, i.e., swapLiquidity() and repayWithCollateral

(). Note the exploitation can be used to directly steal the funds of innocent users for the attacker’s
benefits. In the meantime, we need to mention that the executeOperation() call will be invoked on
the given receiverAddress. The compiler will place a sanity check in ensuring the receiverAddress is
indeed a contract, hence restricting the attack vector only applicable to contract-based smart wallets.
However, current smart wallets may have a fallback routine that could allow the executeOperation()

call to proceed without being reverted.2

Recommendation Revisit the design of affected routines in possibly avoiding initiating the
transferFrom() call from the lending pool. Moreover, the revisited design may validate the executeOperation
() call so that it is required to successfully transfer back the expected assets, if any.

Status The issue has been confirmed and accordingly fixed by this merge request: 86. Note
that due to this issue, both swapLiquidity() and repayWithCollateral functions have been removed.

3.16 Improved Business Logic in validateWithdraw()

• ID: PVE-016

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: ValidationLogic

• Category: Business Logic [11]

• CWE subcategory: CWE-841 [8]

Description

Aave V2 centralizes the validation logic in ValidationLogic contract to streamline the process of
a variety of core functionalities in LendingPool. Specifically, to facilitate the execution of each
core routine (e.g., deposit(), withdraw(), borrow(), repay(), and flashloan()), corresponding valida-
tion routines have been provided, including ValidationLogic, validateDeposit(), validateWithdraw(),
validateBorrow(), validateRepay(), validateFlashloan().

2An example is those smart wallets in InstaDApp(), a popular portal that simplifies the needs for DeFi users.

44/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/86

Public

While analyzing the validation logic of validateWithdraw(), we notice an issue that validates the
borrow amount in the current balance, instead of the borrow amount.

45 /**
46 * @dev validates a withdraw action.
47 * @param reserveAddress the address of the reserve
48 * @param amount the amount to be withdrawn
49 * @param userBalance the balance of the user
50 */
51 f unc t i on va l i d a t eWi thd r aw (
52 address r e s e r v eAdd r e s s ,
53 uint256 amount ,
54 uint256 use rBa lance ,
55 mapping (address => Res e r v eLog i c . ReserveData) storage r e s e r v e sDa ta ,
56 Us e rCon f i g u r a t i o n .Map s torage us e rCon f i g ,
57 address [] c a l l d a t a r e s e r v e s ,
58 address o r a c l e
59) ex te rna l view {
60 r equ i r e (amount > 0 , E r r o r s .AMOUNT_NOT_GREATER_THAN_0) ;
61
62 r equ i r e (amount <= use rBa lance , E r r o r s .NOT_ENOUGH_AVAILABLE_USER_BALANCE) ;
63
64 r equ i r e (
65 Gene r i c L og i c . ba l anceDec r ea s eA l l owed (
66 r e s e r v eAdd r e s s ,
67 msg . sender ,
68 use rBa lance ,
69 r e s e r v e sDa ta ,
70 us e rCon f i g ,
71 r e s e r v e s ,
72 o r a c l e
73) ,
74 E r r o r s .TRANSFER_NOT_ALLOWED
75) ;
76 }

Listing 3.23: ValidationLogic . sol

To elaborate, we show above the code snippet of validateWithdraw(). This routine ensures the
borrow amount falls in an appropriate range, i.e., (0, userBalance], and then delegates the validation
to GenericLogic.balanceDecreaseAllowed(). However, the delegated call is forwarded with userBalance,
not the actual borrow amount to validate whether this specific borrow amount is allowed.

Recommendation Revise the validateWithdraw() logic to properly validate using the actual
borrow amount, not current balance.

Status The issue has been confirmed and accordingly fixed by this merge request: 69.

45/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/69

Public

3.17 Improved Event Generation With Indexed Assets

• ID: PVE-017

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: LendingPoolConfigurator

• Category: Time and State [9]

• CWE subcategory: CWE-362 [5]

Description

Meaningful events are an important part in smart contract design as they can not only greatly expose
the runtime dynamics of smart contracts, but also allow for better understanding about their behavior
and facilitate off-chain analytics. As mentioned in Section 3.8, events can be emitted in a number
of scenarios. One particular case is when system-wide parameters or settings are being changed.

We have examined the support of system-wide parameters in Aave V2 and notice that configuration-
related getter/setter routines are mainly implemented in LendingPoolConfigurator. In the following,
we list a few representative events that have been defined in Aave V2.

45 /**
46 * @dev emitted when borrowing is enabled on a reserve
47 * @param asset the address of the reserve
48 * @param stableRateEnabled true if stable rate borrowing is enabled , false otherwise
49 **/
50 event BorrowingEnab ledOnReserve (address a s s e t , bool s t ab l eRa t eEnab l e d) ;
51
52 /**
53 * @dev emitted when borrowing is disabled on a reserve
54 * @param asset the address of the reserve
55 **/
56 event Bor row ingDi sab l edOnRese rve (address indexed a s s e t) ;

Listing 3.24: LendingPoolConfigurator. sol

It comes to our attention that the event BorrowingEnabledOnReserve has not indexed the asset
information. Note that each emitted event is represented as a topic that usually consists of the
signature (from a keccak256 hash) of the event name and the types (uint256, string, etc.) of its
parameters. Each indexed type will be treated like an additional topic. If an argument is not indexed,
which means it will be attached as data (instead of a separate topic). Considering that the asset is
typically queried, it is typically treated as a topic, hence the need of being indexed.

There are a few other events that also do not index the asset information, including ReserveBaseLtvChanged

, ReserveFactorChanged, ReserveLiquidationThresholdChanged, ReserveLiquidationBonusChanged,
ReserveDecimalsChanged, ReserveInterestRateStrategyChanged, ATokenUpgraded, StableDebtTokenUpgraded
, and VariableDebtTokenUpgraded.

46/66 PeckShield Audit Report #: 2020-58

Public

Recommendation Revise the above events by properly indexing the emitted asset information.

Status The issue has been confirmed and accordingly fixed by this merge request: 112.

3.18 Performance Optimization in _updateIndexes()

• ID: PVE-018

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ReserveLogic

• Category: Coding Practices [10]

• CWE subcategory: CWE-1041 [3]

Description

In Aave V2, the borrow/liquidity indexes play a critical role in calculating the accrued interests for
both lenders and borrows. There is always a need to keep them updated with the current block
height. Naturally, the related helper routine updateIndexes() is in the execution path of every single
core functionality in LendingPool and always needs to be executed (Step II in Section 3.11) before
any protocol-wide state can be changed. Therefore, we need to pay extra attention to this helper
routine and optimize its execution.

Our analysis shows that this helper routine can be better optimized by reducing at least one
internal transaction. To elaborate, we show below the code snippet of updateState().

145 /**
146 * @dev Updates the liquidity cumulative index Ci and variable borrow cumulative index

Bvc. Refer to the whitepaper for
147 * a formal specification.
148 * @param reserve the reserve object
149 **/
150 f unc t i on upda teS ta t e (ReserveData s torage r e s e r v e) ex te rna l {
151 address va r i ab l eDebtToken = r e s e r v e . va r i ab l eDeb tTokenAddre s s ;
152 uint256 p r e v i o u sVa r i a b l eBo r r ow I n d e x = r e s e r v e . v a r i a b l eBo r r ow I n d e x ;
153 uint256 p r e v i o u s L i q u i d i t y I n d e x = r e s e r v e . l i q u i d i t y I n d e x ;
154
155 (uint256 newL i qu i d i t y I n d e x , uint256 newVar i ab l eBor row Index) = _update Indexes (
156 r e s e r v e ,
157 va r i ab l eDebtToken ,
158 p r e v i o u s L i q u i d i t y I n d e x ,
159 p r e v i o u sVa r i a b l eBo r r ow I n d e x
160) ;
161
162 _mintToTreasury (
163 r e s e r v e ,
164 va r i ab l eDebtToken ,
165 p r e v i o u sVa r i a b l eBo r r ow I nd e x ,
166 newL i qu i d i t y I n d e x ,

47/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/112

Public

167 newVar i ab l eBor row Index
168) ;
169 }

Listing 3.25: ReserveLogic. sol

The routine has two main functionalities: the first one delegates the call to its internal routine
_updateIndexes() for actual index updates while the second one calculates the new amount minted
to the treasury (Section 3.20). The internal routine properly calculates currentLiquidityRate and
cumulatedLiquidityInterest for the liquidityIndex update (line 390). In addition, it evaluates current
cumulatedVariableBorrowInterest for the variableBorrowIndex update (line 401).

361 /**
362 * @dev updates the reserve indexes and the timestamp of the update
363 * @param reserve the reserve reserve to be updated
364 * @param variableDebtToken the debt token address
365 * @param liquidityIndex the last stored liquidity index
366 * @param variableBorrowIndex the last stored variable borrow index
367 **/
368 f unc t i on _update Indexes (
369 ReserveData storage r e s e r v e ,
370 address va r i ab l eDebtToken ,
371 uint256 l i q u i d i t y I n d e x ,
372 uint256 v a r i a b l eBo r r ow I nd e x
373) i n t e r n a l r e tu rn s (uint256 , uint256) {
374 uint40 timestamp = r e s e r v e . lastUpdateTimestamp ;
375
376 uint256 c u r r e n t L i q u i d i t y R a t e = r e s e r v e . c u r r e n t L i q u i d i t y R a t e ;
377
378 uint256 n ewL i q u i d i t y I n d e x = l i q u i d i t y I n d e x ;
379 uint256 newVar i ab l eBor row Index = va r i a b l eBo r r ow I nd e x ;
380
381 //only cumulating if there is any income being produced
382 i f (c u r r e n t L i q u i d i t y R a t e > 0) {
383 uint256 c umu l a t e d L i q u i d i t y I n t e r e s t = MathUt i l s . c a l c u l a t e L i n e a r I n t e r e s t (
384 c u r r e n t L i q u i d i t y R a t e ,
385 timestamp
386) ;
387 n ewL i q u i d i t y I n d e x = c umu l a t e d L i q u i d i t y I n t e r e s t . rayMul (l i q u i d i t y I n d e x) ;
388 r equ i r e (n ewL i q u i d i t y I n d e x < (1 << 128) , E r r o r s . LIQUIDITY_INDEX_OVERFLOW) ;
389
390 r e s e r v e . l i q u i d i t y I n d e x = uint128 (n ewL i q u i d i t y I n d e x) ;
391
392 //as the liquidity rate might come only from stable rate loans , we need to ensure
393 //that there is actual variable debt before accumulating
394 i f (IERC20 (va r i ab l eDebtToken) . t o t a l S u p p l y () > 0) {
395 uint256 c umu l a t e dVa r i a b l eBo r r ow I n t e r e s t = MathUt i l s . c a l c u l a t eCompounded I n t e r e s t (
396 r e s e r v e . cu r r en tVa r i ab l eBo r r owRat e ,
397 timestamp
398) ;
399 newVar i ab l eBor row Index = cumu l a t e dVa r i a b l eBo r r ow I n t e r e s t . rayMul (

v a r i a b l eBo r r ow I nd e x) ;

48/66 PeckShield Audit Report #: 2020-58

Public

400 r equ i r e (newVar i ab l eBor row Index < (1 << 128) , E r r o r s .
VARIABLE_BORROW_INDEX_OVERFLOW) ;

401 r e s e r v e . v a r i a b l eBo r r ow I nd e x = uint128 (newVar i ab l eBor row Index) ;
402 }
403 }
404
405 //solium -disable -next -line
406 r e s e r v e . lastUpdateTimestamp = uint40 (block . timestamp) ;
407 re tu rn (n ewL i qu i d i t y I n d e x , newVar i ab l eBor row Index) ;
408 }
409 }

Listing 3.26: ReserveLogic. sol

The evaluation of newVariableBorrowIndex (line 399) only occurs when there is a non-zero total
supply of the related variableDebtToken (lines 394−402). The sanity check on IERC20(variableDebtToken

).totalSupply()> 0 (line 394) can be simplified as IERC20(variableDebtToken).scaledTotalSupply()> 0.
This simplification saves the extra call to the lending pool for getReserveNormalizedVariableDebt(

UNDERLYING_ASSET) (line 98 in VariableDebtToken).

93 /**
94 * @dev Returns the total supply of the variable debt token. Represents the total debt

accrued by the users
95 * @return the total supply
96 **/
97 f unc t i on t o t a l S u p p l y () pub l i c v i r t u a l o v e r r i d e view re tu rn s (uint256) {
98 re tu rn super . t o t a l S u p p l y () . rayMul (POOL. g e tRe s e r v eNo rma l i z e dVa r i a b l eDeb t (

UNDERLYING_ASSET)) ;
99 }

Listing 3.27: VariableDebtToken.sol

Recommendation Optimize the above _updateIndexes() logic by avoiding an unnecessary extra
call (as an internal transaction) with the benefit of reduced gas cost.

Status The issue has been confirmed and accordingly fixed by this merge request: 77.

49/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/77

Public

3.19 Inconsistent Handling of healthFactor Corner Cases

• ID: PVE-019

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: GenericLogic, ValidationLogic

• Category: Business Logic [11]

• CWE subcategory: CWE-837 [7]

Description

The borrowing and lending operations in Aave V2 require timely and accurate accounting of users’
lending and debt positions. An important metric is the so-called healthFactor that measures the
safety of a user’s debt position. Note that a normal debt position needs to have its healthFactor no
larger than the configured risk parameter — HEALTH_FACTOR_ABOVE_THRESHOLD.

393 f unc t i on v a l i d a t eR e p a yW i t hCo l l a t e r a l (
394 Res e r v eLog i c . ReserveData storage c o l l a t e r a l R e s e r v e ,
395 Res e r v eLog i c . ReserveData storage p r i n c i p a l R e s e r v e ,
396 Us e rCon f i g u r a t i o n .Map storage us e rCon f i g ,
397 address use r ,
398 uint256 u s e rHea l t hFac to r ,
399 uint256 use rS tab l eDebt ,
400 uint256 u s e rVa r i a b l eDeb t
401) i n t e r n a l view re tu rn s (uint256 , s t r i n g memory) {
402 i f (
403 ! c o l l a t e r a l R e s e r v e . c o n f i g u r a t i o n . g e tA c t i v e () || ! p r i n c i p a l R e s e r v e . c o n f i g u r a t i o n .

g e tA c t i v e ()
404) {
405 re tu rn (uint256 (E r r o r s . C o l l a t e r a lMan a g e r E r r o r s .NO_ACTIVE_RESERVE) , E r r o r s .

NO_ACTIVE_RESERVE) ;
406 }
407
408 i f (
409 msg . sender != u s e r && us e rHea l t hFa c t o r >= Gene r i c Log i c .

HEALTH_FACTOR_LIQUIDATION_THRESHOLD
410) {
411 re tu rn (
412 uint256 (E r r o r s . C o l l a t e r a lMan a g e r E r r o r s .HEALTH_FACTOR_ABOVE_THRESHOLD) ,
413 E r r o r s .HEALTH_FACTOR_NOT_BELOW_THRESHOLD
414) ;
415 }
416 . . .
417 }

Listing 3.28: ValidationLogic . sol

During the analysis of the healthFactor enforcement through the entire protocol, we notice
the discrepancy in the handling of a specific corner case when current healthFactor is equal to

50/66 PeckShield Audit Report #: 2020-58

Public

HEALTH_FACTOR_ABOVE_THRESHOLD. As an example, the validateRepayWithCollateral() routine considers
that the equal case is healthy while the balanceDecreaseAllowed() routine considers that the equal
case is unhealthy.

56 f unc t i on ba l anceDec r ea s eA l l owed (
57 address a s s e t ,
58 address use r ,
59 uint256 amount ,
60 mapping (address => Res e r v eLog i c . ReserveData) storage r e s e r v e sDa ta ,
61 Us e rCon f i g u r a t i o n .Map c a l l d a t a u s e rCon f i g ,
62 address [] c a l l d a t a r e s e r v e s ,
63 address o r a c l e
64) ex te rna l view re tu rn s (bool) {
65 i f (
66 ! u s e rCon f i g . i sBor row ingAny ()
67 ! u s e rCon f i g . i s U s i n g A s C o l l a t e r a l (r e s e r v e sDa t a [a s s e t] . i d)
68) {
69 re tu rn t rue ;
70 }
71
72 ba l an c eDec r e a s eA l l owedLoca lVa r s memory v a r s ;
73
74 (v a r s . l t v , , , v a r s . d e c ima l s) = r e s e r v e sDa t a [a s s e t] . c o n f i g u r a t i o n . getParams () ;
75
76 i f (v a r s . l t v == 0) {
77 re tu rn t rue ; //if reserve is not used as collateral , no reasons to block the

transfer
78 }
79
80 (
81 v a r s . c o l l a t e r a lBa l anc eETH ,
82 v a r s . borrowBalanceETH ,
83 ,
84 v a r s . c u r r e n t L i q u i d a t i o nTh r e s h o l d ,
85
86) = ca l cu l a t eUse rAccoun tDa ta (use r , r e s e r v e sDa ta , u s e rCon f i g , r e s e r v e s , o r a c l e) ;
87
88 i f (v a r s . borrowBalanceETH == 0) {
89 re tu rn t rue ; //no borrows - no reasons to block the transfer
90 }
91
92 v a r s . amountToDecreaseETH = IP r i c eO r a c l e G e t t e r (o r a c l e) . g e tA s s e tP r i c e (a s s e t) . mul (

amount) . d i v (
93 10∗∗ v a r s . d e c ima l s
94) ;
95
96 v a r s . c o l l a t e r a l B a l a n c e f t e r D e c r e a s e = va r s . c o l l a t e r a lBa l a n c eETH . sub (v a r s .

amountToDecreaseETH) ;
97
98 //if there is a borrow , there can’t be 0 collateral
99 i f (v a r s . c o l l a t e r a l B a l a n c e f t e r D e c r e a s e == 0) {
100 re tu rn f a l s e ;

51/66 PeckShield Audit Report #: 2020-58

Public

101 }
102
103 v a r s . l i q u i d a t i o nTh r e s h o l dA f t e rD e c r e a s e = va r s
104 . c o l l a t e r a lBa l a n c eETH
105 . mul (v a r s . c u r r e n t L i q u i d a t i o nTh r e s h o l d)
106 . sub (v a r s . amountToDecreaseETH . mul (v a r s . r e s e r v e L i q u i d a t i o nTh r e s h o l d))
107 . d i v (v a r s . c o l l a t e r a l B a l a n c e f t e r D e c r e a s e) ;
108
109 uint256 h e a l t hF a c t o rA f t e rD e c r e a s e = ca l c u l a t eHea l t hFa c t o rF r omBa l an c e s (
110 v a r s . c o l l a t e r a l B a l a n c e f t e r D e c r e a s e ,
111 v a r s . borrowBalanceETH ,
112 v a r s . l i q u i d a t i o nTh r e s h o l dA f t e rD e c r e a s e
113) ;
114
115 re tu rn h e a l t hF a c t o rA f t e rD e c r e a s e > Gene r i c Log i c .HEALTH_FACTOR_LIQUIDATION_THRESHOLD;
116 }

Listing 3.29: GenericLogic . sol

Recommendation Make a consistent enforcement of the healthFactor metric.

Status The issue has been confirmed and accordingly fixed by this merge request: 98.

3.20 Inaccurate previousStableDebt Calculation in
_mintToTreasury()

• ID: PVE-020

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: ReserveLogic

• Category: Business Logic [11]

• CWE subcategory: CWE-837 [7]

Description

As mentioned in Section 3.18, the borrow/liquidity indexes play a critical role in calculating the ac-
crued interests for both lenders and borrows. In the same section, we discuss the related updateIndexes

() routine with two main functionalities: the first one delegates the call to its internal routine
_updateIndexes() for actual index updates while the second one calculates the new amount minted
to the treasury (via _mintToTreasury()).

The new amount to the treasury is a mechanism to contribute part of the repaid interests to the
reserve treasury. The amount depends on two numbers: the first one is the repaid interests and the
second one is the risk parameter, i.e., reserveFactor.

52/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/98

Public

During our analysis, we notice that the way to calculate the amount of repaid interests does not
take into account the interests collected from stable debts. To elaborate, we show below the code
snippet of the _mintToTreasury() routine that is responsible for the calculation.

309 f unc t i on _mintToTreasury (
310 ReserveData storage r e s e r v e ,
311 address va r i ab l eDebtToken ,
312 uint256 p r e v i o u sVa r i a b l eBo r r ow I nd e x ,
313 uint256 newL i qu i d i t y I n d e x ,
314 uint256 newVar i ab l eBor row Index
315) i n t e r n a l {
316 MintToTreasuryLoca lVar s memory v a r s ;
317
318 v a r s . r e s e r v e F a c t o r = r e s e r v e . c o n f i g u r a t i o n . g e tRe s e r v eFa c t o r () ;
319
320 i f (v a r s . r e s e r v e F a c t o r == 0) {
321 re tu rn ;
322 }
323
324 // fetching the last scaled total variable debt
325 v a r s . s c a l e dVa r i a b l eDeb t = IVar i ab l eDebtToken (va r i ab l eDebtToken) . s c a l e dTo t a l S upp l y () ;
326
327 // fetching the principal , total stable debt and the avg stable rate
328 (
329 v a r s . p r i n c i p a l S t a b l eD e b t ,
330 v a r s . c u r r en tS t ab l eDeb t ,
331 v a r s . avgStab l eRate ,
332 v a r s . s tab leSupp lyUpdatedTimestamp
333) = IStab leDebtToken (r e s e r v e . s tab l eDebtTokenAddre s s) . getSupp lyData () ;
334
335 // calculate the last principal variable debt
336 v a r s . p r e v i o u sVa r i a b l eDeb t = va r s . s c a l e dVa r i a b l eDeb t . rayMul (

p r e v i o u sVa r i a b l eBo r r ow I n d e x) ;
337
338 // calculate the new total supply after accumulation of the index
339 v a r s . c u r r e n tVa r i a b l eDeb t = va r s . s c a l e dVa r i a b l eDeb t . rayMul (newVar i ab l eBor row Index) ;
340
341 // calculate the stable debt until the last timestamp update
342 v a r s . c umu l a t e d S t a b l e I n t e r e s t = MathUt i l s . c a l c u l a t eCompounded I n t e r e s t (
343 v a r s . avgStab l eRate ,
344 v a r s . s tab leSupp lyUpdatedTimestamp
345) ;
346
347 v a r s . p r e v i o u sS t ab l eDeb t = va r s . p r i n c i p a l S t a b l eD e b t . rayMul (v a r s .

c umu l a t e d S t a b l e I n t e r e s t) ;
348
349 //debt accrued is the sum of the current debt minus the sum of the debt at the last

update
350 v a r s . t o t a lDeb tAcc rued = va r s
351 . c u r r e n tVa r i a b l eDeb t
352 . add (v a r s . c u r r e n tS t ab l eDeb t)
353 . sub (v a r s . p r e v i o u sVa r i a b l eDeb t)

53/66 PeckShield Audit Report #: 2020-58

Public

354 . sub (v a r s . p r e v i o u sS t ab l eDeb t) ;
355
356 v a r s . amountToMint = va r s . t o t a lDeb tAcc rued . pe rcentMul (v a r s . r e s e r v e F a c t o r) ;
357
358 IAToken (r e s e r v e . aTokenAddress) . mintToTreasury (v a r s . amountToMint , n ewL i q u i d i t y I n d e x) ;
359 }

Listing 3.30: ReserveLogic. sol

The interests from stable debts can be derived by currentVariableDeb - previousStableDebt. The
currentVariableDeb number is accurately obtained from the getSupplyData() call of the respective
stable debt token. However, the previousStableDebt number is re-computed from the compounded
interests based on the average stable rate and the last update timestamp of updated stable supply
(lines 342 − 347). The re-computed compounded previousStableDebt in essence becomes the same
as currentStableDebt, which zeros out the stable debt-related interests.

Recommendation Revise the calculation of stable debt interests to ensure the correct amount
minted to the treasury.

Status The issue has been confirmed and accordingly fixed by this merge request: 99.

3.21 Flashloan-Lowered StableBorrowRate For Mode-Switching
Users

• ID: PVE-021

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: LendingPool

• Category: Business Logic [11]

• CWE subcategory: CWE-837 [7]

Description

Another unique feature implemented in Aave V2 is the support of both variable and stable borrow
rates. The variable borrow rate follows closely the market dynamics and can be changed on each
user interaction (either borrow, deposit, withdraw, repayment or liquidation). The stable borrow
rate instead will be unaffected by these actions. However, implementing a fixed stable borrow rate
model on top of a dynamic reserve pool is complicated and the protocol provides the rate-rebalancing
support to work around dynamic changes in market conditions or increased cost of money within the
pool.

In the following, we show the code snippet of swapBorrowRateMode() which allows users to swap
between stable and variable borrow rate modes. It follows the same sequence of convention by firstly

54/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/99

Public

validating the inputs (Step I), secondly updating relevant reserve states (Step II), then switching
the requested borrow rates (Step III), next calculating the latest interest rates (Step IV), and finally
performing external interactions, if any (Section V).

308 /**
309 * @dev borrowers can user this function to swap between stable and variable borrow

rate modes.
310 * @param asset the address of the reserve on which the user borrowed
311 * @param rateMode the rate mode that the user wants to swap
312 **/
313 f unc t i on swapBorrowRateMode (address a s s e t , uint256 rateMode) ex te rna l o v e r r i d e {
314 _whenNotPaused () ;
315 Res e r v eLog i c . ReserveData storage r e s e r v e = _re s e r v e s [a s s e t] ;

317 (uint256 s tab l eDebt , uint256 v a r i a b l eD eb t) = He l p e r s . ge tUse rCur r en tDebt (msg . sender ,
r e s e r v e) ;

319 Res e r v eLog i c . I n t e r e s tRa teMode in t e r e s tRa t eMode = Res e r v eLog i c . I n t e r e s tRa teMode (
rateMode) ;

321 Va l i d a t i o n L o g i c . va l idateSwapRateMode (
322 r e s e r v e ,
323 _use r sCon f i g [msg . sender] ,
324 s tab l eDebt ,
325 va r i a b l eDeb t ,
326 i n t e r e s tRa t eMode
327) ;

329 r e s e r v e . upda teS ta t e () ;

331 i f (i n t e r e s tRa t eMode == Res e r v eLog i c . I n t e r e s tRa teMode . STABLE) {
332 //burn stable rate tokens , mint variable rate tokens
333 IS tab l eDebtToken (r e s e r v e . s tab l eDebtTokenAddre s s) . burn (msg . sender , s t ab l eDeb t) ;
334 IVa r i ab l eDebtToken (r e s e r v e . va r i ab l eDeb tTokenAddre s s) . mint (
335 msg . sender ,
336 s tab l eDebt ,
337 r e s e r v e . v a r i a b l eBo r r ow I nd e x
338) ;
339 } e l s e {
340 //do the opposite
341 IVa r i ab l eDebtToken (r e s e r v e . va r i ab l eDeb tTokenAddre s s) . burn (
342 msg . sender ,
343 va r i a b l eDeb t ,
344 r e s e r v e . v a r i a b l eBo r r ow I nd e x
345) ;
346 IS tab l eDebtToken (r e s e r v e . s tab l eDebtTokenAddre s s) . mint (
347 msg . sender ,
348 va r i a b l eDeb t ,
349 r e s e r v e . cu r r en tS t ab l eBo r r owRat e
350) ;
351 }

55/66 PeckShield Audit Report #: 2020-58

Public

353 r e s e r v e . u p d a t e I n t e r e s t R a t e s (a s s e t , r e s e r v e . aTokenAddress , 0 , 0) ;

355 emit Swap (a s s e t , msg . sender) ;
356 }

Listing 3.31: LendingPool.sol

Our analysis shows this swapBorrowRateMode() routine can be affected by a flashloan-assisted
sandwiching attack such that the new stable borrow rate becomes the lowest possible. Note this
attack is applicable when the borrow rate is switched from variable to stable rate. Specifically, to
perform the attack, a malicious actor can first request a flashloan to deposit into the reserve pool
so that the reserve’s utilization rate is close to 0, then invoke swapBorrowRateMode() to perform the
variable-to-borrow rate switch and enjoy the lowest currentStableBorrowRate (thanks to the nearly 0
utilization rate in current reserve), and finally withdraw to return the flashloan. A similar approach
can also be applied to bypass maxStableLoanPercent enforcement in validateBorrow().

Recommendation Revise current execution logic of swapBorrowRateMode() to defensively detect
sudden changes to a reserve utilization and block malicious attempts.

Status This issue has been confirmed. Note that this issue is partially mitigated by the IR that
Aave is using, where the stable rate borrowing has a much flattened slope compared to the variable,
so that there is not much difference between the stable rate borrowing at the breaking point and
with the reserve completely empty. Important to note that this potential abuse is already present in
V1 but there are no signs of borrowers actually using it.

3.22 Bypassed Enforcement of
LIQUIDATION_CLOSE_FACTOR_PERCENT

• ID: PVE-022

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: LendingPoolCollateralManager

• Category: Business Logic [11]

• CWE subcategory: CWE-837 [7]

Description

Aave V2 defines a number of system-wide risk parameters. In Section 3.19, we discussed a risk param-
eter named HEALTH_FACTOR_ABOVE_THRESHOLD that specifies the threshold on the permitted healthFactor.
In this section, we examine another risk parameter, i.e., LIQUIDATION_CLOSE_FACTOR_PERCENT. This risk
parameter is applicable when a debt position is being liquidated and used to limit the liquidable
principal amount for a particular liquidationCall().

56/66 PeckShield Audit Report #: 2020-58

Public

139 f unc t i on l i q u i d a t i o n C a l l (
140 address c o l l a t e r a l ,
141 address p r i n c i p a l ,
142 address use r ,
143 uint256 purchaseAmount ,
144 bool r ece i veAToken
145) ex te rna l r e tu rn s (uint256 , s t r i n g memory) {
146 Res e r v eLog i c . ReserveData storage c o l l a t e r a l R e s e r v e = _re s e r v e s [c o l l a t e r a l] ;
147 Res e r v eLog i c . ReserveData storage p r i n c i p a l R e s e r v e = _re s e r v e s [p r i n c i p a l] ;
148 Us e rCon f i g u r a t i o n .Map storage u s e rCon f i g = _use r sCon f i g [u s e r] ;
149
150 L i q u i d a t i o nC a l l L o c a l V a r s memory v a r s ;
151
152 (, , , , v a r s . h e a l t hF a c t o r) = Gene r i c Log i c . c a l c u l a t eUse rAccoun tDa ta (
153 use r ,
154 _rese rve s ,
155 _use r sCon f i g [u s e r] ,
156 _r e s e r v e s L i s t ,
157 _add r e s s e sP ro v i d e r . g e tP r i c eO r a c l e ()
158) ;
159
160 //if the user hasn’t borrowed the specific currency defined by asset , it cannot be

liquidated
161 (v a r s . u s e rS tab l eDebt , v a r s . u s e rVa r i a b l eDeb t) = He l p e r s . ge tUse rCur r en tDebt (
162 use r ,
163 p r i n c i p a l R e s e r v e
164) ;
165
166 (v a r s . e r ro rCode , v a r s . e r ro rMsg) = Va l i d a t i o n L o g i c . v a l i d a t e L i q u i d a t i o n C a l l (
167 c o l l a t e r a l R e s e r v e ,
168 p r i n c i p a l R e s e r v e ,
169 us e rCon f i g ,
170 v a r s . h e a l t hFac t o r ,
171 v a r s . u s e rS tab l eDebt ,
172 v a r s . u s e rVa r i a b l eDeb t
173) ;
174
175 i f (E r r o r s . C o l l a t e r a lMan a g e r E r r o r s (v a r s . e r r o rCode) != E r r o r s . C o l l a t e r a lMan a g e r E r r o r s

.NO_ERROR) {
176 re tu rn (v a r s . e r ro rCode , v a r s . e r ro rMsg) ;
177 }
178
179 v a r s . c o l l a t e r a l A t o k e n = IAToken (c o l l a t e r a l R e s e r v e . aTokenAddress) ;
180
181 v a r s . u s e r C o l l a t e r a l B a l a n c e = va r s . c o l l a t e r a l A t o k e n . ba lanceOf (u s e r) ;
182
183 v a r s . maxPr inc ipa lAmountToL iqu idate = va r s . u s e rS t ab l eDeb t . add (v a r s . u s e rVa r i a b l eDeb t) .

pe rcentMul (
184 LIQUIDATION_CLOSE_FACTOR_PERCENT
185) ;
186

57/66 PeckShield Audit Report #: 2020-58

Public

187 v a r s . ac tua lAmountToL iqu idate = purchaseAmount > va r s . maxPr inc ipa lAmountToL iqu idate

Listing 3.32: LendingPoolCollateralManager. sol

Specifically, based on the above code snippet of liquidationCall(), the maximum liquidable princi-
pal amount is calculated as (userStableDebt + userVariableDebt)*(LIQUIDATION_CLOSE_FACTOR_PERCENT

) (lines 183− 185). However, we also notice another alternative routine, i.e., repayWithCollateral(),
which can be similarly used to liquidate a default debt position but does not enforce this risk param-
eter. This creates an inconsistency in its enforcement.

Recommendation Properly enforce LIQUIDATION_CLOSE_FACTOR_PERCENT, a system-wide risk pa-
rameter that regulates the maximum liquidable principal amount.

Status The issue has been confirmed and accordingly fixed by this merge request: 86.

58/66 PeckShield Audit Report #: 2020-58

https://gitlab.com/aave-tech/protocol-v2/-/merge_requests/86

Public

4 | Conclusion

In this audit, we have analyzed the Aave V2 design and implementation. The system presents a
unique, robust offering as a decentralized non-custodial money market protocol where users can
participate as depositors or borrowers. Aave V2 improves early versions by providing additional
innovative features, e.g., debt tokenization, collateral trading, and new flashloans. The current code
base is well structured and neatly organized. Those identified issues are promptly confirmed and
fixed.

As a final precaution, we need to emphasize that smart contracts as a whole are still in an early,
but exciting stage of development. To improve this report, we greatly appreciate any constructive
feedbacks or suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

59/66 PeckShield Audit Report #: 2020-58

Public

5 | Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

• Description: Whether the contract name and its constructor are not identical to each other.

• Result: Not found

• Severity: Critical

5.1.2 Ownership Takeover

• Description: Whether the set owner function is not protected.

• Result: Not found

• Severity: Critical

5.1.3 Redundant Fallback Function

• Description: Whether the contract has a redundant fallback function.

• Result: Not found

• Severity: Critical

5.1.4 Overflows & Underflows

• Description: Whether the contract has general overflow or underflow vulnerabilities [15, 16,
17, 18, 20].

• Result: Not found

• Severity: Critical

60/66 PeckShield Audit Report #: 2020-58

Public

5.1.5 Reentrancy

• Description: Reentrancy [21] is an issue when code can call back into your contract and change
state, such as withdrawing ETHs.

• Result: Not found

• Severity: Critical

5.1.6 Money-Giving Bug

• Description: Whether the contract returns funds to an arbitrary address.

• Result: Not found

• Severity: High

5.1.7 Blackhole

• Description: Whether the contract locks ETH indefinitely: merely in without out.

• Result: Not found

• Severity: High

5.1.8 Unauthorized Self-Destruct

• Description: Whether the contract can be killed by any arbitrary address.

• Result: Not found

• Severity: Medium

5.1.9 Revert DoS

• Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

• Result: Not found

• Severity: Medium

61/66 PeckShield Audit Report #: 2020-58

Public

5.1.10 Unchecked External Call

• Description: Whether the contract has any external call without checking the return value.

• Result: Not found

• Severity: Medium

5.1.11 Gasless Send

• Description: Whether the contract is vulnerable to gasless send.

• Result: Not found

• Severity: Medium

5.1.12 Send Instead Of Transfer

• Description: Whether the contract uses send instead of transfer.

• Result: Not found

• Severity: Medium

5.1.13 Costly Loop

• Description: Whether the contract has any costly loop which may lead to Out-Of-Gas excep-
tion.

• Result: Not found

• Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

• Description: Whether the contract use any suspicious libraries.

• Result: Not found

• Severity: Medium

62/66 PeckShield Audit Report #: 2020-58

Public

5.1.15 (Unsafe) Use Of Predictable Variables

• Description: Whether the contract contains any randomness variable, but its value can be
predicated.

• Result: Not found

• Severity: Medium

5.1.16 Transaction Ordering Dependence

• Description: Whether the final state of the contract depends on the order of the transactions.

• Result: Not found

• Severity: Medium

5.1.17 Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

• Result: Not found

• Severity: Medium

5.2 Semantic Consistency Checks

• Description: Whether the semantic of the white paper is different from the implementation of
the contract.

• Result: Not found

• Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

• Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of
space.

• Result: Not found

• Severity: Low

63/66 PeckShield Audit Report #: 2020-58

Public

5.3.2 Make Visibility Level Explicit

• Description: Assign explicit visibility specifiers for functions and state variables.

• Result: Not found

• Severity: Low

5.3.3 Make Type Inference Explicit

• Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce
the type, which is not safe especially in a loop.

• Result: Not found

• Severity: Low

5.3.4 Adhere To Function Declaration Strictly

• Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls() [1], which may break the the execution if the function implementation does NOT
follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens).

• Result: Not found

• Severity: Low

64/66 PeckShield Audit Report #: 2020-58

Public

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] HaleTom. Resolution on the EIP20 API Approve / TransferFrom multiple withdrawal attack.

https://github.com/ethereum/EIPs/issues/738.

[3] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[4] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[5] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[6] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[7] MITRE. CWE-837: Improper Enforcement of a Single, Unique Action. https://cwe.mitre.org/

data/definitions/837.html.

[8] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[9] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

65/66 PeckShield Audit Report #: 2020-58

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/EIPs/issues/738
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html

Public

[10] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[11] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[12] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[13] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[14] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[15] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-

10299). https://www.peckshield.com/2018/04/22/batchOverflow/.

[16] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

[17] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

[18] PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).

https://www.peckshield.com/2018/04/25/proxyOverflow/.

[19] PeckShield. PeckShield Inc. https://www.peckshield.com.

[20] PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:

//www.peckshield.com/2018/04/28/transferFlaw/.

[21] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

66/66 PeckShield Audit Report #: 2020-58

https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com/2018/04/22/batchOverflow/
https://www.peckshield.com/2018/05/18/burnOverflow/
https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/
https://www.peckshield.com
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/
http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About Aave V2
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Sanity Checks of registerAddressesProvider()
	Race Condition Between delegateBorrowAllowance() And borrow()
	Incompatibility with Deflationary/Rebasing Tokens
	Simplification And Improvement of the repay() Logic
	Validation of transferFrom() Return Values
	Improved Precision By Multiplication-Before-Division
	Improved STABLE_BORROWING_MASK
	Inaccurate Burn Events in AToken
	Asset Consistency Between Reserve and AToken
	Inaccurate Calculation of Mints To Treasury
	Premature Updates of updateInterestRates() Before DebtToken Changes
	Late Updates of updateInterestRates() After AToken Changes
	Inconsistency Between Document and Implementation
	Removal of Unused Code
	Possible Fund Loss From (Permissive) Smart Wallets With Allowances to LendingPool
	Improved Business Logic in validateWithdraw()
	Improved Event Generation With Indexed Assets
	Performance Optimization in _updateIndexes()
	Inconsistent Handling of healthFactor Corner Cases
	Inaccurate previousStableDebt Calculation in _mintToTreasury()
	Flashloan-Lowered StableBorrowRate For Mode-Switching Users
	Bypassed Enforcement of LIQUIDATION_CLOSE_FACTOR_PERCENT

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly

	References

