
Public

SMART CONTRACT AUDIT REPORT

for

AAVEV2 LIGHT DEPLOYMENT

Prepared By: Shuxiao Wang

PeckShield
March 16, 2021

1/15 PeckShield Audit Report #: 2021-038

sxwang@peckshield.com

Public

Document Properties

Client Aave
Title Smart Contract Audit Report
Target Light Deployment
Version 1.0
Author Xuxian Jiang
Auditors Xuxian Jiang, Jeff Liu
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 March 16, 2021 Xuxian Jiang Final Release
1.0-rc2 February 18, 2021 Xuxian Jiang Release Candidate #2
1.0-rc1 February 11, 2021 Xuxian Jiang Release Candidate #1
0.2 February 9, 2021 Xuxian Jiang Additional Findings
0.1 February 7, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/15 PeckShield Audit Report #: 2021-038

Public

Contents

1 Introduction 4
1.1 About Light Deployment . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 External Declaration of Only-Externally-Invoked Functions 11
3.2 Storage Reservation For Further Upgrades . 12

4 Conclusion 14

References 15

3/15 PeckShield Audit Report #: 2021-038

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
Aave’s functionality to allow for light deployment, we outline in the report our systematic approach
to evaluate potential security issues in the smart contract implementation, expose possible semantic
inconsistencies between smart contract code and design document, and provide additional suggestions
or recommendations for improvement. Our results show that the given versions of smart contracts
are well designed and engineered. This document outlines our audit results.

1.1 About Light Deployment

Aave is a decentralized non-custodial money market protocol where users can participate as depositors
or borrowers. Depositors provide liquidity to the market to earn a passive income, while borrowers
are able to borrow in an over-collateralized (perpetually) or under-collateralized (one-block liquidity)
fashion. This audit covers the new functionality to allow for light deployment of a new market with
reduced deployment cost. This is necessary since the current deployment of a new market of the
Aave protocol is rather burdensome and has a high deployment cost. Moreover, the update of the
logic of one specific component at the same time across all markets is not possible, which creates
big friction on versioning of implementations (behind proxies).

Table 1.1: Basic Information of Aave’s Light Deployment

Item Description
Issuer Aave

Website http://aave.com/
Audit Modules Light Deployment

Type Ethereum Smart Contract
Platform Solidity

Audit Method Whitebox
Latest Audit Report March 16, 2021

The light deployment functionality allocates necessary storage variables on all affected contracts

4/15 PeckShield Audit Report #: 2021-038

Public

and remove market or token specific dependencies. The basic information of this new functionality
is shown above. In the following, we show the Git repositories of reviewed files and the commit hash
values used in this audit.

• https://github.com/aave/protocol-v2/tree/feat/light-deployments (12cda09)

1.2 About PeckShield

PeckShield Inc. [6] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [5]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/15 PeckShield Audit Report #: 2021-038

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/15 PeckShield Audit Report #: 2021-038

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [4], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/15 PeckShield Audit Report #: 2021-038

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/15 PeckShield Audit Report #: 2021-038

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the design and implementation of the Aave’s
governance subsystem and its new token contract. During the first phase of our audit, we study the
smart contract source code and run our in-house static code analyzer through the codebase. The
purpose here is to statically identify known coding bugs, and then manually verify (reject or confirm)
issues reported by our tool. We further manually review business logics, examine system operations,
and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 0

Informational 2

Total 2

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities that need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/15 PeckShield Audit Report #: 2021-038

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issue(s) as shown in Table 2.1, including 2 informational
recommendations.

Table 2.1: Key Audit Findings

ID Severity Title Category
PVE-001 Informational External Declaration of Only-Externally-

Invoked Functions
Coding Practices

PVE-002 Informational Storage Reservation For Further Upgrades Coding Practices

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/15 PeckShield Audit Report #: 2021-038

Public

3 | Detailed Results

3.1 External Declaration of Only-Externally-Invoked Functions

• ID: PVE-001

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: LendingPoolConfigurator

• Category: Coding Practices [3]

• CWE subcategory: CWE-287 [1]

Description

The Light Deployment support makes a number of changes, including the introduction of necessary
interface functions that are designed to be called only for external users. Some of them are currently
defined as public. In public functions, Solidity immediately copies array arguments to memory, while
external functions can read directly from calldata. Note that memory allocation can be expensive,
whereas reading from calldata is not. So when these functions are not used within the contract, it’s
always suggested to define them as external instead of public.

In the following, we show one example function that can be canonically changed from public

to external (shown below). Note that this function takes an argument inputParams and the above
performance optimization has been applied.

146 /**
147 * @dev Initializes reserves in batch
148 **/
149 f unc t i on b a t c h I n i t R e s e r v e (I n i t R e s e r v e I n p u t [] c a l l d a t a inputParams) pub l i c

onlyPoolAdmin {
150 I L end i ngPoo l cachedPoo l = poo l ;
151 f o r (uint256 i = 0 ; i < inputParams . l ength ; i++) {
152 _in i tR e s e r v e (cachedPool , inputParams [i]) ;
153 }
154 }

Listing 3.1: LendingPoolConfigurator :: batchInitReserve ()

11/15 PeckShield Audit Report #: 2021-038

Public

Recommendation This is really optional: revise the aforementioned function from being public

to external.

3.2 Storage Reservation For Further Upgrades

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [3]

• CWE subcategory: CWE-563 [2]

Description

The various token implementations in AaveV2 take a proxy-based approach where the proxy contract is
deployed at the front-end while the logic contract contains the actual business logic implementation.
This approach has the flexible support in terms of upgradeability. However, the upgradeability support
comes with a few caveats. One important caveat is related to the storage layout of new contracts
that are just deployed to replace old contracts.

Due to the inherent requirement of any proxy-based upgradeability system, the storage layout of
new contracts should not overwrite old contracts. This means we should only append new states after
those defined states in old contracts. It is important to realize that for contracts that use inheritance,
the ordering of state variables is determined by the so-called C3 superclass linearization order of
contracts starting with the most base-ward contract. Note that the C3 superclass linearization is
an algorithm used primarily to obtain the order in which methods should be inherited in the presence
of multiple inheritance.

In order to accommodate future upgrades, it is commonly suggested to reserve certain storage
slots in the base contracts. These reserved storage slots can flexibly support future layout changes,
including the additions of new states. The AaveV2’s functionality for light deployment requires the
additions of several new states that were previously defined as immutable or constant. As an example,
the AToken contract has been enhanced with new states _pool, _treasury, _underlyingAsset, and
_incentivesController and their respective getters/setters to support the deployment with reduced
cost.

18 cont ract AToken i s
19 V e r s i o n e d I n i t i a l i z a b l e ,
20 I n c en t i v i z edERC20 (’ATOKEN_IMPL ’ , ’ATOKEN_IMPL ’ , 0) ,
21 IAToken
22 {
23 us ing WadRayMath f o r u int256 ;
24 us ing SafeERC20 f o r IERC20 ;
25

12/15 PeckShield Audit Report #: 2021-038

Public

26 bytes pub l i c constant EIP712_REVISION = bytes (’1’) ;
27 bytes32 i n t e r n a l constant EIP712_DOMAIN =
28 keccak256 (’EIP712Domain(string name ,string version ,uint256 chainId ,address

verifyingContract)’) ;
29 bytes32 pub l i c constant PERMIT_TYPEHASH =
30 keccak256 (’Permit(address owner ,address spender ,uint256 value ,uint256 nonce ,uint256

deadline)’) ;
31
32 uint256 pub l i c constant ATOKEN_REVISION = 0x1 ;
33
34 /// @dev owner => next valid nonce to submit with permit ()
35 mapping (address => uint256) pub l i c _nonces ;
36
37 bytes32 pub l i c DOMAIN_SEPARATOR;
38
39 I L end i ngPoo l i n t e r n a l _pool ;
40 address i n t e r n a l _trea su ry ;
41 address i n t e r n a l _unde r l y i ngAs s e t ;
42 I A a v e I n c e n t i v e s C o n t r o l l e r i n t e r n a l _ i n c e n t i v e s C o n t r o l l e r ;
43 . . .
44 }

Listing 3.2: New States in AToken

With that, we suggest to add the reservation of storage slots, i.e., uint256[50] private ______gap;

at the end especially in related base constract, e.g., IncentivizedERC20 for future upgrades.

Recommendation Reserve additional storage slots in base contracts for future upgrades.

13/15 PeckShield Audit Report #: 2021-038

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the AaveV2 protocol’s functionality
to allow for light deployment. The new functionality greatly reduce the deployment cost of a new
market. The current code base is well organized and those identified issues are promptly confirmed
and addressed.

14/15 PeckShield Audit Report #: 2021-038

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[3] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[4] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[5] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[6] PeckShield. PeckShield Inc. https://www.peckshield.com.

15/15 PeckShield Audit Report #: 2021-038

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Light Deployment
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	External Declaration of Only-Externally-Invoked Functions
	Storage Reservation For Further Upgrades

	Conclusion
	References

