
Aave

Aave Protocol v2.0
Smart Contract Security Assessment

Version: 2.0

January, 2021

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3

Detailed Findings 4

Summary of Findings 5Ineffective Check in validateBorrow() . 6
Available Liquidity Incorrectly Calculated in flashLoan() . 7Issues when Stable Borrow Rate is Zero . 8Debt Allowances are Front-runnable . 9Lack of Validation for the Zero Address . 10Inconsistent Event and Interface Naming . 11Unused Variables in ValidationLogic . 13
Gas Optimisation in _calculateBalanceIncrease . 14Contracts Do Not Implement Safe Ownership Transfer Pattern . 15Delegate Call to Force a Self-Destruct . 16Miscellaneous General Statements . 17

A Test Suite 18

B Vulnerability Severity Classification 21

1

Aave Protocol v2.0 Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Aave v2 smart contracts.The review focused solely on the security aspects of the Solidity implementation of the contract, though generalrecommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Aave v2 smart contracts contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilities isthen given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an open/-
closed/resolved status and a recommendation. Additionally, findings which do not have direct security implica-tions (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Aave v2 smart contracts.

Overview

Aave is a platform that permits users to lend and borrow tokens (and Ether) on the Ethereum blockchain. Thecontracts reviewed in this report constitute version 2 of the Aave protocol. The version 2 contracts provide anumber of improvements and extra features to their version 1 predecessors. Some of the core updates include:

• Debt Tokenization -Users who borrow funds are now attributed a debt token to allow users to more easilymanage their debt position.
• Collateral Transfers -Users can trade their deposited assets and interest accruing Aave tokens. This allowsusers to exit their position and swap their deposited assets.
• Flash Loan updates - Users can now create flash loans of multiple assets in a single transaction and useflash loans to liquidate undercollateralised loans.
• Structure Upgrade - The core structure of the underlying smart contracts have been redesigned whichreduce the gas usage and makes it easier to test and verify the functioning of core components.

Page | 2

Aave Protocol v2.0 Security Assessment Summary

Security Assessment Summary

This reviewwas conducted on the files hosted on the protocol-v2 repository andwere assed at commit 16e67c0.
Note: the OpenZeppelin libraries and dependencies were excluded from the scope of this assessment.

The design of the Aave protocol is such that an administrator account exists that has the ability to update andreplace existing contracts and in essence modify core components and functionality of the protocol. As this isby design, this review does not explicitly list attacks where the administrator is malicious, rather we assume theAave protocol maintainer keys are secure and honest. Should the administration keys be stolen by a maliciousactor, the protocol can be severely compromised.
The manual code review section of the report, focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the contracts. Specifically, their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the Ethereum VirtualMachine (for example, verifying correct storage/memory layout). Additionally, the manual review process fo-cused on all known Solidity anti-patterns and attack vectors. These include, but are not limited to, the followingvectors: re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers. For a more thor-ough, but non-exhaustive list of examined vectors, see [1, 2].
The testing team identified a total of eleven (11) issues during this assessment, of which:

• One (1) is classified as high risk,
• One (1) is classified as low risk,
• Nine (9) are classified as informational.

All these issues have been acknowledged and/or resolved by the development team.

Page | 3

https://github.com/aave/protocol-v2
https://github.com/aave/protocol-v2/commit/16e67c00c377cad71770cc74cf2c0364e042b712

Aave Protocol v2.0 Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Aave v2 smart contracts.Each vulnerability has a severity classification which is determined from the likelihood and impact of each issueby the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including comments not directly related to the security pos-ture of the protocol, are also described in this section and are labelled as "informational".
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status
AAV-01 Ineffective Check in validateBorrow() High Resolved

AAV-02 Available Liquidity Incorrectly Calculated in flashLoan() Low Resolved

AAV-03 Issues when Stable Borrow Rate is Zero Informational Closed

AAV-04 Debt Allowances are Front-runnable Informational Closed

AAV-05 Lack of Validation for the Zero Address Informational Closed

AAV-06 Inconsistent Event and Interface Naming Informational Closed

AAV-07 Unused Variables in ValidationLogic Informational Resolved

AAV-08 Gas Optimisation in _calculateBalanceIncrease Informational Closed

AAV-09 Contracts Do Not Implement Safe Ownership Transfer Pattern Informational Closed

AAV-10 Delegate Call to Force a Self-Destruct Informational Resolved

AAV-11 Miscellaneous General Statements Informational Closed

5

Aave Protocol v2.0 Detailed Findings

AAV-01 Ineffective Check in validateBorrow()

Asset ValidationLogic.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

The function validateBorrow() in ValidationLogic.sol is used to ensure that a user is allowed to performa borrow. It verifies conditions such as, if the user has sufficient collateral to make a borrow.
There is an ineffective control statement on line [200],
if (vars.rateMode == ReserveLogic.InterestRateMode.STABLE) . This statement is ineffective as the vari-
able vars.rateMode is never initialised and thus the check is equivalent to if (0 == 1) and so will neverpass.
As a result the following requirements for stable borrowing are not validated:

• stable rate borrowing is enabled;
• the user has less collateral in the currency than borrow amount OR
• the borrow amount is less than 25% of the liquidity.

The impact is that users may make a stable borrow when it has not been enabled. If done on an asset that hasnot been configured to allow stable borrows then LendingRateOracle.getMarketBorrowRate(asset) wouldreturn zero. As a result, a user may borrow at a rate of 0%. See AAV-03 for further details on the impact of thisvulnerability.
Users may also borrow a large percentage of the liquidity at a low rate and in the same currency as their collat-eral which would potentially allow them to earn more in revenue than they pay in fees by then depositing theborrowed funds. This is because both the stable and variable rate will be increased for future users.

Recommendations

We recommend using the variable interestRateMode instead of vars.rateMode in the afore mentioned con-trol statement. interestRateMode is a parameter to the function which is initialised to the correct value,thereby correctly triggering the if statement.

Resolution

The contracts have been updated such that the control statement is now
if (interestRateMode == uint256(DataTypes.InterestRateMode.STABLE)) thereby activating the if state-ment when there is a stable borrow.
The contracts were immediately redeployed with the patch when the bug was discovered. Later the GitHubrepository was updated to match the contacts as seen in commit 29448c1.

Page | 6

https://github.com/aave/protocol-v2/commit/29448c19c1e9b8aa87dccd70b716d15cdf4128f

Aave Protocol v2.0 Detailed Findings

AAV-02 Available Liquidity Incorrectly Calculated in flashLoan()

Asset LendingPool.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The function flashLoan() allows users to first acquire the funds and execute some logic, then either repay theamount of the flash loan plus a premium or convert it to a loan of either stable or variable interest.
When converting the flash loan into an interest bearing loan the interest rates are updated. The interest ratesare based of the utilisation rate which is:

Ut = totaldebt
totaldebt+availableliquidity

There is an error in the calculation of availableLiquidity when the interest ratemode is NONE . It is calculated
as IERC20(reserveAddress).balanceOf(aTokenAddress) plus currentPremium . This incorrectly calculatesthe available liquidity as the the amount of the flash loan has been transferred out and so is not included in
IERC20(reserveAddress).balanceOf(aTokenAddress) .
As a result, the utilisation rate is overstated significantly. This will result in both the variable borrow rate and thestable borrow rate also being significantly overstated.

Recommendations

We recommend using currentAmountPlusPremium rather than currentPremium for the case where interestrate mode is NONE , to account for the modified balance of the aToken. This will ensure the available liquidity iscorrectly calculated.

Resolution

The mainnet contracts were deployed using currentAmountPlusPremium rather than currentPremium whencalculating the available liquidity, thus resolving the issue.
The resolution was implemented in commit 584a567.

Page | 7

https://github.com/aave/protocol-v2/commit/584a567635ad4817c7ef105304d62f25158eb120

Aave Protocol v2.0 Detailed Findings

AAV-03 Issues when Stable Borrow Rate is Zero
Asset StableDebtToken.sol

Status Closed: See Resolution
Rating Informational

Description

In the case of AAV-01 or if LendingRateOracle.getMarketBorrowRate() returns zero (which should only be
possible by misconfiguration) then a user may obtain a stable rate of zero.
When deposits have been made but there are no borrows, the utilisation rate will be zero.Therefore the stable rate will be equal to LendingRateOracle.getMarketBorrowRate() . If
LendingRateOracle.getMarketBorrowRate() is also zero then the user will obtain a stable rate of zero.
The first obvious implication of having a stable rate zero is that a user will pay zero fees for a loan.
Another implication is that a following call to StableDebtToken.burn() (e.g. if a user calls repay()) will
cause the StableDebtToken.totalSupply() to be set to zero. This occurs since both _avgStableRate and
usersStableRate will both be zero. Hence the if statement on line [185] will get triggered. This will cause
newStableRate = _avgStableRate = _totalSupply = 0; , setting the total supply to zero.
This is an issue as the user may still have a significant balance, yet the total supply is set to zero. For exampleif a user has a balance of 10, 000 tokens and repays 1 token their remaining balance will be set to 9, 999 but thetotal supply will be set to zero.

Recommendations

Consider handling the case where both _avgStableRate and _usersStableRate are zero.

Resolution

It is an underlying assumption of the protocol that LendingRateOracle.getMarketBorrowRate() should neverreturn zero for a reserve with stable rate borrowing enabled. It is prevented at configuration time, thus theseissues will not be patched.

Page | 8

Aave Protocol v2.0 Detailed Findings

AAV-04 Debt Allowances are Front-runnable
Asset DebtTokenBase.sol

Status Closed: See Resolution
Rating Informational

Description

Debt tokens (both stable and variable) allow users to delegate a borrow allowance to other addresses (users orcontracts). This allowance can be used to make a borrow on behalf of the delegater.
The function approveDelegation(address delegatee, uint256 amount) is used to give another user an
allowance. The allowance that the delegatee may use is set to amount . This function is vulnerable to doublespending via front-running.
For example consider a situation where Alice has given Bob an allowance of 1 ETH. Alice would now like toreduce Bob’s allowance to 0.5 ETH. Alice will then make the transaction approveDelegation(Bob, 0.5 ETH) .
Bob may abuse this mechanism by front-running Alice’s transaction and use the current allowance of 1 ETH,leaving the remaining allowance as 0 ETH. Alice’s transaction will then be executed setting Bob’s allowance upto 0.5 ETH. Bob may now spend the 0.5 ETH allowance, thereby spending a total of 1.5 ETH when he shouldonly have had at most 1 ETH to spend.
Note that this issue also affects the approve() function of the ERC20 standard.

Recommendations

Consider using functions such as increaseDelegation() and decreaseDelegation() which will take thecurrent allowance and increment it or decrement it respectively, thereby preventing double spending.

Resolution

The development team have acknowledged this issue as an issue equivalent to the ERC20 approve() front-running issue and are therefore not implementing a fix.

Page | 9

Aave Protocol v2.0 Detailed Findings

AAV-05 Lack of Validation for the Zero Address
Asset LendingPool.sol

Status Closed: See Resolution
Rating Informational

Description

Historically, some wallets and applications default to using the 0x0 address if an address parameter is omittedwhen interacting with smart contracts. This has lead to cases of inadvertent fund transfers to the 0x0 address.
One mitigation strategy (that requires a small amount of extra gas) is to verify that Ether and tokens are nottransferred to the 0x0 address in the smart contract. This is done, for example, when minting ATokens in the
IncentivisedERC20 _mint() function.
In reference to Aave, users currently can inadvertentlywithdraw tokens to the 0x0 address (if the to parameteris set to 0x0).

Recommendations

A check could be added to the withdraw() function to prevent accidental transfers to the 0x0 address.

Resolution

The recommendation has been marked as a potential improvement and will be considered through the gover-nance procedures.

Page | 10

Aave Protocol v2.0 Detailed Findings

AAV-06 Inconsistent Event and Interface Naming
Asset contracts/

Status Closed: See Resolution
Rating Informational

Description

Interfaces are used to describe the function specifications and events.
The following is a list of inconsistencies between the naming in interfaces and the core implementations:

• ILendingPoolAddressesProvider.sol and LendingPoolAddressesProvider.sol

– in setAddress() there is newAddress vs implementationAddress

– in setAddressAsProxy() there is impl vs implementationAddress

– in setEmergencyAdmin() there is admin vs emergencyAdmin

• ILendingPool.sol vs LendingPool.sol

– in initReserve() there is assert vs reserve

– in setConfiguration() there is asset vs reserve

– in finalizeTransfer() there is balanceFromAfter vs balanceFromAfter

• ILendingPool.sol vs ILendingPoolCollateralManager.sol

– the event LiquidationCall there is collateralAsset vs collateral

– the event LiquidationCall there is debtAsset vs principal

• IReserveInterestRateStrategy.sol vs DefaultReserveInterestRateStrategy.sol

– in calculateInterestRates() there is utilizationRate vs availableLiquidity

• IAToken.sol vs AToken.sol

– in burn() there is underlyingTarget vs receiverOfUnderlying

– in transferUnderlyingTo() there is user vs target

The event AddressesProviderUnregistered(address indexed newAddress) in
ILendingPoolAddressesProviderRegistry names the address to be removed as newAddress but it is not anew address.
The event LendingPoolConfigurator.ReserveDecimalsChanged is unused.
The event StableDebtToken.Burn labels the field currentBalance as the balance before the amount isburnt.

Page | 11

Aave Protocol v2.0 Detailed Findings

Recommendations

We recommend matching the naming of function parameters between interfaces and implementations to in-crease the usability and maintainability of the code base.
We also recommend matching the naming of events where delegatecalls are used such as the
LiquidationCall event to prevent users incorrectly indexing emitted events.

Resolution

The recommendation has been marked as a potential improvement and will be considered through the gover-nance procedures.

Page | 12

Aave Protocol v2.0 Detailed Findings

AAV-07 Unused Variables in ValidationLogic

Asset ValidationLogic.sol

Status Resolved: See Resolution
Rating Informational

Description

A struct ValidateBorrowLocalVars is used in the function validateBorrow() to store different variablesused by the function.
The list of unused variables is:

• principalBorrowBalance

• requestedBorrowAmountETH

• borrowBalanceIncrease

• currentReserveStableRate

• finalUserBorrowRate

• healthFactorBelowThreshold

• rateMode

The variable rateMode is later used while unititialised as seen in AAV-01. The remaining variables are not used.

Recommendations

Consider removing the unused variables to save deployment costs, prevent accidental misuse and improve codemaintainability.

Resolution

The ValidationLogic contract has been updated and redeployed to mainnet without the unused variables.The updates can be seen in commit 29448c1.

Page | 13

https://github.com/aave/protocol-v2/commit/29448c19c1e9b8aa87dccd70b716d15cdf4128f6

Aave Protocol v2.0 Detailed Findings

AAV-08 Gas Optimisation in _calculateBalanceIncrease

Asset StableDebtToken.sol

Status Closed: See Resolution
Rating Informational

Description

There is a potential gas optimisation in StableDebtToken._calculateBalanceIncrease() . The gas optimisa-tion occurs by decreasing the number of math operations.
235 uint256 balanceIncrease = balanceOf (user).sub(previousPrincipalBalance);236237 return (238 previousPrincipalBalance ,239 previousPrincipalBalance .add(balanceIncrease),240 balanceIncrease241);

The following code would reduce the number of math operations from an addition and a subtraction to a singlesubtraction.
235 uint256 currentBalance = balanceOf (user);236237 return (238 previousPrincipalBalance ,239 currentBalance ,240 currentBalance .sub(previousPrincipalBalance)241);

Recommendations

Consider implementing the gas optimisation.

Resolution

The recommendation has been marked as a potential improvement and will be considered through the gover-nance procedures.

Page | 14

Aave Protocol v2.0 Detailed Findings

AAV-09 Contracts Do Not Implement Safe Ownership Transfer Pattern
Asset Ownable.sol

Status Closed: See Resolution
Rating Informational

Description

The current transfer of ownership pattern calls the function transferOwnership(address newOwner) which
instantly changes the owner to the newOwner . This allows the current owner of the contracts to set an arbitraryaddress (excluding the zero address).
If the address is entered incorrectly or set to an unowned address, the owner role of the contract is lost forever.Thus, a user would not be able to pass the onlyOwner modifier.
Similarly, the function renounceOwnership() allows an owner to remove themself as owner and prevent any
future owners. Again this will cause any onlyOwner modifiers to always fail.

Recommendations

Transferring owner privileges can be mitigated by implementing a transferOwnership pattern. This pat-tern is a two-step process, whereby a new owner address is selected, then the selected address must call a
claimOwnership() before the owner is changed. This ensures the new owner address is accessible.

Resolution

The recommendation has been marked as a potential improvement and will be considered through the gover-nance procedures.

Page | 15

Aave Protocol v2.0 Detailed Findings

AAV-10 Delegate Call to Force a Self-Destruct
Asset LendingPool.sol

Status Resolved: See Resolution
Rating Informational

Description

The LendingPool makes a delegatecall to the LendingPoolCollateralManager when liquidat-
ing a users balance. This address of the LendingPoolCollateralManager is retrieved from the
LendingPoolAddressesProvider which is passed to LendingPool during initialisation.
The actual LendingPool is initialised as a proxy which uses another contract to store the logic. The ini-
tialisation function can be called by any user and is called on the proxied LendingPool immediately by the
LendingPoolConfigurator during updates and creation.
However, on mainnet, the underlying logic contract was deployed but not initialised. This would allow anyarbitrary user to call the initialize() function. By itself this would not impact the proxy contracts and so
would not impact the Aave protocol. However, initialize() sets the LendingPoolAddressesProvider .
A malicious user could call initialize() on the underlying logic contract with the
LendingPoolAddressesProvider set to a contract of their design.
When the underlying LendingPool makes the delegate call to the address received from the maliciously de-
signed LendingPoolAddressesProvider , if the function is replaced with one which is calls self-destruct then
the underlying LendingPool logic contract will be self-destructed.
The impact of having the LendingPool self-destructed is that all calls made to the proxied LendingPool will
fail. The underlying logic can be re-instated by the LendingPoolConfigurator and the state will not be lost.

Recommendations

This can be mitigated by ensuring that the underlying logic contract for LendingPool is initialised. We alsorecommend initialising all other logic contracts.

Resolution

The mainnet LendingPool logic contract has now been initialised mitigating this attack vector. Please see theAave Security Newsletter for more details.

Page | 16

https://medium.com/aave/aave-security-newsletter-546bf964689d

Aave Protocol v2.0 Detailed Findings

AAV-11 Miscellaneous General Statements
Asset contracts/

Status Closed: See Resolution
Rating Informational

Description

This section describes general observations made by the testing team during this assessment that do not havedirect security implications:

• A lowercase ’L’ is use in ValidationLogic.validateFlashloan() vs uppercase in
LendingPool.flashLoan() and IFlashLoanReceiver ;

• CONFIGURATOR_REVISION is internal for LendingPoolConfigurator but public for all other similarcontracts;
• In StableDebtToken.sol line [111] the comment writes ’accrueing’ rather than ’accruing’;
• In ValidationLogic.validateRepay() the following casting occurs multiple times

ReserveLogic.InterestRateMode(rateMode) however, rateMode is already of type
ReserveLogic.InterestRateMode ;

• The comments in Errors.sol line [34-40] all say ’The liquidity of the reserve needs to be 0’. The com-ments do not match the functionality for most of these.
• In LendingPoolAddressesProviderRegistry the comments line [15] "for example with ‘0‘ for the Aave

main market and ‘1‘ for the next created" But zero is not allowed in registerAddressesProvider() so
the example should start at ’1’ rather than ’0’.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The issues listed have been marked as a potential improvements and will be considered through the governanceprocedures.

Page | 17

Aave Protocol v2.0 Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are provided alongside thisdocument. The brownie framework was used to perform these tests and the output is given below.
test_addresses_provider_set_lending_pool PASSED [0%]
test_addresses_provider_set_address_as_proxy PASSED [1%]
test_addresses_provider_set_lending_pool_configurator PASSED [2%]
test_addresses_provider_set_lending_pool_collateral_manager PASSED [2%]
test_addresses_provider_set_pool_admin PASSED [3%]
test_addresses_provider_set_emergency_admin PASSED [4%]
test_addresses_provider_set_price_oracle PASSED [4%]
test_addresses_provider_set_lending_rate_oracle PASSED [5%]
test_addresses_provider_set_address PASSED [6%]
test_addresses_provider_only_owner PASSED [6%]
test_proxy_overwrite XFAIL [7%]
test_registry_register_addresses_provider PASSED [8%]
test_registry_unregister_addresses_provider PASSED [9%]
test_registry_multiple PASSED [9%]
test_registry_id_twice XFAIL [10%]
test_registry_register_address_twice PASSED [11%]
test_registry_register_address_and_id_twice PASSED [11%]
test_registry_unregister_address_twice PASSED [12%]
test_registry_register_id_zero PASSED [13%]
test_registry_register_max SKIPPED [13%]
test_deposit_0x0 PASSED [14%]
test_withdraw_0x0 PASSED [15%]
test_transfers PASSED [15%]
test_validation PASSED [16%]
test_deposit_withdraw PASSED [17%]
test_deploy_lending_pool PASSED [18%]
test_deploy_weth9 PASSED [18%]
test_deploy_atoken PASSED [19%]
test_deploy_delegation_aware_atoken PASSED [20%]
test_deploy_default_reserve_interest_rates PASSED [20%]
test_deploy_stable_debt_token PASSED [21%]
test_deploy_variable_debt_token PASSED [22%]
test_deploy_lending_pool_configurator XFAIL [22%]
test_deploy_lending_pool_addresses_provider PASSED [23%]
test_deploy_lending_pool_addresses_provider_registry PASSED [24%]
test_deploy_lending_pool_collateral_manager PASSED [25%]
test_deploy_aave_oracle PASSED [25%]
test_deploy_aave_protocol_data_provider PASSED [26%]
test_deploy_weth_gateway PASSED [27%]
test_initial_reserve_state PASSED [27%]
test_deposits_no_collateral_and_borrowings PASSED [28%]
test_simple_deposit_on_behalf_of PASSED [29%]
test_deposits_collateral_and_borrowings_off PASSED [29%]
test_deposit_with_debt PASSED [30%]
test_withdraw_borrowings_and_collateral_off PASSED [31%]
test_withdraw_to PASSED [31%]
test_withdraw_no_borrowings_and_collateral PASSED [32%]
test_withdraw_with_debt PASSED [33%]
test_stable_borrow PASSED [34%]
test_borrow_on_behalf PASSED [34%]
test_stable_borrow_base_rate_zero PASSED [35%]
test_variable_borrow PASSED [36%]
test_repay_stable_base_rate_zero XFAIL [36%]
test_repay_stable PASSED [37%]
test_repay_on_behalf_of PASSED [38%]
test_repay_variable PASSED [38%]
test_swap_borrow_rate_mode_variable_to_stable PASSED [39%]
test_swap_borrow_rate_mode_stable_to_variable PASSED [40%]
test_rebalance_stable_borrow_rate PASSED [40%]
test_rebalance_stable_borrow_rate_with_no_debt XFAIL [41%]
test_set_user_use_reserve_as_collateral PASSED [42%]
test_liquidation_call_stable_rate_zero PASSED [43%]
test_liquidation_call_variable PASSED [43%]

Page | 18

Aave Protocol v2.0 Test Suite

test_liquidation_call_stable_and_variable PASSED [44%]
test_liquidation_call_with_atokens PASSED [45%]
test_liquidation_call_max_collateral PASSED [45%]
test_liquidation_call_self PASSED [46%]
test_flash_loan XFAIL [47%]
test_flash_loan_variable PASSED [47%]
test_flash_loan_stable PASSED [48%]
test_flash_loan_multiple PASSED [49%]
test_when_not_paused PASSED [50%]
test_only_lending_pool_configurator PASSED [50%]
test_max_reserves SKIPPED [51%]
test_init_reserve PASSED [52%]
test_init_reserve_twice PASSED [52%]
test_only_pool_admin PASSED [53%]
test_set_pool_pause PASSED [54%]
test_only_emergency_admin PASSED [54%]
test_update_stable_debt_token PASSED [55%]
test_update_variable_debt_token PASSED [56%]
test_update_atoken PASSED [56%]
test_reserve_freezing PASSED [57%]
test_reserve_activating PASSED [58%]
test_reserve_stable_rate_enabling PASSED [59%]
test_reserve_borrowing_enabling PASSED [59%]
test_set_reserve_factor PASSED [60%]
test_set_reserve_interest_rate_strategy_address PASSED [61%]
test_configure_reserve_as_collateral PASSED [61%]
test_linear_interest PASSED [62%]
test_linear_interest_one_year PASSED [63%]
test_linear_interest_max_values PASSED [63%]
test_linear_interest_zero PASSED [64%]
test_compound_interest PASSED [65%]
test_compound_interest_overflows PASSED [65%]
test_compound_interest_zero PASSED [66%]
test_percent_mul PASSED [67%]
test_percent_mul_zero PASSED [68%]
test_percent_mul_overflow PASSED [68%]
test_percent_div PASSED [69%]
test_percent_div_zero PASSED [70%]
test_percent_div_overflow PASSED [70%]
test_rebalance_attack XFAIL [71%]
test_borrow_basic PASSED [72%]
test_collateral_basic PASSED [72%]
test_config_fuzz PASSED [73%]
test_deposit_frozen PASSED [74%]
test_deposit_deactivated PASSED [75%]
test_deposit_invalid_amount PASSED [75%]
test_withdraw_invalid_amount PASSED [76%]
test_withdraw_insufficient_balance PASSED [77%]
test_withdraw_deactivated PASSED [77%]
test_borrow_while_frozen PASSED [78%]
test_borrow_zero PASSED [79%]
test_borrowing_disable_borrowing_on_reserve PASSED [79%]
test_borrowing_bad_interest_rate_mode PASSED [80%]
test_borrowing_no_collateral PASSED [81%]
test_borrowing_bad_health_factor PASSED [81%]
test_borrowing_insufficient_colalteral PASSED [82%]
test_borrowing_disable_stable_borrowing_on_reserve XFAIL [83%]
test_borrowing_stable_borrow_same_as_collateral XFAIL [84%]
test_borrowing_stable_borrow_more_than_max XFAIL [84%]
test_repay_deactivated PASSED [85%]
test_repay_zero PASSED [86%]
test_repay_with_no_debt PASSED [86%]
test_repay_max_on_behalf_of PASSED [87%]
test_swap_rate_deactivated PASSED [88%]
test_swap_rate_frozen PASSED [88%]
test_swap_rate_no_stable_debt PASSED [89%]
test_swap_rate_no_variable_debt PASSED [90%]
test_swap_rate_to_stable_with_collateral PASSED [90%]
test_swap_rate_bad_mode PASSED [91%]
test_rebalance_deactivated PASSED [92%]
test_rebalance_below_liquidity_threshold PASSED [93%]

Page | 19

Aave Protocol v2.0 Test Suite

test_rebalance_below_rate_threshold PASSED [93%]
test_validate_reserve_as_collateral_no_balance PASSED [94%]
test_validate_reserve_as_collateral_no_reserve PASSED [95%]
test_validate_reserve_as_collateral_deposit_used PASSED [95%]
test_liquidation_call_deactivated PASSED [96%]
test_liquidation_call_health_factor PASSED [97%]
test_liquidation_call_not_used_as_collateral PASSED [97%]
test_liquidation_call_with_no_debt PASSED [98%]
test_validate_flash_loan PASSED [99%]
test_validate_transfer PASSED [100%]

Page | 20

Aave Protocol v2.0 Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. Thetotal severity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.
html. [Accessed 2018].

[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 21

https://blog.sigmaprime.io/solidity-security.html
https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Detailed Findings
	 Summary of Findings
	Ineffective Check in validateBorrow()
	Available Liquidity Incorrectly Calculated in flashLoan()
	Issues when Stable Borrow Rate is Zero
	Debt Allowances are Front-runnable
	Lack of Validation for the Zero Address
	Inconsistent Event and Interface Naming
	Unused Variables in ValidationLogic
	Gas Optimisation in _calculateBalanceIncrease
	Contracts Do Not Implement Safe Ownership Transfer Pattern
	Delegate Call to Force a Self-Destruct
	Miscellaneous General Statements

	Test Suite
	Vulnerability Severity Classification

