// // Lookup data for exp2f // // @ts-ignore: decorator @inline const EXP2F_TABLE_BITS = 5; // @ts-ignore: decorator @lazy @inline const EXP2F_DATA_TAB = memory.data([ // exp2f_data_tab[i] = uint(2^(i/N)) - (i << 52-BITS) // used for computing 2^(k/N) for an int |k| < 150 N as // double(tab[k%N] + (k << 52-BITS)) 0x3FF0000000000000, 0x3FEFD9B0D3158574, 0x3FEFB5586CF9890F, 0x3FEF9301D0125B51, 0x3FEF72B83C7D517B, 0x3FEF54873168B9AA, 0x3FEF387A6E756238, 0x3FEF1E9DF51FDEE1, 0x3FEF06FE0A31B715, 0x3FEEF1A7373AA9CB, 0x3FEEDEA64C123422, 0x3FEECE086061892D, 0x3FEEBFDAD5362A27, 0x3FEEB42B569D4F82, 0x3FEEAB07DD485429, 0x3FEEA47EB03A5585, 0x3FEEA09E667F3BCD, 0x3FEE9F75E8EC5F74, 0x3FEEA11473EB0187, 0x3FEEA589994CCE13, 0x3FEEACE5422AA0DB, 0x3FEEB737B0CDC5E5, 0x3FEEC49182A3F090, 0x3FEED503B23E255D, 0x3FEEE89F995AD3AD, 0x3FEEFF76F2FB5E47, 0x3FEF199BDD85529C, 0x3FEF3720DCEF9069, 0x3FEF5818DCFBA487, 0x3FEF7C97337B9B5F, 0x3FEFA4AFA2A490DA, 0x3FEFD0765B6E4540 ]); // ULP error: 0.502 (nearest rounding.) // Relative error: 1.69 * 2^-34 in [-1/64, 1/64] (before rounding.) // Wrong count: 168353 (all nearest rounding wrong results with fma.) // @ts-ignore: decorator @inline export function exp2f_lut(x: f32): f32 { const N = 1 << EXP2F_TABLE_BITS, N_MASK = N - 1, shift = reinterpret(0x4338000000000000) / N, // 0x1.8p+52 Ox127f = reinterpret(0x7F000000); const C0 = reinterpret(0x3FAC6AF84B912394), // 0x1.c6af84b912394p-5 C1 = reinterpret(0x3FCEBFCE50FAC4F3), // 0x1.ebfce50fac4f3p-3 C2 = reinterpret(0x3FE62E42FF0C52D6); // 0x1.62e42ff0c52d6p-1 var xd = x; var ix = reinterpret(x); var ux = ix >> 20 & 0x7FF; if (ux >= 0x430) { // |x| >= 128 or x is nan. if (ix == 0xFF800000) return 0; // x == -Inf -> 0 if (ux >= 0x7F8) return x + x; // x == Inf/NaN -> Inf/NaN if (x > 0) return x * Ox127f; // x > 0 -> HugeVal (Owerflow) if (x <= -150) return 0; // x <= -150 -> 0 (Underflow) } // x = k/N + r with r in [-1/(2N), 1/(2N)] and int k. var kd = xd + shift; var ki = reinterpret(kd); var r = xd - (kd - shift); var t: u64, y: f64, s: f64; // exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) t = load(EXP2F_DATA_TAB + ((ki & N_MASK) << alignof())); t += ki << (52 - EXP2F_TABLE_BITS); s = reinterpret(t); y = C2 * r + 1; y += (C0 * r + C1) * (r * r); y *= s; return y; } // ULP error: 0.502 (nearest rounding.) // Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.) // Wrong count: 170635 (all nearest rounding wrong results with fma.) // @ts-ignore: decorator @inline export function expf_lut(x: f32): f32 { const N = 1 << EXP2F_TABLE_BITS, N_MASK = N - 1, shift = reinterpret(0x4338000000000000), // 0x1.8p+52 InvLn2N = reinterpret(0x3FF71547652B82FE) * N, // 0x1.71547652b82fep+0 Ox1p127f = reinterpret(0x7F000000); const C0 = reinterpret(0x3FAC6AF84B912394) / N / N / N, // 0x1.c6af84b912394p-5 C1 = reinterpret(0x3FCEBFCE50FAC4F3) / N / N, // 0x1.ebfce50fac4f3p-3 C2 = reinterpret(0x3FE62E42FF0C52D6) / N; // 0x1.62e42ff0c52d6p-1 var xd = x; var ix = reinterpret(x); var ux = ix >> 20 & 0x7FF; if (ux >= 0x42B) { // |x| >= 88 or x is nan. if (ix == 0xFF800000) return 0; // x == -Inf -> 0 if (ux >= 0x7F8) return x + x; // x == Inf/NaN -> Inf/NaN if (x > reinterpret(0x42B17217)) return x * Ox1p127f; // x > log(0x1p128) ~= 88.72 -> HugeVal (Owerflow) if (x < reinterpret(0xC2CFF1B4)) return 0; // x < log(0x1p-150) ~= -103.97 -> 0 (Underflow) } // x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. var z = InvLn2N * xd; // Round and convert z to int, the result is in [-150*N, 128*N] and // ideally ties-to-even rule is used, otherwise the magnitude of r // can be bigger which gives larger approximation error. var kd = (z + shift); var ki = reinterpret(kd); var r = z - (kd - shift); var s: f64, y: f64, t: u64; // exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) t = load(EXP2F_DATA_TAB + ((ki & N_MASK) << alignof())); t += ki << (52 - EXP2F_TABLE_BITS); s = reinterpret(t); z = C0 * r + C1; y = C2 * r + 1; y += z * (r * r); y *= s; return y; } // // Lookup data for log2f // // @ts-ignore: decorator @inline const LOG2F_TABLE_BITS = 4; // @ts-ignore: decorator @lazy @inline const LOG2F_DATA_TAB = memory.data([ reinterpret(0x3FF661EC79F8F3BE), reinterpret(0xBFDEFEC65B963019), // 0x1.661ec79f8f3bep+0, -0x1.efec65b963019p-2, reinterpret(0x3FF571ED4AAF883D), reinterpret(0xBFDB0B6832D4FCA4), // 0x1.571ed4aaf883dp+0, -0x1.b0b6832d4fca4p-2, reinterpret(0x3FF49539F0F010B0), reinterpret(0xBFD7418B0A1FB77B), // 0x1.49539f0f010bp+0 , -0x1.7418b0a1fb77bp-2, reinterpret(0x3FF3C995B0B80385), reinterpret(0xBFD39DE91A6DCF7B), // 0x1.3c995b0b80385p+0, -0x1.39de91a6dcf7bp-2, reinterpret(0x3FF30D190C8864A5), reinterpret(0xBFD01D9BF3F2B631), // 0x1.30d190c8864a5p+0, -0x1.01d9bf3f2b631p-2, reinterpret(0x3FF25E227B0B8EA0), reinterpret(0xBFC97C1D1B3B7AF0), // 0x1.25e227b0b8eap+0 , -0x1.97c1d1b3b7afp-3 , reinterpret(0x3FF1BB4A4A1A343F), reinterpret(0xBFC2F9E393AF3C9F), // 0x1.1bb4a4a1a343fp+0, -0x1.2f9e393af3c9fp-3, reinterpret(0x3FF12358F08AE5BA), reinterpret(0xBFB960CBBF788D5C), // 0x1.12358f08ae5bap+0, -0x1.960cbbf788d5cp-4, reinterpret(0x3FF0953F419900A7), reinterpret(0xBFAA6F9DB6475FCE), // 0x1.0953f419900a7p+0, -0x1.a6f9db6475fcep-5, reinterpret(0x3FF0000000000000), 0, // 0x1p+0, 0x0, reinterpret(0x3FEE608CFD9A47AC), reinterpret(0x3FB338CA9F24F53D), // 0x1.e608cfd9a47acp-1, 0x1.338ca9f24f53dp-4, reinterpret(0x3FECA4B31F026AA0), reinterpret(0x3FC476A9543891BA), // 0x1.ca4b31f026aap-1 , 0x1.476a9543891bap-3, reinterpret(0x3FEB2036576AFCE6), reinterpret(0x3FCE840B4AC4E4D2), // 0x1.b2036576afce6p-1, 0x1.e840b4ac4e4d2p-3, reinterpret(0x3FE9C2D163A1AA2D), reinterpret(0x3FD40645F0C6651C), // 0x1.9c2d163a1aa2dp-1, 0x1.40645f0c6651cp-2, reinterpret(0x3FE886E6037841ED), reinterpret(0x3FD88E9C2C1B9FF8), // 0x1.886e6037841edp-1, 0x1.88e9c2c1b9ff8p-2, reinterpret(0x3FE767DCF5534862), reinterpret(0x3FDCE0A44EB17BCC) // 0x1.767dcf5534862p-1, 0x1.ce0a44eb17bccp-2 ]); // ULP error: 0.752 (nearest rounding.) // Relative error: 1.9 * 2^-26 (before rounding.) // @ts-ignore: decorator @inline export function log2f_lut(x: f32): f32 { const N_MASK = (1 << LOG2F_TABLE_BITS) - 1, Ox1p23f = reinterpret(0x4B000000); // 0x1p23f const A0 = reinterpret(0xBFD712B6F70A7E4D), // -0x1.712b6f70a7e4dp-2 A1 = reinterpret(0x3FDECABF496832E0), // 0x1.ecabf496832ep-2 A2 = reinterpret(0xBFE715479FFAE3DE), // -0x1.715479ffae3dep-1 A3 = reinterpret(0x3FF715475F35C8B8); // 0x1.715475f35c8b8p0 var ux = reinterpret(x); // Fix sign of zero with downward rounding when x==1. // if (WANT_ROUNDING && predict_false(ix == 0x3f800000)) return 0; if (ux - 0x00800000 >= 0x7F800000 - 0x00800000) { // x < 0x1p-126 or inf or nan. if (ux * 2 == 0) return -Infinity; if (ux == 0x7F800000) return x; // log2(inf) == inf. if ((ux >> 31) || ux * 2 >= 0xFF000000) return (x - x) / (x - x); // x is subnormal, normalize it. ux = reinterpret(x * Ox1p23f); ux -= 23 << 23; } // x = 2^k z; where z is in range [OFF,2*OFF] and exact. // The range is split into N subintervals. // The ith subinterval contains z and c is near its center. var tmp = ux - 0x3F330000; var i = (tmp >> (23 - LOG2F_TABLE_BITS)) & N_MASK; var top = tmp & 0xFF800000; var iz = ux - top; var k = tmp >> 23; var invc = load(LOG2F_DATA_TAB + (i << (1 + alignof())), 0 << alignof()); var logc = load(LOG2F_DATA_TAB + (i << (1 + alignof())), 1 << alignof()); var z = reinterpret(iz); // log2(x) = log1p(z/c-1)/ln2 + log2(c) + k var r = z * invc - 1; var y0 = logc + k; // Pipelined polynomial evaluation to approximate log1p(r)/ln2. var y = A1 * r + A2; var p = A3 * r + y0; var r2 = r * r; y += A0 * r2; y = y * r2 + p; return y; } // // Lookup data for logf. See: https://git.musl-libc.org/cgit/musl/tree/src/math/logf.c // // @ts-ignore: decorator @inline const LOGF_TABLE_BITS = 4; // @ts-ignore: decorator @lazy @inline const LOGF_DATA_TAB = memory.data([ reinterpret(0x3FF661EC79F8F3BE), reinterpret(0xBFD57BF7808CAADE), // 0x1.661ec79f8f3bep+0, -0x1.57bf7808caadep-2, reinterpret(0x3FF571ED4AAF883D), reinterpret(0xBFD2BEF0A7C06DDB), // 0x1.571ed4aaf883dp+0, -0x1.2bef0a7c06ddbp-2, reinterpret(0x3FF49539F0F010B0), reinterpret(0xBFD01EAE7F513A67), // 0x1.49539f0f010bp+0 , -0x1.01eae7f513a67p-2, reinterpret(0x3FF3C995B0B80385), reinterpret(0xBFCB31D8A68224E9), // 0x1.3c995b0b80385p+0, -0x1.b31d8a68224e9p-3, reinterpret(0x3FF30D190C8864A5), reinterpret(0xBFC6574F0AC07758), // 0x1.30d190c8864a5p+0, -0x1.6574f0ac07758p-3, reinterpret(0x3FF25E227B0B8EA0), reinterpret(0xBFC1AA2BC79C8100), // 0x1.25e227b0b8eap+0 , -0x1.1aa2bc79c81p-3 , reinterpret(0x3FF1BB4A4A1A343F), reinterpret(0xBFBA4E76CE8C0E5E), // 0x1.1bb4a4a1a343fp+0, -0x1.a4e76ce8c0e5ep-4, reinterpret(0x3FF12358F08AE5BA), reinterpret(0xBFB1973C5A611CCC), // 0x1.12358f08ae5bap+0, -0x1.1973c5a611cccp-4, reinterpret(0x3FF0953F419900A7), reinterpret(0xBFA252F438E10C1E), // 0x1.0953f419900a7p+0, -0x1.252f438e10c1ep-5, reinterpret(0x3FF0000000000000), 0, // 0x1p+0, 0, reinterpret(0x3FEE608CFD9A47AC), reinterpret(0x3FAAA5AA5DF25984), // 0x1.e608cfd9a47acp-1, 0x1.aa5aa5df25984p-5, reinterpret(0x3FECA4B31F026AA0), reinterpret(0x3FBC5E53AA362EB4), // 0x1.ca4b31f026aap-1 , 0x1.c5e53aa362eb4p-4, reinterpret(0x3FEB2036576AFCE6), reinterpret(0x3FC526E57720DB08), // 0x1.b2036576afce6p-1, 0x1.526e57720db08p-3, reinterpret(0x3FE9C2D163A1AA2D), reinterpret(0x3FCBC2860D224770), // 0x1.9c2d163a1aa2dp-1, 0x1.bc2860d22477p-3 , reinterpret(0x3FE886E6037841ED), reinterpret(0x3FD1058BC8A07EE1), // 0x1.886e6037841edp-1, 0x1.1058bc8a07ee1p-2, reinterpret(0x3FE767DCF5534862), reinterpret(0x3FD4043057B6EE09) // 0x1.767dcf5534862p-1, 0x1.4043057b6ee09p-2 ]); // ULP error: 0.818 (nearest rounding.) // Relative error: 1.957 * 2^-26 (before rounding.) // @ts-ignore: decorator @inline export function logf_lut(x: f32): f32 { const N_MASK = (1 << LOGF_TABLE_BITS) - 1, Ox1p23f = reinterpret(0x4B000000); // 0x1p23f const Ln2 = reinterpret(0x3FE62E42FEFA39EF), // 0x1.62e42fefa39efp-1; A0 = reinterpret(0xBFD00EA348B88334), // -0x1.00ea348b88334p-2 A1 = reinterpret(0x3FD5575B0BE00B6A), // 0x1.5575b0be00b6ap-2 A2 = reinterpret(0xBFDFFFFEF20A4123); // -0x1.ffffef20a4123p-2 var ux = reinterpret(x); // Fix sign of zero with downward rounding when x==1. // if (WANT_ROUNDING && ux == 0x3f800000) return 0; if (ux - 0x00800000 >= 0x7F800000 - 0x00800000) { // x < 0x1p-126 or inf or nan. if ((ux << 1) == 0) return -Infinity; if (ux == 0x7F800000) return x; // log(inf) == inf. if ((ux >> 31) || (ux << 1) >= 0xFF000000) return (x - x) / (x - x); // x is subnormal, normalize it. ux = reinterpret(x * Ox1p23f); ux -= 23 << 23; } // x = 2^k z; where z is in range [OFF,2*OFF] and exact. // The range is split into N subintervals. // The ith subinterval contains z and c is near its center. var tmp = ux - 0x3F330000; var i = (tmp >> (23 - LOGF_TABLE_BITS)) & N_MASK; var k = tmp >> 23; var iz = ux - (tmp & 0x1FF << 23); var invc = load(LOGF_DATA_TAB + (i << (1 + alignof())), 0 << alignof()); var logc = load(LOGF_DATA_TAB + (i << (1 + alignof())), 1 << alignof()); var z = reinterpret(iz); // log(x) = log1p(z/c-1) + log(c) + k*Ln2 var r = z * invc - 1; var y0 = logc + k * Ln2; // Pipelined polynomial evaluation to approximate log1p(r). var r2 = r * r; var y = A1 * r + A2; y += A0 * r2; y = y * r2 + (y0 + r); return y; } // // Lookup data for powf. See: https://git.musl-libc.org/cgit/musl/tree/src/math/powf.c // // @ts-ignore: decorator @inline function zeroinfnanf(ux: u32): bool { return (ux << 1) - 1 >= (0x7f800000 << 1) - 1; } // Returns 0 if not int, 1 if odd int, 2 if even int. The argument is // the bit representation of a non-zero finite floating-point value. // @ts-ignore: decorator @inline function checkintf(iy: u32): i32 { var e = iy >> 23 & 0xFF; if (e < 0x7F ) return 0; if (e > 0x7F + 23) return 2; e = 1 << (0x7F + 23 - e); if (iy & (e - 1)) return 0; if (iy & e ) return 1; return 2; } // Subnormal input is normalized so ix has negative biased exponent. // Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set. // @ts-ignore: decorator @inline function log2f_inline(ux: u32): f64 { const N_MASK = (1 << LOG2F_TABLE_BITS) - 1; const A0 = reinterpret(0x3FD27616C9496E0B), // 0x1.27616c9496e0bp-2 A1 = reinterpret(0xBFD71969A075C67A), // -0x1.71969a075c67ap-2 A2 = reinterpret(0x3FDEC70A6CA7BADD), // 0x1.ec70a6ca7baddp-2 A3 = reinterpret(0xBFE7154748BEF6C8), // -0x1.7154748bef6c8p-1 A4 = reinterpret(0x3FF71547652AB82B); // 0x1.71547652ab82bp+0 // x = 2^k z; where z is in range [OFF,2*OFF] and exact. // The range is split into N subintervals. // The ith subinterval contains z and c is near its center. var tmp = ux - 0x3F330000; var i = ((tmp >> (23 - LOG2F_TABLE_BITS)) & N_MASK); var top = tmp & 0xFF800000; var uz = ux - top; var k = (top >> 23); var invc = load(LOG2F_DATA_TAB + (i << (1 + alignof())), 0 << alignof()); var logc = load(LOG2F_DATA_TAB + (i << (1 + alignof())), 1 << alignof()); var z = reinterpret(uz); // log2(x) = log1p(z/c-1)/ln2 + log2(c) + k var r = z * invc - 1; var y0 = logc + k; // Pipelined polynomial evaluation to approximate log1p(r)/ln2. var y = A0 * r + A1; var p = A2 * r + A3; var q = A4 * r + y0; r *= r; q += p * r; y = y * (r * r) + q; return y; } // The output of log2 and thus the input of exp2 is either scaled by N // (in case of fast toint intrinsics) or not. The unscaled xd must be // in [-1021,1023], sign_bias sets the sign of the result. // @ts-ignore: decorator @inline function exp2f_inline(xd: f64, signBias: u32): f32 { const N = 1 << EXP2F_TABLE_BITS, N_MASK = N - 1, shift = reinterpret(0x4338000000000000) / N; // 0x1.8p+52 const C0 = reinterpret(0x3FAC6AF84B912394), // 0x1.c6af84b912394p-5 C1 = reinterpret(0x3FCEBFCE50FAC4F3), // 0x1.ebfce50fac4f3p-3 C2 = reinterpret(0x3FE62E42FF0C52D6); // 0x1.62e42ff0c52d6p-1 // x = k/N + r with r in [-1/(2N), 1/(2N)] var kd = (xd + shift); var ki = reinterpret(kd); var r = xd - (kd - shift); var t: u64, z: f64, y: f64, s: f64; // exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) t = load(EXP2F_DATA_TAB + ((ki & N_MASK) << alignof())); t += (ki + signBias) << (52 - EXP2F_TABLE_BITS); s = reinterpret(t); z = C0 * r + C1; y = C2 * r + 1; y += z * (r * r); y *= s; return y; } // @ts-ignore: decorator @inline function xflowf(sign: u32, y: f32): f32 { return select(-y, y, sign) * y; } // @ts-ignore: decorator @inline function oflowf(sign: u32): f32 { return xflowf(sign, reinterpret(0x70000000)); // 0x1p97f } // @ts-ignore: decorator @inline function uflowf(sign: u32): f32 { return xflowf(sign, reinterpret(0x10000000)); // 0x1p-95f } // @ts-ignore: decorator @inline export function powf_lut(x: f32, y: f32): f32 { const Ox1p23f = reinterpret(0x4B000000), // 0x1p23f UPPER_LIMIT = reinterpret(0x405FFFFFFFD1D571), // 0x1.fffffffd1d571p+6 LOWER_LIMIT = -150.0, SIGN_BIAS = 1 << (EXP2F_TABLE_BITS + 11); var signBias: u32 = 0; var ix = reinterpret(x); var iy = reinterpret(y); var ny = 0; if (i32(ix - 0x00800000 >= 0x7f800000 - 0x00800000) | (ny = i32(zeroinfnanf(iy)))) { // Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). if (ny) { if ((iy << 1) == 0) return 1.0; if (ix == 0x3F800000) return NaN; // original: 1.0 if ((ix << 1) > (0x7F800000 << 1) || (iy << 1) > (0x7F800000 << 1)) return x + y; if ((ix << 1) == (0x3F800000 << 1)) return NaN; // original: 1.0 if (((ix << 1) < (0x3F800000 << 1)) == !(iy >> 31)) return 0; // |x| < 1 && y==inf or |x| > 1 && y==-inf. return y * y; } if (zeroinfnanf(ix)) { let x2 = x * x; if ((ix >> 31) && checkintf(iy) == 1) x2 = -x2; return iy >> 31 ? 1 / x2 : x2; } // x and y are non-zero finite. if (ix >> 31) { // Finite x < 0. let yint = checkintf(iy); if (yint == 0) return (x - x) / (x - x); if (yint == 1) signBias = SIGN_BIAS; ix &= 0x7FFFFFFF; } if (ix < 0x00800000) { // Normalize subnormal x so exponent becomes negative. ix = reinterpret(x * Ox1p23f); ix &= 0x7FFFFFFF; ix -= 23 << 23; } } var logx = log2f_inline(ix); var ylogx = y * logx; // cannot overflow, y is single prec. if ((reinterpret(ylogx) >> 47 & 0xFFFF) >= 0x80BF) { // reinterpret(126.0) >> 47 // |y * log(x)| >= 126 if (ylogx > UPPER_LIMIT) return oflowf(signBias); // overflow if (ylogx <= LOWER_LIMIT) return uflowf(signBias); // underflow } return exp2f_inline(ylogx, signBias); } // // Lookup data for exp. See: https://git.musl-libc.org/cgit/musl/tree/src/math/exp.c // // @ts-ignore: decorator @inline const EXP_TABLE_BITS = 7; // @ts-ignore: decorator @lazy @inline const EXP_DATA_TAB = memory.data([ 0x0000000000000000, 0x3FF0000000000000, 0x3C9B3B4F1A88BF6E, 0x3FEFF63DA9FB3335, 0xBC7160139CD8DC5D, 0x3FEFEC9A3E778061, 0xBC905E7A108766D1, 0x3FEFE315E86E7F85, 0x3C8CD2523567F613, 0x3FEFD9B0D3158574, 0xBC8BCE8023F98EFA, 0x3FEFD06B29DDF6DE, 0x3C60F74E61E6C861, 0x3FEFC74518759BC8, 0x3C90A3E45B33D399, 0x3FEFBE3ECAC6F383, 0x3C979AA65D837B6D, 0x3FEFB5586CF9890F, 0x3C8EB51A92FDEFFC, 0x3FEFAC922B7247F7, 0x3C3EBE3D702F9CD1, 0x3FEFA3EC32D3D1A2, 0xBC6A033489906E0B, 0x3FEF9B66AFFED31B, 0xBC9556522A2FBD0E, 0x3FEF9301D0125B51, 0xBC5080EF8C4EEA55, 0x3FEF8ABDC06C31CC, 0xBC91C923B9D5F416, 0x3FEF829AAEA92DE0, 0x3C80D3E3E95C55AF, 0x3FEF7A98C8A58E51, 0xBC801B15EAA59348, 0x3FEF72B83C7D517B, 0xBC8F1FF055DE323D, 0x3FEF6AF9388C8DEA, 0x3C8B898C3F1353BF, 0x3FEF635BEB6FCB75, 0xBC96D99C7611EB26, 0x3FEF5BE084045CD4, 0x3C9AECF73E3A2F60, 0x3FEF54873168B9AA, 0xBC8FE782CB86389D, 0x3FEF4D5022FCD91D, 0x3C8A6F4144A6C38D, 0x3FEF463B88628CD6, 0x3C807A05B0E4047D, 0x3FEF3F49917DDC96, 0x3C968EFDE3A8A894, 0x3FEF387A6E756238, 0x3C875E18F274487D, 0x3FEF31CE4FB2A63F, 0x3C80472B981FE7F2, 0x3FEF2B4565E27CDD, 0xBC96B87B3F71085E, 0x3FEF24DFE1F56381, 0x3C82F7E16D09AB31, 0x3FEF1E9DF51FDEE1, 0xBC3D219B1A6FBFFA, 0x3FEF187FD0DAD990, 0x3C8B3782720C0AB4, 0x3FEF1285A6E4030B, 0x3C6E149289CECB8F, 0x3FEF0CAFA93E2F56, 0x3C834D754DB0ABB6, 0x3FEF06FE0A31B715, 0x3C864201E2AC744C, 0x3FEF0170FC4CD831, 0x3C8FDD395DD3F84A, 0x3FEEFC08B26416FF, 0xBC86A3803B8E5B04, 0x3FEEF6C55F929FF1, 0xBC924AEDCC4B5068, 0x3FEEF1A7373AA9CB, 0xBC9907F81B512D8E, 0x3FEEECAE6D05D866, 0xBC71D1E83E9436D2, 0x3FEEE7DB34E59FF7, 0xBC991919B3CE1B15, 0x3FEEE32DC313A8E5, 0x3C859F48A72A4C6D, 0x3FEEDEA64C123422, 0xBC9312607A28698A, 0x3FEEDA4504AC801C, 0xBC58A78F4817895B, 0x3FEED60A21F72E2A, 0xBC7C2C9B67499A1B, 0x3FEED1F5D950A897, 0x3C4363ED60C2AC11, 0x3FEECE086061892D, 0x3C9666093B0664EF, 0x3FEECA41ED1D0057, 0x3C6ECCE1DAA10379, 0x3FEEC6A2B5C13CD0, 0x3C93FF8E3F0F1230, 0x3FEEC32AF0D7D3DE, 0x3C7690CEBB7AAFB0, 0x3FEEBFDAD5362A27, 0x3C931DBDEB54E077, 0x3FEEBCB299FDDD0D, 0xBC8F94340071A38E, 0x3FEEB9B2769D2CA7, 0xBC87DECCDC93A349, 0x3FEEB6DAA2CF6642, 0xBC78DEC6BD0F385F, 0x3FEEB42B569D4F82, 0xBC861246EC7B5CF6, 0x3FEEB1A4CA5D920F, 0x3C93350518FDD78E, 0x3FEEAF4736B527DA, 0x3C7B98B72F8A9B05, 0x3FEEAD12D497C7FD, 0x3C9063E1E21C5409, 0x3FEEAB07DD485429, 0x3C34C7855019C6EA, 0x3FEEA9268A5946B7, 0x3C9432E62B64C035, 0x3FEEA76F15AD2148, 0xBC8CE44A6199769F, 0x3FEEA5E1B976DC09, 0xBC8C33C53BEF4DA8, 0x3FEEA47EB03A5585, 0xBC845378892BE9AE, 0x3FEEA34634CCC320, 0xBC93CEDD78565858, 0x3FEEA23882552225, 0x3C5710AA807E1964, 0x3FEEA155D44CA973, 0xBC93B3EFBF5E2228, 0x3FEEA09E667F3BCD, 0xBC6A12AD8734B982, 0x3FEEA012750BDABF, 0xBC6367EFB86DA9EE, 0x3FEE9FB23C651A2F, 0xBC80DC3D54E08851, 0x3FEE9F7DF9519484, 0xBC781F647E5A3ECF, 0x3FEE9F75E8EC5F74, 0xBC86EE4AC08B7DB0, 0x3FEE9F9A48A58174, 0xBC8619321E55E68A, 0x3FEE9FEB564267C9, 0x3C909CCB5E09D4D3, 0x3FEEA0694FDE5D3F, 0xBC7B32DCB94DA51D, 0x3FEEA11473EB0187, 0x3C94ECFD5467C06B, 0x3FEEA1ED0130C132, 0x3C65EBE1ABD66C55, 0x3FEEA2F336CF4E62, 0xBC88A1C52FB3CF42, 0x3FEEA427543E1A12, 0xBC9369B6F13B3734, 0x3FEEA589994CCE13, 0xBC805E843A19FF1E, 0x3FEEA71A4623C7AD, 0xBC94D450D872576E, 0x3FEEA8D99B4492ED, 0x3C90AD675B0E8A00, 0x3FEEAAC7D98A6699, 0x3C8DB72FC1F0EAB4, 0x3FEEACE5422AA0DB, 0xBC65B6609CC5E7FF, 0x3FEEAF3216B5448C, 0x3C7BF68359F35F44, 0x3FEEB1AE99157736, 0xBC93091FA71E3D83, 0x3FEEB45B0B91FFC6, 0xBC5DA9B88B6C1E29, 0x3FEEB737B0CDC5E5, 0xBC6C23F97C90B959, 0x3FEEBA44CBC8520F, 0xBC92434322F4F9AA, 0x3FEEBD829FDE4E50, 0xBC85CA6CD7668E4B, 0x3FEEC0F170CA07BA, 0x3C71AFFC2B91CE27, 0x3FEEC49182A3F090, 0x3C6DD235E10A73BB, 0x3FEEC86319E32323, 0xBC87C50422622263, 0x3FEECC667B5DE565, 0x3C8B1C86E3E231D5, 0x3FEED09BEC4A2D33, 0xBC91BBD1D3BCBB15, 0x3FEED503B23E255D, 0x3C90CC319CEE31D2, 0x3FEED99E1330B358, 0x3C8469846E735AB3, 0x3FEEDE6B5579FDBF, 0xBC82DFCD978E9DB4, 0x3FEEE36BBFD3F37A, 0x3C8C1A7792CB3387, 0x3FEEE89F995AD3AD, 0xBC907B8F4AD1D9FA, 0x3FEEEE07298DB666, 0xBC55C3D956DCAEBA, 0x3FEEF3A2B84F15FB, 0xBC90A40E3DA6F640, 0x3FEEF9728DE5593A, 0xBC68D6F438AD9334, 0x3FEEFF76F2FB5E47, 0xBC91EEE26B588A35, 0x3FEF05B030A1064A, 0x3C74FFD70A5FDDCD, 0x3FEF0C1E904BC1D2, 0xBC91BDFBFA9298AC, 0x3FEF12C25BD71E09, 0x3C736EAE30AF0CB3, 0x3FEF199BDD85529C, 0x3C8EE3325C9FFD94, 0x3FEF20AB5FFFD07A, 0x3C84E08FD10959AC, 0x3FEF27F12E57D14B, 0x3C63CDAF384E1A67, 0x3FEF2F6D9406E7B5, 0x3C676B2C6C921968, 0x3FEF3720DCEF9069, 0xBC808A1883CCB5D2, 0x3FEF3F0B555DC3FA, 0xBC8FAD5D3FFFFA6F, 0x3FEF472D4A07897C, 0xBC900DAE3875A949, 0x3FEF4F87080D89F2, 0x3C74A385A63D07A7, 0x3FEF5818DCFBA487, 0xBC82919E2040220F, 0x3FEF60E316C98398, 0x3C8E5A50D5C192AC, 0x3FEF69E603DB3285, 0x3C843A59AC016B4B, 0x3FEF7321F301B460, 0xBC82D52107B43E1F, 0x3FEF7C97337B9B5F, 0xBC892AB93B470DC9, 0x3FEF864614F5A129, 0x3C74B604603A88D3, 0x3FEF902EE78B3FF6, 0x3C83C5EC519D7271, 0x3FEF9A51FBC74C83, 0xBC8FF7128FD391F0, 0x3FEFA4AFA2A490DA, 0xBC8DAE98E223747D, 0x3FEFAF482D8E67F1, 0x3C8EC3BC41AA2008, 0x3FEFBA1BEE615A27, 0x3C842B94C3A9EB32, 0x3FEFC52B376BBA97, 0x3C8A64A931D185EE, 0x3FEFD0765B6E4540, 0xBC8E37BAE43BE3ED, 0x3FEFDBFDAD9CBE14, 0x3C77893B4D91CD9D, 0x3FEFE7C1819E90D8, 0x3C5305C14160CC89, 0x3FEFF3C22B8F71F1 ]); // Handle cases that may overflow or underflow when computing the result that // is scale*(1+TMP) without intermediate rounding. The bit representation of // scale is in SBITS, however it has a computed exponent that may have // overflown into the sign bit so that needs to be adjusted before using it as // a double. (int32_t)KI is the k used in the argument reduction and exponent // adjustment of scale, positive k here means the result may overflow and // negative k means the result may underflow. // @ts-ignore: decorator @inline function specialcase(tmp: f64, sbits: u64, ki: u64): f64 { const Ox1p_1022 = reinterpret(0x0010000000000000), // 0x1p-1022 Ox1p1009 = reinterpret(0x7F00000000000000); // 0x1p1009 var scale: f64; if (!(ki & 0x80000000)) { // k > 0, the exponent of scale might have overflowed by <= 460. sbits -= u64(1009) << 52; scale = reinterpret(sbits); return Ox1p1009 * (scale + scale * tmp); // 0x1p1009 } // k < 0, need special care in the subnormal range. sbits += u64(1022) << 52; // Note: sbits is signed scale. scale = reinterpret(sbits); var y = scale + scale * tmp; if (abs(y) < 1.0) { // Round y to the right precision before scaling it into the subnormal // range to avoid double rounding that can cause 0.5+E/2 ulp error where // E is the worst-case ulp error outside the subnormal range. So this // is only useful if the goal is better than 1 ulp worst-case error. let one = copysign(1.0, y); let lo = scale - y + scale * tmp; let hi = one + y; lo = one - hi + y + lo; y = (hi + lo) - one; // Fix the sign of 0. if (y == 0.0) y = reinterpret(sbits & 0x8000000000000000); } return y * Ox1p_1022; } // @ts-ignore: decorator @inline export function exp_lut(x: f64): f64 { const N = 1 << EXP_TABLE_BITS, N_MASK = N - 1; const InvLn2N = reinterpret(0x3FF71547652B82FE) * N, // 0x1.71547652b82fep0 NegLn2hiN = reinterpret(0xBF762E42FEFA0000), // -0x1.62e42fefa0000p-8 NegLn2loN = reinterpret(0xBD0CF79ABC9E3B3A), // -0x1.cf79abc9e3b3ap-47 shift = reinterpret(0x4338000000000000); // 0x1.8p52; const C2 = reinterpret(0x3FDFFFFFFFFFFDBD), // __exp_data.poly[0] (0x1.ffffffffffdbdp-2) C3 = reinterpret(0x3FC555555555543C), // __exp_data.poly[1] (0x1.555555555543cp-3) C4 = reinterpret(0x3FA55555CF172B91), // __exp_data.poly[2] (0x1.55555cf172b91p-5) C5 = reinterpret(0x3F81111167A4D017); // __exp_data.poly[3] (0x1.1111167a4d017p-7) var ux = reinterpret(x); var abstop = (ux >> 52 & 0x7FF); if (abstop - 0x3C9 >= 0x03F) { if (abstop - 0x3C9 >= 0x80000000) return 1; if (abstop >= 0x409) { if (ux == 0xFFF0000000000000) return 0; if (abstop >= 0x7FF) return 1.0 + x; return select(0, Infinity, ux >> 63); } // Large x is special cased below. abstop = 0; } // exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)] // x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N] var z = InvLn2N * x; // #if TOINT_INTRINSICS // kd = roundtoint(z); // ki = converttoint(z); // #elif EXP_USE_TOINT_NARROW // // z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. // var kd = z + shift; // var ki = reinterpret(kd) >> 16; // var kd = ki; // #else // z - kd is in [-1, 1] in non-nearest rounding modes. var kd = z + shift; var ki = reinterpret(kd); kd -= shift; // #endif var r = x + kd * NegLn2hiN + kd * NegLn2loN; // 2^(k/N) ~= scale * (1 + tail). var idx = ((ki & N_MASK) << 1); var top = ki << (52 - EXP_TABLE_BITS); var tail = reinterpret(load(EXP_DATA_TAB + (idx << alignof()))); // T[idx] // This is only a valid scale when -1023*N < k < 1024*N var sbits = load(EXP_DATA_TAB + (idx << alignof()), 1 << alignof()) + top; // T[idx + 1] // exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). // Evaluation is optimized assuming superscalar pipelined execution. var r2 = r * r; // Without fma the worst case error is 0.25/N ulp larger. // Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. var tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); if (abstop == 0) return specialcase(tmp, sbits, ki); var scale = reinterpret(sbits); // Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there // is no spurious underflow here even without fma. return scale + scale * tmp; } // // Lookup data for exp2. See: https://git.musl-libc.org/cgit/musl/tree/src/math/exp2.c // // Handle cases that may overflow or underflow when computing the result that // is scale*(1+TMP) without intermediate rounding. The bit representation of // scale is in SBITS, however it has a computed exponent that may have // overflown into the sign bit so that needs to be adjusted before using it as // a double. (int32_t)KI is the k used in the argument reduction and exponent // adjustment of scale, positive k here means the result may overflow and // negative k means the result may underflow. // @ts-ignore: decorator @inline function specialcase2(tmp: f64, sbits: u64, ki: u64): f64 { const Ox1p_1022 = reinterpret(0x10000000000000); // 0x1p-1022 var scale: f64; if ((ki & 0x80000000) == 0) { // k > 0, the exponent of scale might have overflowed by 1 sbits -= u64(1) << 52; scale = reinterpret(sbits); return 2 * (scale * tmp + scale); } // k < 0, need special care in the subnormal range sbits += u64(1022) << 52; scale = reinterpret(sbits); var y = scale * tmp + scale; if (y < 1.0) { // Round y to the right precision before scaling it into the subnormal // range to avoid double rounding that can cause 0.5+E/2 ulp error where // E is the worst-case ulp error outside the subnormal range. So this // is only useful if the goal is better than 1 ulp worst-case error. let hi: f64, lo: f64; lo = scale - y + scale * tmp; hi = 1.0 + y; lo = 1.0 - hi + y + lo; y = (hi + lo) - 1.0; } return y * Ox1p_1022; } // @ts-ignore: decorator @inline export function exp2_lut(x: f64): f64 { const N = 1 << EXP_TABLE_BITS, N_MASK = N - 1, shift = reinterpret(0x4338000000000000) / N; // 0x1.8p52 const C1 = reinterpret(0x3FE62E42FEFA39EF), // 0x1.62e42fefa39efp-1 C2 = reinterpret(0x3FCEBFBDFF82C424), // 0x1.ebfbdff82c424p-3 C3 = reinterpret(0x3FAC6B08D70CF4B5), // 0x1.c6b08d70cf4b5p-5 C4 = reinterpret(0x3F83B2ABD24650CC), // 0x1.3b2abd24650ccp-7 C5 = reinterpret(0x3F55D7E09B4E3A84); // 0x1.5d7e09b4e3a84p-10 var ux = reinterpret(x); var abstop = (ux >> 52 & 0x7ff); if (abstop - 0x3C9 >= 0x03F) { if (abstop - 0x3C9 >= 0x80000000) return 1.0; if (abstop >= 0x409) { if (ux == 0xFFF0000000000000) return 0; if (abstop >= 0x7FF) return 1.0 + x; if (!(ux >> 63)) return Infinity; else if (ux >= 0xC090CC0000000000) return 0; } if ((ux << 1) > 0x811A000000000000) abstop = 0; // Large x is special cased below. } // exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. // x = k/N + r, with int k and r in [-1/2N, 1/2N] var kd = x + shift; var ki = reinterpret(kd); kd -= shift; // k/N for int k var r = x - kd; // 2^(k/N) ~= scale * (1 + tail) var idx = ((ki & N_MASK) << 1); var top = ki << (52 - EXP_TABLE_BITS); var tail = reinterpret(load(EXP_DATA_TAB + (idx << alignof()), 0 << alignof())); // T[idx]) // This is only a valid scale when -1023*N < k < 1024*N var sbits = load(EXP_DATA_TAB + (idx << alignof()), 1 << alignof()) + top; // T[idx + 1] // exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). // Evaluation is optimized assuming superscalar pipelined execution var r2 = r * r; // Without fma the worst case error is 0.5/N ulp larger. // Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. var tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); if (abstop == 0) return specialcase2(tmp, sbits, ki); var scale = reinterpret(sbits); // Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there // is no spurious underflow here even without fma. return scale * tmp + scale; } // // Lookup data for log2. See: https://git.musl-libc.org/cgit/musl/tree/src/math/log2.c // // @ts-ignore: decorator @inline const LOG2_TABLE_BITS = 6; /* Algorithm: x = 2^k z log2(x) = k + log2(c) + log2(z/c) log2(z/c) = poly(z/c - 1) where z is in [1.6p-1; 1.6p0] which is split into N subintervals and z falls into the ith one, then table entries are computed as tab[i].invc = 1/c tab[i].logc = (double)log2(c) tab2[i].chi = (double)c tab2[i].clo = (double)(c - (double)c) where c is near the center of the subinterval and is chosen by trying +-2^29 floating point invc candidates around 1/center and selecting one for which 1) the rounding error in 0x1.8p10 + logc is 0, 2) the rounding error in z - chi - clo is < 0x1p-64 and 3) the rounding error in (double)log2(c) is minimized (< 0x1p-68). Note: 1) ensures that k + logc can be computed without rounding error, 2) ensures that z/c - 1 can be computed as (z - chi - clo)*invc with close to a single rounding error when there is no fast fma for z*invc - 1, 3) ensures that logc + poly(z/c - 1) has small error, however near x == 1 when |log2(x)| < 0x1p-4, this is not enough so that is special cased. */ // @ts-ignore: decorator @lazy @inline const LOG2_DATA_TAB1 = memory.data([ // invc , logc reinterpret(0x3FF724286BB1ACF8), reinterpret(0xBFE1095FEECDB000), reinterpret(0x3FF6E1F766D2CCA1), reinterpret(0xBFE08494BD76D000), reinterpret(0x3FF6A13D0E30D48A), reinterpret(0xBFE00143AEE8F800), reinterpret(0x3FF661EC32D06C85), reinterpret(0xBFDEFEC5360B4000), reinterpret(0x3FF623FA951198F8), reinterpret(0xBFDDFDD91AB7E000), reinterpret(0x3FF5E75BA4CF026C), reinterpret(0xBFDCFFAE0CC79000), reinterpret(0x3FF5AC055A214FB8), reinterpret(0xBFDC043811FDA000), reinterpret(0x3FF571ED0F166E1E), reinterpret(0xBFDB0B67323AE000), reinterpret(0x3FF53909590BF835), reinterpret(0xBFDA152F5A2DB000), reinterpret(0x3FF5014FED61ADDD), reinterpret(0xBFD9217F5AF86000), reinterpret(0x3FF4CAB88E487BD0), reinterpret(0xBFD8304DB0719000), reinterpret(0x3FF49539B4334FEE), reinterpret(0xBFD74189F9A9E000), reinterpret(0x3FF460CBDFAFD569), reinterpret(0xBFD6552BB5199000), reinterpret(0x3FF42D664EE4B953), reinterpret(0xBFD56B23A29B1000), reinterpret(0x3FF3FB01111DD8A6), reinterpret(0xBFD483650F5FA000), reinterpret(0x3FF3C995B70C5836), reinterpret(0xBFD39DE937F6A000), reinterpret(0x3FF3991C4AB6FD4A), reinterpret(0xBFD2BAA1538D6000), reinterpret(0x3FF3698E0CE099B5), reinterpret(0xBFD1D98340CA4000), reinterpret(0x3FF33AE48213E7B2), reinterpret(0xBFD0FA853A40E000), reinterpret(0x3FF30D191985BDB1), reinterpret(0xBFD01D9C32E73000), reinterpret(0x3FF2E025CAB271D7), reinterpret(0xBFCE857DA2FA6000), reinterpret(0x3FF2B404CF13CD82), reinterpret(0xBFCCD3C8633D8000), reinterpret(0x3FF288B02C7CCB50), reinterpret(0xBFCB26034C14A000), reinterpret(0x3FF25E2263944DE5), reinterpret(0xBFC97C1C2F4FE000), reinterpret(0x3FF234563D8615B1), reinterpret(0xBFC7D6023F800000), reinterpret(0x3FF20B46E33EAF38), reinterpret(0xBFC633A71A05E000), reinterpret(0x3FF1E2EEFDCDA3DD), reinterpret(0xBFC494F5E9570000), reinterpret(0x3FF1BB4A580B3930), reinterpret(0xBFC2F9E424E0A000), reinterpret(0x3FF19453847F2200), reinterpret(0xBFC162595AFDC000), reinterpret(0x3FF16E06C0D5D73C), reinterpret(0xBFBF9C9A75BD8000), reinterpret(0x3FF1485F47B7E4C2), reinterpret(0xBFBC7B575BF9C000), reinterpret(0x3FF12358AD0085D1), reinterpret(0xBFB960C60FF48000), reinterpret(0x3FF0FEF00F532227), reinterpret(0xBFB64CE247B60000), reinterpret(0x3FF0DB2077D03A8F), reinterpret(0xBFB33F78B2014000), reinterpret(0x3FF0B7E6D65980D9), reinterpret(0xBFB0387D1A42C000), reinterpret(0x3FF0953EFE7B408D), reinterpret(0xBFAA6F9208B50000), reinterpret(0x3FF07325CAC53B83), reinterpret(0xBFA47A954F770000), reinterpret(0x3FF05197E40D1B5C), reinterpret(0xBF9D23A8C50C0000), reinterpret(0x3FF03091C1208EA2), reinterpret(0xBF916A2629780000), reinterpret(0x3FF0101025B37E21), reinterpret(0xBF7720F8D8E80000), reinterpret(0x3FEFC07EF9CAA76B), reinterpret(0x3F86FE53B1500000), reinterpret(0x3FEF4465D3F6F184), reinterpret(0x3FA11CCCE10F8000), reinterpret(0x3FEECC079F84107F), reinterpret(0x3FAC4DFC8C8B8000), reinterpret(0x3FEE573A99975AE8), reinterpret(0x3FB3AA321E574000), reinterpret(0x3FEDE5D6F0BD3DE6), reinterpret(0x3FB918A0D08B8000), reinterpret(0x3FED77B681FF38B3), reinterpret(0x3FBE72E9DA044000), reinterpret(0x3FED0CB5724DE943), reinterpret(0x3FC1DCD2507F6000), reinterpret(0x3FECA4B2DC0E7563), reinterpret(0x3FC476AB03DEA000), reinterpret(0x3FEC3F8EE8D6CB51), reinterpret(0x3FC7074377E22000), reinterpret(0x3FEBDD2B4F020C4C), reinterpret(0x3FC98EDE8BA94000), reinterpret(0x3FEB7D6C006015CA), reinterpret(0x3FCC0DB86AD2E000), reinterpret(0x3FEB20366E2E338F), reinterpret(0x3FCE840AAFCEE000), reinterpret(0x3FEAC57026295039), reinterpret(0x3FD0790AB4678000), reinterpret(0x3FEA6D01BC2731DD), reinterpret(0x3FD1AC056801C000), reinterpret(0x3FEA16D3BC3FF18B), reinterpret(0x3FD2DB11D4FEE000), reinterpret(0x3FE9C2D14967FEAD), reinterpret(0x3FD406464EC58000), reinterpret(0x3FE970E4F47C9902), reinterpret(0x3FD52DBE093AF000), reinterpret(0x3FE920FB3982BCF2), reinterpret(0x3FD651902050D000), reinterpret(0x3FE8D30187F759F1), reinterpret(0x3FD771D2CDEAF000), reinterpret(0x3FE886E5EBB9F66D), reinterpret(0x3FD88E9C857D9000), reinterpret(0x3FE83C97B658B994), reinterpret(0x3FD9A80155E16000), reinterpret(0x3FE7F405FFC61022), reinterpret(0x3FDABE186ED3D000), reinterpret(0x3FE7AD22181415CA), reinterpret(0x3FDBD0F2AEA0E000), reinterpret(0x3FE767DCF99EFF8C), reinterpret(0x3FDCE0A43DBF4000) ]); // @ts-ignore: decorator @lazy @inline const LOG2_DATA_TAB2 = memory.data([ // chi , clo reinterpret(0x3FE6200012B90A8E), reinterpret(0x3C8904AB0644B605), reinterpret(0x3FE66000045734A6), reinterpret(0x3C61FF9BEA62F7A9), reinterpret(0x3FE69FFFC325F2C5), reinterpret(0x3C827ECFCB3C90BA), reinterpret(0x3FE6E00038B95A04), reinterpret(0x3C88FF8856739326), reinterpret(0x3FE71FFFE09994E3), reinterpret(0x3C8AFD40275F82B1), reinterpret(0x3FE7600015590E10), reinterpret(0xBC72FD75B4238341), reinterpret(0x3FE7A00012655BD5), reinterpret(0x3C7808E67C242B76), reinterpret(0x3FE7E0003259E9A6), reinterpret(0xBC6208E426F622B7), reinterpret(0x3FE81FFFEDB4B2D2), reinterpret(0xBC8402461EA5C92F), reinterpret(0x3FE860002DFAFCC3), reinterpret(0x3C6DF7F4A2F29A1F), reinterpret(0x3FE89FFFF78C6B50), reinterpret(0xBC8E0453094995FD), reinterpret(0x3FE8E00039671566), reinterpret(0xBC8A04F3BEC77B45), reinterpret(0x3FE91FFFE2BF1745), reinterpret(0xBC77FA34400E203C), reinterpret(0x3FE95FFFCC5C9FD1), reinterpret(0xBC76FF8005A0695D), reinterpret(0x3FE9A0003BBA4767), reinterpret(0x3C70F8C4C4EC7E03), reinterpret(0x3FE9DFFFE7B92DA5), reinterpret(0x3C8E7FD9478C4602), reinterpret(0x3FEA1FFFD72EFDAF), reinterpret(0xBC6A0C554DCDAE7E), reinterpret(0x3FEA5FFFDE04FF95), reinterpret(0x3C867DA98CE9B26B), reinterpret(0x3FEA9FFFCA5E8D2B), reinterpret(0xBC8284C9B54C13DE), reinterpret(0x3FEADFFFDDAD03EA), reinterpret(0x3C5812C8EA602E3C), reinterpret(0x3FEB1FFFF10D3D4D), reinterpret(0xBC8EFADDAD27789C), reinterpret(0x3FEB5FFFCE21165A), reinterpret(0x3C53CB1719C61237), reinterpret(0x3FEB9FFFD950E674), reinterpret(0x3C73F7D94194CE00), reinterpret(0x3FEBE000139CA8AF), reinterpret(0x3C750AC4215D9BC0), reinterpret(0x3FEC20005B46DF99), reinterpret(0x3C6BEEA653E9C1C9), reinterpret(0x3FEC600040B9F7AE), reinterpret(0xBC7C079F274A70D6), reinterpret(0x3FECA0006255FD8A), reinterpret(0xBC7A0B4076E84C1F), reinterpret(0x3FECDFFFD94C095D), reinterpret(0x3C88F933F99AB5D7), reinterpret(0x3FED1FFFF975D6CF), reinterpret(0xBC582C08665FE1BE), reinterpret(0x3FED5FFFA2561C93), reinterpret(0xBC7B04289BD295F3), reinterpret(0x3FED9FFF9D228B0C), reinterpret(0x3C870251340FA236), reinterpret(0x3FEDE00065BC7E16), reinterpret(0xBC75011E16A4D80C), reinterpret(0x3FEE200002F64791), reinterpret(0x3C89802F09EF62E0), reinterpret(0x3FEE600057D7A6D8), reinterpret(0xBC7E0B75580CF7FA), reinterpret(0x3FEEA00027EDC00C), reinterpret(0xBC8C848309459811), reinterpret(0x3FEEE0006CF5CB7C), reinterpret(0xBC8F8027951576F4), reinterpret(0x3FEF2000782B7DCC), reinterpret(0xBC8F81D97274538F), reinterpret(0x3FEF6000260C450A), reinterpret(0xBC4071002727FFDC), reinterpret(0x3FEF9FFFE88CD533), reinterpret(0xBC581BDCE1FDA8B0), reinterpret(0x3FEFDFFFD50F8689), reinterpret(0x3C87F91ACB918E6E), reinterpret(0x3FF0200004292367), reinterpret(0x3C9B7FF365324681), reinterpret(0x3FF05FFFE3E3D668), reinterpret(0x3C86FA08DDAE957B), reinterpret(0x3FF0A0000A85A757), reinterpret(0xBC57E2DE80D3FB91), reinterpret(0x3FF0E0001A5F3FCC), reinterpret(0xBC91823305C5F014), reinterpret(0x3FF11FFFF8AFBAF5), reinterpret(0xBC8BFABB6680BAC2), reinterpret(0x3FF15FFFE54D91AD), reinterpret(0xBC9D7F121737E7EF), reinterpret(0x3FF1A00011AC36E1), reinterpret(0x3C9C000A0516F5FF), reinterpret(0x3FF1E00019C84248), reinterpret(0xBC9082FBE4DA5DA0), reinterpret(0x3FF220000FFE5E6E), reinterpret(0xBC88FDD04C9CFB43), reinterpret(0x3FF26000269FD891), reinterpret(0x3C8CFE2A7994D182), reinterpret(0x3FF2A00029A6E6DA), reinterpret(0xBC700273715E8BC5), reinterpret(0x3FF2DFFFE0293E39), reinterpret(0x3C9B7C39DAB2A6F9), reinterpret(0x3FF31FFFF7DCF082), reinterpret(0x3C7DF1336EDC5254), reinterpret(0x3FF35FFFF05A8B60), reinterpret(0xBC9E03564CCD31EB), reinterpret(0x3FF3A0002E0EAECC), reinterpret(0x3C75F0E74BD3A477), reinterpret(0x3FF3E000043BB236), reinterpret(0x3C9C7DCB149D8833), reinterpret(0x3FF4200002D187FF), reinterpret(0x3C7E08AFCF2D3D28), reinterpret(0x3FF460000D387CB1), reinterpret(0x3C820837856599A6), reinterpret(0x3FF4A00004569F89), reinterpret(0xBC89FA5C904FBCD2), reinterpret(0x3FF4E000043543F3), reinterpret(0xBC781125ED175329), reinterpret(0x3FF51FFFCC027F0F), reinterpret(0x3C9883D8847754DC), reinterpret(0x3FF55FFFFD87B36F), reinterpret(0xBC8709E731D02807), reinterpret(0x3FF59FFFF21DF7BA), reinterpret(0x3C87F79F68727B02), reinterpret(0x3FF5DFFFEBFC3481), reinterpret(0xBC9180902E30E93E) ]); // @ts-ignore: decorator @inline export function log2_lut(x: f64): f64 { const N_MASK = (1 << LOG2_TABLE_BITS) - 1; const LO: u64 = 0x3FEEA4AF00000000, // reinterpret(1.0 - 0x1.5b51p-5) HI: u64 = 0x3FF0B55900000000; // reinterpret(1.0 + 0x1.6ab2p-5) const InvLn2hi = reinterpret(0x3FF7154765200000), // 0x1.7154765200000p+0 InvLn2lo = reinterpret(0x3DE705FC2EEFA200), // 0x1.705fc2eefa200p-33 Ox1p52 = reinterpret(0x4330000000000000); // 0x1p52 const B0 = reinterpret(0xBFE71547652B82FE), // -0x1.71547652b82fep-1 B1 = reinterpret(0x3FDEC709DC3A03F7), // 0x1.ec709dc3a03f7p-2 B2 = reinterpret(0xBFD71547652B7C3F), // -0x1.71547652b7c3fp-2 B3 = reinterpret(0x3FD2776C50F05BE4), // 0x1.2776c50f05be4p-2 B4 = reinterpret(0xBFCEC709DD768FE5), // -0x1.ec709dd768fe5p-3 B5 = reinterpret(0x3FCA61761EC4E736), // 0x1.a61761ec4e736p-3 B6 = reinterpret(0xBFC7153FBC64A79B), // -0x1.7153fbc64a79bp-3 B7 = reinterpret(0x3FC484D154F01B4A), // 0x1.484d154f01b4ap-3 B8 = reinterpret(0xBFC289E4A72C383C), // -0x1.289e4a72c383cp-3 B9 = reinterpret(0x3FC0B32F285AEE66); // 0x1.0b32f285aee66p-3 const A0 = reinterpret(0xBFE71547652B8339), // -0x1.71547652b8339p-1 A1 = reinterpret(0x3FDEC709DC3A04BE), // 0x1.ec709dc3a04bep-2 A2 = reinterpret(0xBFD7154764702FFB), // -0x1.7154764702ffbp-2 A3 = reinterpret(0x3FD2776C50034C48), // 0x1.2776c50034c48p-2 A4 = reinterpret(0xBFCEC7B328EA92BC), // -0x1.ec7b328ea92bcp-3 A5 = reinterpret(0x3FCA6225E117F92E); // 0x1.a6225e117f92ep-3 var ix = reinterpret(x); if (ix - LO < HI - LO) { let r = x - 1.0; // #if __FP_FAST_FMA // hi = r * InvLn2hi; // lo = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -hi); // #else let rhi = reinterpret(reinterpret(r) & 0xFFFFFFFF00000000); let rlo = r - rhi; let hi = rhi * InvLn2hi; let lo = rlo * InvLn2hi + r * InvLn2lo; // #endif let r2 = r * r; // rounding error: 0x1p-62 let r4 = r2 * r2; // Worst-case error is less than 0.54 ULP (0.55 ULP without fma) let p = r2 * (B0 + r * B1); let y = hi + p; lo += hi - y + p; lo += r4 * (B2 + r * B3 + r2 * (B4 + r * B5) + r4 * (B6 + r * B7 + r2 * (B8 + r * B9))); return y + lo; } var top = (ix >> 48); if (top - 0x0010 >= 0x7ff0 - 0x0010) { // x < 0x1p-1022 or inf or nan. if ((ix << 1) == 0) return -1.0 / (x * x); if (ix == 0x7FF0000000000000) return x; // log(inf) == inf if ((top & 0x8000) || (top & 0x7FF0) == 0x7FF0) return (x - x) / (x - x); // x is subnormal, normalize it. ix = reinterpret(x * Ox1p52); ix -= u64(52) << 52; } // x = 2^k z; where z is in range [OFF,2*OFF) and exact. // The range is split into N subintervals. // The ith subinterval contains z and c is near its center. var tmp = ix - 0x3FE6000000000000; var i = ((tmp >> (52 - LOG2_TABLE_BITS)) & N_MASK); var k = tmp >> 52; var iz = ix - (tmp & 0xFFF0000000000000); var invc = load(LOG2_DATA_TAB1 + (i << (1 + alignof())), 0 << alignof()); // T[i].invc; var logc = load(LOG2_DATA_TAB1 + (i << (1 + alignof())), 1 << alignof()); // T[i].logc; var z = reinterpret(iz); var kd = k; // log2(x) = log2(z/c) + log2(c) + k. // r ~= z/c - 1, |r| < 1/(2*N). // #if __FP_FAST_FMA // // rounding error: 0x1p-55/N. // r = __builtin_fma(z, invc, -1.0); // t1 = r * InvLn2hi; // t2 = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -t1); // #else // rounding error: 0x1p-55/N + 0x1p-65. var chi = load(LOG2_DATA_TAB2 + (i << (1 + alignof())), 0 << alignof()); // T[i].chi; var clo = load(LOG2_DATA_TAB2 + (i << (1 + alignof())), 1 << alignof()); // T[i].clo; var r = (z - chi - clo) * invc; var rhi = reinterpret(reinterpret(r) & 0xFFFFFFFF00000000); var rlo = r - rhi; var t1 = rhi * InvLn2hi; var t2 = rlo * InvLn2hi + r * InvLn2lo; // #endif // hi + lo = r/ln2 + log2(c) + k var t3 = kd + logc; var hi = t3 + t1; var lo = t3 - hi + t1 + t2; // log2(r+1) = r/ln2 + r^2*poly(r) // Evaluation is optimized assuming superscalar pipelined execution var r2 = r * r; // rounding error: 0x1p-54/N^2 // Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma). // ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). var p = A0 + r * A1 + r2 * (A2 + r * A3) + (r2 * r2) * (A4 + r * A5); return lo + r2 * p + hi; } // // Lookup data for log. See: https://git.musl-libc.org/cgit/musl/tree/src/math/log.c // // @ts-ignore: decorator @inline const LOG_TABLE_BITS = 7; /* Algorithm: x = 2^k z log(x) = k ln2 + log(c) + log(z/c) log(z/c) = poly(z/c - 1) where z is in [1.6p-1; 1.6p0] which is split into N subintervals and z falls into the ith one, then table entries are computed as tab[i].invc = 1/c tab[i].logc = (double)log(c) tab2[i].chi = (double)c tab2[i].clo = (double)(c - (double)c) where c is near the center of the subinterval and is chosen by trying +-2^29 floating point invc candidates around 1/center and selecting one for which 1) the rounding error in 0x1.8p9 + logc is 0, 2) the rounding error in z - chi - clo is < 0x1p-66 and 3) the rounding error in (double)log(c) is minimized (< 0x1p-66). Note: 1) ensures that k*ln2hi + logc can be computed without rounding error, 2) ensures that z/c - 1 can be computed as (z - chi - clo)*invc with close to a single rounding error when there is no fast fma for z*invc - 1, 3) ensures that logc + poly(z/c - 1) has small error, however near x == 1 when |log(x)| < 0x1p-4, this is not enough so that is special cased.*/ // @ts-ignore: decorator @lazy @inline const LOG_DATA_TAB1 = memory.data([ // invc , logc reinterpret(0x3FF734F0C3E0DE9F), reinterpret(0xBFD7CC7F79E69000), reinterpret(0x3FF713786A2CE91F), reinterpret(0xBFD76FEEC20D0000), reinterpret(0x3FF6F26008FAB5A0), reinterpret(0xBFD713E31351E000), reinterpret(0x3FF6D1A61F138C7D), reinterpret(0xBFD6B85B38287800), reinterpret(0x3FF6B1490BC5B4D1), reinterpret(0xBFD65D5590807800), reinterpret(0x3FF69147332F0CBA), reinterpret(0xBFD602D076180000), reinterpret(0x3FF6719F18224223), reinterpret(0xBFD5A8CA86909000), reinterpret(0x3FF6524F99A51ED9), reinterpret(0xBFD54F4356035000), reinterpret(0x3FF63356AA8F24C4), reinterpret(0xBFD4F637C36B4000), reinterpret(0x3FF614B36B9DDC14), reinterpret(0xBFD49DA7FDA85000), reinterpret(0x3FF5F66452C65C4C), reinterpret(0xBFD445923989A800), reinterpret(0x3FF5D867B5912C4F), reinterpret(0xBFD3EDF439B0B800), reinterpret(0x3FF5BABCCB5B90DE), reinterpret(0xBFD396CE448F7000), reinterpret(0x3FF59D61F2D91A78), reinterpret(0xBFD3401E17BDA000), reinterpret(0x3FF5805612465687), reinterpret(0xBFD2E9E2EF468000), reinterpret(0x3FF56397CEE76BD3), reinterpret(0xBFD2941B3830E000), reinterpret(0x3FF54725E2A77F93), reinterpret(0xBFD23EC58CDA8800), reinterpret(0x3FF52AFF42064583), reinterpret(0xBFD1E9E129279000), reinterpret(0x3FF50F22DBB2BDDF), reinterpret(0xBFD1956D2B48F800), reinterpret(0x3FF4F38F4734DED7), reinterpret(0xBFD141679AB9F800), reinterpret(0x3FF4D843CFDE2840), reinterpret(0xBFD0EDD094EF9800), reinterpret(0x3FF4BD3EC078A3C8), reinterpret(0xBFD09AA518DB1000), reinterpret(0x3FF4A27FC3E0258A), reinterpret(0xBFD047E65263B800), reinterpret(0x3FF4880524D48434), reinterpret(0xBFCFEB224586F000), reinterpret(0x3FF46DCE1B192D0B), reinterpret(0xBFCF474A7517B000), reinterpret(0x3FF453D9D3391854), reinterpret(0xBFCEA4443D103000), reinterpret(0x3FF43A2744B4845A), reinterpret(0xBFCE020D44E9B000), reinterpret(0x3FF420B54115F8FB), reinterpret(0xBFCD60A22977F000), reinterpret(0x3FF40782DA3EF4B1), reinterpret(0xBFCCC00104959000), reinterpret(0x3FF3EE8F5D57FE8F), reinterpret(0xBFCC202956891000), reinterpret(0x3FF3D5D9A00B4CE9), reinterpret(0xBFCB81178D811000), reinterpret(0x3FF3BD60C010C12B), reinterpret(0xBFCAE2C9CCD3D000), reinterpret(0x3FF3A5242B75DAB8), reinterpret(0xBFCA45402E129000), reinterpret(0x3FF38D22CD9FD002), reinterpret(0xBFC9A877681DF000), reinterpret(0x3FF3755BC5847A1C), reinterpret(0xBFC90C6D69483000), reinterpret(0x3FF35DCE49AD36E2), reinterpret(0xBFC87120A645C000), reinterpret(0x3FF34679984DD440), reinterpret(0xBFC7D68FB4143000), reinterpret(0x3FF32F5CCEFFCB24), reinterpret(0xBFC73CB83C627000), reinterpret(0x3FF3187775A10D49), reinterpret(0xBFC6A39A9B376000), reinterpret(0x3FF301C8373E3990), reinterpret(0xBFC60B3154B7A000), reinterpret(0x3FF2EB4EBB95F841), reinterpret(0xBFC5737D76243000), reinterpret(0x3FF2D50A0219A9D1), reinterpret(0xBFC4DC7B8FC23000), reinterpret(0x3FF2BEF9A8B7FD2A), reinterpret(0xBFC4462C51D20000), reinterpret(0x3FF2A91C7A0C1BAB), reinterpret(0xBFC3B08ABC830000), reinterpret(0x3FF293726014B530), reinterpret(0xBFC31B996B490000), reinterpret(0x3FF27DFA5757A1F5), reinterpret(0xBFC2875490A44000), reinterpret(0x3FF268B39B1D3BBF), reinterpret(0xBFC1F3B9F879A000), reinterpret(0x3FF2539D838FF5BD), reinterpret(0xBFC160C8252CA000), reinterpret(0x3FF23EB7AAC9083B), reinterpret(0xBFC0CE7F57F72000), reinterpret(0x3FF22A012BA940B6), reinterpret(0xBFC03CDC49FEA000), reinterpret(0x3FF2157996CC4132), reinterpret(0xBFBF57BDBC4B8000), reinterpret(0x3FF201201DD2FC9B), reinterpret(0xBFBE370896404000), reinterpret(0x3FF1ECF4494D480B), reinterpret(0xBFBD17983EF94000), reinterpret(0x3FF1D8F5528F6569), reinterpret(0xBFBBF9674ED8A000), reinterpret(0x3FF1C52311577E7C), reinterpret(0xBFBADC79202F6000), reinterpret(0x3FF1B17C74CB26E9), reinterpret(0xBFB9C0C3E7288000), reinterpret(0x3FF19E010C2C1AB6), reinterpret(0xBFB8A646B372C000), reinterpret(0x3FF18AB07BB670BD), reinterpret(0xBFB78D01B3AC0000), reinterpret(0x3FF1778A25EFBCB6), reinterpret(0xBFB674F145380000), reinterpret(0x3FF1648D354C31DA), reinterpret(0xBFB55E0E6D878000), reinterpret(0x3FF151B990275FDD), reinterpret(0xBFB4485CDEA1E000), reinterpret(0x3FF13F0EA432D24C), reinterpret(0xBFB333D94D6AA000), reinterpret(0x3FF12C8B7210F9DA), reinterpret(0xBFB22079F8C56000), reinterpret(0x3FF11A3028ECB531), reinterpret(0xBFB10E4698622000), reinterpret(0x3FF107FBDA8434AF), reinterpret(0xBFAFFA6C6AD20000), reinterpret(0x3FF0F5EE0F4E6BB3), reinterpret(0xBFADDA8D4A774000), reinterpret(0x3FF0E4065D2A9FCE), reinterpret(0xBFABBCECE4850000), reinterpret(0x3FF0D244632CA521), reinterpret(0xBFA9A1894012C000), reinterpret(0x3FF0C0A77CE2981A), reinterpret(0xBFA788583302C000), reinterpret(0x3FF0AF2F83C636D1), reinterpret(0xBFA5715E67D68000), reinterpret(0x3FF09DDB98A01339), reinterpret(0xBFA35C8A49658000), reinterpret(0x3FF08CABAF52E7DF), reinterpret(0xBFA149E364154000), reinterpret(0x3FF07B9F2F4E28FB), reinterpret(0xBF9E72C082EB8000), reinterpret(0x3FF06AB58C358F19), reinterpret(0xBF9A55F152528000), reinterpret(0x3FF059EEA5ECF92C), reinterpret(0xBF963D62CF818000), reinterpret(0x3FF04949CDD12C90), reinterpret(0xBF9228FB8CAA0000), reinterpret(0x3FF038C6C6F0ADA9), reinterpret(0xBF8C317B20F90000), reinterpret(0x3FF02865137932A9), reinterpret(0xBF8419355DAA0000), reinterpret(0x3FF0182427EA7348), reinterpret(0xBF781203C2EC0000), reinterpret(0x3FF008040614B195), reinterpret(0xBF60040979240000), reinterpret(0x3FEFE01FF726FA1A), reinterpret(0x3F6FEFF384900000), reinterpret(0x3FEFA11CC261EA74), reinterpret(0x3F87DC41353D0000), reinterpret(0x3FEF6310B081992E), reinterpret(0x3F93CEA3C4C28000), reinterpret(0x3FEF25F63CEEADCD), reinterpret(0x3F9B9FC114890000), reinterpret(0x3FEEE9C8039113E7), reinterpret(0x3FA1B0D8CE110000), reinterpret(0x3FEEAE8078CBB1AB), reinterpret(0x3FA58A5BD001C000), reinterpret(0x3FEE741AA29D0C9B), reinterpret(0x3FA95C8340D88000), reinterpret(0x3FEE3A91830A99B5), reinterpret(0x3FAD276AEF578000), reinterpret(0x3FEE01E009609A56), reinterpret(0x3FB07598E598C000), reinterpret(0x3FEDCA01E577BB98), reinterpret(0x3FB253F5E30D2000), reinterpret(0x3FED92F20B7C9103), reinterpret(0x3FB42EDD8B380000), reinterpret(0x3FED5CAC66FB5CCE), reinterpret(0x3FB606598757C000), reinterpret(0x3FED272CAA5EDE9D), reinterpret(0x3FB7DA76356A0000), reinterpret(0x3FECF26E3E6B2CCD), reinterpret(0x3FB9AB434E1C6000), reinterpret(0x3FECBE6DA2A77902), reinterpret(0x3FBB78C7BB0D6000), reinterpret(0x3FEC8B266D37086D), reinterpret(0x3FBD431332E72000), reinterpret(0x3FEC5894BD5D5804), reinterpret(0x3FBF0A3171DE6000), reinterpret(0x3FEC26B533BB9F8C), reinterpret(0x3FC067152B914000), reinterpret(0x3FEBF583EEECE73F), reinterpret(0x3FC147858292B000), reinterpret(0x3FEBC4FD75DB96C1), reinterpret(0x3FC2266ECDCA3000), reinterpret(0x3FEB951E0C864A28), reinterpret(0x3FC303D7A6C55000), reinterpret(0x3FEB65E2C5EF3E2C), reinterpret(0x3FC3DFC33C331000), reinterpret(0x3FEB374867C9888B), reinterpret(0x3FC4BA366B7A8000), reinterpret(0x3FEB094B211D304A), reinterpret(0x3FC5933928D1F000), reinterpret(0x3FEADBE885F2EF7E), reinterpret(0x3FC66ACD2418F000), reinterpret(0x3FEAAF1D31603DA2), reinterpret(0x3FC740F8EC669000), reinterpret(0x3FEA82E63FD358A7), reinterpret(0x3FC815C0F51AF000), reinterpret(0x3FEA5740EF09738B), reinterpret(0x3FC8E92954F68000), reinterpret(0x3FEA2C2A90AB4B27), reinterpret(0x3FC9BB3602F84000), reinterpret(0x3FEA01A01393F2D1), reinterpret(0x3FCA8BED1C2C0000), reinterpret(0x3FE9D79F24DB3C1B), reinterpret(0x3FCB5B515C01D000), reinterpret(0x3FE9AE2505C7B190), reinterpret(0x3FCC2967CCBCC000), reinterpret(0x3FE9852EF297CE2F), reinterpret(0x3FCCF635D5486000), reinterpret(0x3FE95CBAEEA44B75), reinterpret(0x3FCDC1BD3446C000), reinterpret(0x3FE934C69DE74838), reinterpret(0x3FCE8C01B8CFE000), reinterpret(0x3FE90D4F2F6752E6), reinterpret(0x3FCF5509C0179000), reinterpret(0x3FE8E6528EFFD79D), reinterpret(0x3FD00E6C121FB800), reinterpret(0x3FE8BFCE9FCC007C), reinterpret(0x3FD071B80E93D000), reinterpret(0x3FE899C0DABEC30E), reinterpret(0x3FD0D46B9E867000), reinterpret(0x3FE87427AA2317FB), reinterpret(0x3FD13687334BD000), reinterpret(0x3FE84F00ACB39A08), reinterpret(0x3FD1980D67234800), reinterpret(0x3FE82A49E8653E55), reinterpret(0x3FD1F8FFE0CC8000), reinterpret(0x3FE8060195F40260), reinterpret(0x3FD2595FD7636800), reinterpret(0x3FE7E22563E0A329), reinterpret(0x3FD2B9300914A800), reinterpret(0x3FE7BEB377DCB5AD), reinterpret(0x3FD3187210436000), reinterpret(0x3FE79BAA679725C2), reinterpret(0x3FD377266DEC1800), reinterpret(0x3FE77907F2170657), reinterpret(0x3FD3D54FFBAF3000), reinterpret(0x3FE756CADBD6130C), reinterpret(0x3FD432EEE32FE000) ]); // @ts-ignore: decorator @lazy @inline const LOG_DATA_TAB2 = memory.data([ // chi , clo reinterpret(0x3FE61000014FB66B), reinterpret(0x3C7E026C91425B3C), reinterpret(0x3FE63000034DB495), reinterpret(0x3C8DBFEA48005D41), reinterpret(0x3FE650000D94D478), reinterpret(0x3C8E7FA786D6A5B7), reinterpret(0x3FE67000074E6FAD), reinterpret(0x3C61FCEA6B54254C), reinterpret(0x3FE68FFFFEDF0FAE), reinterpret(0xBC7C7E274C590EFD), reinterpret(0x3FE6B0000763C5BC), reinterpret(0xBC8AC16848DCDA01), reinterpret(0x3FE6D0001E5CC1F6), reinterpret(0x3C833F1C9D499311), reinterpret(0x3FE6EFFFEB05F63E), reinterpret(0xBC7E80041AE22D53), reinterpret(0x3FE710000E869780), reinterpret(0x3C7BFF6671097952), reinterpret(0x3FE72FFFFC67E912), reinterpret(0x3C8C00E226BD8724), reinterpret(0x3FE74FFFDF81116A), reinterpret(0xBC6E02916EF101D2), reinterpret(0x3FE770000F679C90), reinterpret(0xBC67FC71CD549C74), reinterpret(0x3FE78FFFFA7EC835), reinterpret(0x3C81BEC19EF50483), reinterpret(0x3FE7AFFFFE20C2E6), reinterpret(0xBC707E1729CC6465), reinterpret(0x3FE7CFFFED3FC900), reinterpret(0xBC808072087B8B1C), reinterpret(0x3FE7EFFFE9261A76), reinterpret(0x3C8DC0286D9DF9AE), reinterpret(0x3FE81000049CA3E8), reinterpret(0x3C897FD251E54C33), reinterpret(0x3FE8300017932C8F), reinterpret(0xBC8AFEE9B630F381), reinterpret(0x3FE850000633739C), reinterpret(0x3C89BFBF6B6535BC), reinterpret(0x3FE87000204289C6), reinterpret(0xBC8BBF65F3117B75), reinterpret(0x3FE88FFFEBF57904), reinterpret(0xBC89006EA23DCB57), reinterpret(0x3FE8B00022BC04DF), reinterpret(0xBC7D00DF38E04B0A), reinterpret(0x3FE8CFFFE50C1B8A), reinterpret(0xBC88007146FF9F05), reinterpret(0x3FE8EFFFFC918E43), reinterpret(0x3C83817BD07A7038), reinterpret(0x3FE910001EFA5FC7), reinterpret(0x3C893E9176DFB403), reinterpret(0x3FE9300013467BB9), reinterpret(0x3C7F804E4B980276), reinterpret(0x3FE94FFFE6EE076F), reinterpret(0xBC8F7EF0D9FF622E), reinterpret(0x3FE96FFFDE3C12D1), reinterpret(0xBC7082AA962638BA), reinterpret(0x3FE98FFFF4458A0D), reinterpret(0xBC87801B9164A8EF), reinterpret(0x3FE9AFFFDD982E3E), reinterpret(0xBC8740E08A5A9337), reinterpret(0x3FE9CFFFED49FB66), reinterpret(0x3C3FCE08C19BE000), reinterpret(0x3FE9F00020F19C51), reinterpret(0xBC8A3FAA27885B0A), reinterpret(0x3FEA10001145B006), reinterpret(0x3C74FF489958DA56), reinterpret(0x3FEA300007BBF6FA), reinterpret(0x3C8CBEAB8A2B6D18), reinterpret(0x3FEA500010971D79), reinterpret(0x3C88FECADD787930), reinterpret(0x3FEA70001DF52E48), reinterpret(0xBC8F41763DD8ABDB), reinterpret(0x3FEA90001C593352), reinterpret(0xBC8EBF0284C27612), reinterpret(0x3FEAB0002A4F3E4B), reinterpret(0xBC69FD043CFF3F5F), reinterpret(0x3FEACFFFD7AE1ED1), reinterpret(0xBC823EE7129070B4), reinterpret(0x3FEAEFFFEE510478), reinterpret(0x3C6A063EE00EDEA3), reinterpret(0x3FEB0FFFDB650D5B), reinterpret(0x3C5A06C8381F0AB9), reinterpret(0x3FEB2FFFFEAACA57), reinterpret(0xBC79011E74233C1D), reinterpret(0x3FEB4FFFD995BADC), reinterpret(0xBC79FF1068862A9F), reinterpret(0x3FEB7000249E659C), reinterpret(0x3C8AFF45D0864F3E), reinterpret(0x3FEB8FFFF9871640), reinterpret(0x3C7CFE7796C2C3F9), reinterpret(0x3FEBAFFFD204CB4F), reinterpret(0xBC63FF27EEF22BC4), reinterpret(0x3FEBCFFFD2415C45), reinterpret(0xBC6CFFB7EE3BEA21), reinterpret(0x3FEBEFFFF86309DF), reinterpret(0xBC814103972E0B5C), reinterpret(0x3FEC0FFFE1B57653), reinterpret(0x3C8BC16494B76A19), reinterpret(0x3FEC2FFFF1FA57E3), reinterpret(0xBC64FEEF8D30C6ED), reinterpret(0x3FEC4FFFDCBFE424), reinterpret(0xBC843F68BCEC4775), reinterpret(0x3FEC6FFFED54B9F7), reinterpret(0x3C847EA3F053E0EC), reinterpret(0x3FEC8FFFEB998FD5), reinterpret(0x3C7383068DF992F1), reinterpret(0x3FECB0002125219A), reinterpret(0xBC68FD8E64180E04), reinterpret(0x3FECCFFFDD94469C), reinterpret(0x3C8E7EBE1CC7EA72), reinterpret(0x3FECEFFFEAFDC476), reinterpret(0x3C8EBE39AD9F88FE), reinterpret(0x3FED1000169AF82B), reinterpret(0x3C757D91A8B95A71), reinterpret(0x3FED30000D0FF71D), reinterpret(0x3C89C1906970C7DA), reinterpret(0x3FED4FFFEA790FC4), reinterpret(0xBC580E37C558FE0C), reinterpret(0x3FED70002EDC87E5), reinterpret(0xBC7F80D64DC10F44), reinterpret(0x3FED900021DC82AA), reinterpret(0xBC747C8F94FD5C5C), reinterpret(0x3FEDAFFFD86B0283), reinterpret(0x3C8C7F1DC521617E), reinterpret(0x3FEDD000296C4739), reinterpret(0x3C88019EB2FFB153), reinterpret(0x3FEDEFFFE54490F5), reinterpret(0x3C6E00D2C652CC89), reinterpret(0x3FEE0FFFCDABF694), reinterpret(0xBC7F8340202D69D2), reinterpret(0x3FEE2FFFDB52C8DD), reinterpret(0x3C7B00C1CA1B0864), reinterpret(0x3FEE4FFFF24216EF), reinterpret(0x3C72FFA8B094AB51), reinterpret(0x3FEE6FFFE88A5E11), reinterpret(0xBC57F673B1EFBE59), reinterpret(0x3FEE9000119EFF0D), reinterpret(0xBC84808D5E0BC801), reinterpret(0x3FEEAFFFDFA51744), reinterpret(0x3C780006D54320B5), reinterpret(0x3FEED0001A127FA1), reinterpret(0xBC5002F860565C92), reinterpret(0x3FEEF00007BABCC4), reinterpret(0xBC8540445D35E611), reinterpret(0x3FEF0FFFF57A8D02), reinterpret(0xBC4FFB3139EF9105), reinterpret(0x3FEF30001EE58AC7), reinterpret(0x3C8A81ACF2731155), reinterpret(0x3FEF4FFFF5823494), reinterpret(0x3C8A3F41D4D7C743), reinterpret(0x3FEF6FFFFCA94C6B), reinterpret(0xBC6202F41C987875), reinterpret(0x3FEF8FFFE1F9C441), reinterpret(0x3C777DD1F477E74B), reinterpret(0x3FEFAFFFD2E0E37E), reinterpret(0xBC6F01199A7CA331), reinterpret(0x3FEFD0001C77E49E), reinterpret(0x3C7181EE4BCEACB1), reinterpret(0x3FEFEFFFF7E0C331), reinterpret(0xBC6E05370170875A), reinterpret(0x3FF00FFFF465606E), reinterpret(0xBC8A7EAD491C0ADA), reinterpret(0x3FF02FFFF3867A58), reinterpret(0xBC977F69C3FCB2E0), reinterpret(0x3FF04FFFFDFC0D17), reinterpret(0x3C97BFFE34CB945B), reinterpret(0x3FF0700003CD4D82), reinterpret(0x3C820083C0E456CB), reinterpret(0x3FF08FFFF9F2CBE8), reinterpret(0xBC6DFFDFBE37751A), reinterpret(0x3FF0B000010CDA65), reinterpret(0xBC913F7FAEE626EB), reinterpret(0x3FF0D00001A4D338), reinterpret(0x3C807DFA79489FF7), reinterpret(0x3FF0EFFFFADAFDFD), reinterpret(0xBC77040570D66BC0), reinterpret(0x3FF110000BBAFD96), reinterpret(0x3C8E80D4846D0B62), reinterpret(0x3FF12FFFFAE5F45D), reinterpret(0x3C9DBFFA64FD36EF), reinterpret(0x3FF150000DD59AD9), reinterpret(0x3C9A0077701250AE), reinterpret(0x3FF170000F21559A), reinterpret(0x3C8DFDF9E2E3DEEE), reinterpret(0x3FF18FFFFC275426), reinterpret(0x3C910030DC3B7273), reinterpret(0x3FF1B000123D3C59), reinterpret(0x3C997F7980030188), reinterpret(0x3FF1CFFFF8299EB7), reinterpret(0xBC65F932AB9F8C67), reinterpret(0x3FF1EFFFF48AD400), reinterpret(0x3C937FBF9DA75BEB), reinterpret(0x3FF210000C8B86A4), reinterpret(0x3C9F806B91FD5B22), reinterpret(0x3FF2300003854303), reinterpret(0x3C93FFC2EB9FBF33), reinterpret(0x3FF24FFFFFBCF684), reinterpret(0x3C7601E77E2E2E72), reinterpret(0x3FF26FFFF52921D9), reinterpret(0x3C7FFCBB767F0C61), reinterpret(0x3FF2900014933A3C), reinterpret(0xBC7202CA3C02412B), reinterpret(0x3FF2B00014556313), reinterpret(0xBC92808233F21F02), reinterpret(0x3FF2CFFFEBFE523B), reinterpret(0xBC88FF7E384FDCF2), reinterpret(0x3FF2F0000BB8AD96), reinterpret(0xBC85FF51503041C5), reinterpret(0x3FF30FFFFB7AE2AF), reinterpret(0xBC810071885E289D), reinterpret(0x3FF32FFFFEAC5F7F), reinterpret(0xBC91FF5D3FB7B715), reinterpret(0x3FF350000CA66756), reinterpret(0x3C957F82228B82BD), reinterpret(0x3FF3700011FBF721), reinterpret(0x3C8000BAC40DD5CC), reinterpret(0x3FF38FFFF9592FB9), reinterpret(0xBC943F9D2DB2A751), reinterpret(0x3FF3B00004DDD242), reinterpret(0x3C857F6B707638E1), reinterpret(0x3FF3CFFFF5B2C957), reinterpret(0x3C7A023A10BF1231), reinterpret(0x3FF3EFFFEAB0B418), reinterpret(0x3C987F6D66B152B0), reinterpret(0x3FF410001532AFF4), reinterpret(0x3C67F8375F198524), reinterpret(0x3FF4300017478B29), reinterpret(0x3C8301E672DC5143), reinterpret(0x3FF44FFFE795B463), reinterpret(0x3C89FF69B8B2895A), reinterpret(0x3FF46FFFE80475E0), reinterpret(0xBC95C0B19BC2F254), reinterpret(0x3FF48FFFEF6FC1E7), reinterpret(0x3C9B4009F23A2A72), reinterpret(0x3FF4AFFFE5BEA704), reinterpret(0xBC94FFB7BF0D7D45), reinterpret(0x3FF4D000171027DE), reinterpret(0xBC99C06471DC6A3D), reinterpret(0x3FF4F0000FF03EE2), reinterpret(0x3C977F890B85531C), reinterpret(0x3FF5100012DC4BD1), reinterpret(0x3C6004657166A436), reinterpret(0x3FF530001605277A), reinterpret(0xBC96BFCECE233209), reinterpret(0x3FF54FFFECDB704C), reinterpret(0xBC8902720505A1D7), reinterpret(0x3FF56FFFEF5F54A9), reinterpret(0x3C9BBFE60EC96412), reinterpret(0x3FF5900017E61012), reinterpret(0x3C887EC581AFEF90), reinterpret(0x3FF5B00003C93E92), reinterpret(0xBC9F41080ABF0CC0), reinterpret(0x3FF5D0001D4919BC), reinterpret(0xBC98812AFB254729), reinterpret(0x3FF5EFFFE7B87A89), reinterpret(0xBC947EB780ED6904) ]); // @ts-ignore: decorator @inline export function log_lut(x: f64): f64 { const N_MASK = (1 << LOG_TABLE_BITS) - 1; const B0 = reinterpret(0xBFE0000000000000), // -0x1p-1 B1 = reinterpret(0x3FD5555555555577), // 0x1.5555555555577p-2 B2 = reinterpret(0xBFCFFFFFFFFFFDCB), // -0x1.ffffffffffdcbp-3 B3 = reinterpret(0x3FC999999995DD0C), // 0x1.999999995dd0cp-3 B4 = reinterpret(0xBFC55555556745A7), // -0x1.55555556745a7p-3 B5 = reinterpret(0x3FC24924A344DE30), // 0x1.24924a344de3p-3 B6 = reinterpret(0xBFBFFFFFA4423D65), // -0x1.fffffa4423d65p-4 B7 = reinterpret(0x3FBC7184282AD6CA), // 0x1.c7184282ad6cap-4 B8 = reinterpret(0xBFB999EB43B068FF), // -0x1.999eb43b068ffp-4 B9 = reinterpret(0x3FB78182F7AFD085), // 0x1.78182f7afd085p-4 B10 = reinterpret(0xBFB5521375D145CD); // -0x1.5521375d145cdp-4 const A0 = reinterpret(0xBFE0000000000001), // -0x1.0000000000001p-1 A1 = reinterpret(0x3FD555555551305B), // 0x1.555555551305bp-2 A2 = reinterpret(0xBFCFFFFFFFEB4590), // -0x1.fffffffeb459p-3 A3 = reinterpret(0x3FC999B324F10111), // 0x1.999b324f10111p-3 A4 = reinterpret(0xBFC55575E506C89F); // -0x1.55575e506c89fp-3 const LO: u64 = 0x3FEE000000000000, HI: u64 = 0x3FF1090000000000; const Ln2hi = reinterpret(0x3FE62E42FEFA3800), // 0x1.62e42fefa3800p-1 Ln2lo = reinterpret(0x3D2EF35793C76730), // 0x1.ef35793c76730p-45 Ox1p27 = reinterpret(0x41A0000000000000), // 0x1p27 Ox1p52 = reinterpret(0x4330000000000000); // 0x1p52 var ix = reinterpret(x); if (ix - LO < HI - LO) { let r = x - 1.0; let r2 = r * r; let r3 = r2 * r; let y = r3 * (B1 + r * B2 + r2 * B3 + r3 * (B4 + r * B5 + r2 * B6 + r3 * (B7 + r * B8 + r2 * B9 + r3 * B10))); // Worst-case error is around 0.507 ULP let w = r * Ox1p27; let rhi = r + w - w; let rlo = r - rhi; w = rhi * rhi * B0; // B[0] == -0.5 let hi = r + w; let lo = r - hi + w; lo += B0 * rlo * (rhi + r); return y + lo + hi; } var top = u32(ix >> 48); if (top - 0x0010 >= 0x7FF0 - 0x0010) { // x < 0x1p-1022 or inf or nan if ((ix << 1) == 0) return -1.0 / (x * x); if (ix == reinterpret(Infinity)) return x; // log(inf) == inf if ((top & 0x8000) || (top & 0x7FF0) == 0x7FF0) return (x - x) / (x - x); // x is subnormal, normalize it ix = reinterpret(x * Ox1p52); ix -= u64(52) << 52; } // x = 2^k z; where z is in range [OFF,2*OFF) and exact. // The range is split into N subintervals. // The ith subinterval contains z and c is near its center. var tmp = ix - 0x3FE6000000000000; var i = ((tmp >> (52 - LOG_TABLE_BITS)) & N_MASK); var k = tmp >> 52; var iz = ix - (tmp & (u64(0xFFF) << 52)); var invc = load(LOG_DATA_TAB1 + (i << (1 + alignof())), 0 << alignof()); // T[i].invc; var logc = load(LOG_DATA_TAB1 + (i << (1 + alignof())), 1 << alignof()); // T[i].logc; var z = reinterpret(iz); // log(x) = log1p(z/c-1) + log(c) + k*Ln2. // r ~= z/c - 1, |r| < 1/(2*N) // #if __FP_FAST_FMA // // rounding error: 0x1p-55/N // r = __builtin_fma(z, invc, -1.0); // #else // rounding error: 0x1p-55/N + 0x1p-66 const chi = load(LOG_DATA_TAB2 + (i << (1 + alignof())), 0 << alignof()); // T2[i].chi const clo = load(LOG_DATA_TAB2 + (i << (1 + alignof())), 1 << alignof()); // T2[i].clo var r = (z - chi - clo) * invc; // #endif var kd = k; // hi + lo = r + log(c) + k*Ln2 var w = kd * Ln2hi + logc; var hi = w + r; var lo = w - hi + r + kd * Ln2lo; // log(x) = lo + (log1p(r) - r) + hi var r2 = r * r; // rounding error: 0x1p-54/N^2 // Worst case error if |y| > 0x1p-5: // 0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma) // Worst case error if |y| > 0x1p-4: // 0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). return lo + r2 * A0 + r * r2 * (A1 + r * A2 + r2 * (A3 + r * A4)) + hi; } // // Lookup data for pow. See: https://git.musl-libc.org/cgit/musl/tree/src/math/pow.c // // @ts-ignore: decorator @inline const POW_LOG_TABLE_BITS = 7; /* Algorithm: x = 2^k z log(x) = k ln2 + log(c) + log(z/c) log(z/c) = poly(z/c - 1) where z is in [0x1.69555p-1; 0x1.69555p0] which is split into N subintervals and z falls into the ith one, then table entries are computed as tab[i].invc = 1/c tab[i].logc = round(0x1p43*log(c))/0x1p43 tab[i].logctail = (double)(log(c) - logc) where c is chosen near the center of the subinterval such that 1/c has only a few precision bits so z/c - 1 is exactly representible as double: 1/c = center < 1 ? round(N/center)/N : round(2*N/center)/N/2 Note: |z/c - 1| < 1/N for the chosen c, |log(c) - logc - logctail| < 0x1p-97, the last few bits of logc are rounded away so k*ln2hi + logc has no rounding error and the interval for z is selected such that near x == 1, where log(x) is tiny, large cancellation error is avoided in logc + poly(z/c - 1). */ // @ts-ignore: decorator @lazy @inline const POW_LOG_DATA_TAB = memory.data([ // invc ,pad, logc , logctail reinterpret(0x3FF6A00000000000), 0, reinterpret(0xBFD62C82F2B9C800), reinterpret(0x3CFAB42428375680), reinterpret(0x3FF6800000000000), 0, reinterpret(0xBFD5D1BDBF580800), reinterpret(0xBD1CA508D8E0F720), reinterpret(0x3FF6600000000000), 0, reinterpret(0xBFD5767717455800), reinterpret(0xBD2362A4D5B6506D), reinterpret(0x3FF6400000000000), 0, reinterpret(0xBFD51AAD872DF800), reinterpret(0xBCE684E49EB067D5), reinterpret(0x3FF6200000000000), 0, reinterpret(0xBFD4BE5F95777800), reinterpret(0xBD041B6993293EE0), reinterpret(0x3FF6000000000000), 0, reinterpret(0xBFD4618BC21C6000), reinterpret(0x3D13D82F484C84CC), reinterpret(0x3FF5E00000000000), 0, reinterpret(0xBFD404308686A800), reinterpret(0x3CDC42F3ED820B3A), reinterpret(0x3FF5C00000000000), 0, reinterpret(0xBFD3A64C55694800), reinterpret(0x3D20B1C686519460), reinterpret(0x3FF5A00000000000), 0, reinterpret(0xBFD347DD9A988000), reinterpret(0x3D25594DD4C58092), reinterpret(0x3FF5800000000000), 0, reinterpret(0xBFD2E8E2BAE12000), reinterpret(0x3D267B1E99B72BD8), reinterpret(0x3FF5600000000000), 0, reinterpret(0xBFD2895A13DE8800), reinterpret(0x3D15CA14B6CFB03F), reinterpret(0x3FF5600000000000), 0, reinterpret(0xBFD2895A13DE8800), reinterpret(0x3D15CA14B6CFB03F), reinterpret(0x3FF5400000000000), 0, reinterpret(0xBFD22941FBCF7800), reinterpret(0xBD165A242853DA76), reinterpret(0x3FF5200000000000), 0, reinterpret(0xBFD1C898C1699800), reinterpret(0xBD1FAFBC68E75404), reinterpret(0x3FF5000000000000), 0, reinterpret(0xBFD1675CABABA800), reinterpret(0x3D1F1FC63382A8F0), reinterpret(0x3FF4E00000000000), 0, reinterpret(0xBFD1058BF9AE4800), reinterpret(0xBD26A8C4FD055A66), reinterpret(0x3FF4C00000000000), 0, reinterpret(0xBFD0A324E2739000), reinterpret(0xBD0C6BEE7EF4030E), reinterpret(0x3FF4A00000000000), 0, reinterpret(0xBFD0402594B4D000), reinterpret(0xBCF036B89EF42D7F), reinterpret(0x3FF4A00000000000), 0, reinterpret(0xBFD0402594B4D000), reinterpret(0xBCF036B89EF42D7F), reinterpret(0x3FF4800000000000), 0, reinterpret(0xBFCFB9186D5E4000), reinterpret(0x3D0D572AAB993C87), reinterpret(0x3FF4600000000000), 0, reinterpret(0xBFCEF0ADCBDC6000), reinterpret(0x3D2B26B79C86AF24), reinterpret(0x3FF4400000000000), 0, reinterpret(0xBFCE27076E2AF000), reinterpret(0xBD172F4F543FFF10), reinterpret(0x3FF4200000000000), 0, reinterpret(0xBFCD5C216B4FC000), reinterpret(0x3D21BA91BBCA681B), reinterpret(0x3FF4000000000000), 0, reinterpret(0xBFCC8FF7C79AA000), reinterpret(0x3D27794F689F8434), reinterpret(0x3FF4000000000000), 0, reinterpret(0xBFCC8FF7C79AA000), reinterpret(0x3D27794F689F8434), reinterpret(0x3FF3E00000000000), 0, reinterpret(0xBFCBC286742D9000), reinterpret(0x3D194EB0318BB78F), reinterpret(0x3FF3C00000000000), 0, reinterpret(0xBFCAF3C94E80C000), reinterpret(0x3CBA4E633FCD9066), reinterpret(0x3FF3A00000000000), 0, reinterpret(0xBFCA23BC1FE2B000), reinterpret(0xBD258C64DC46C1EA), reinterpret(0x3FF3A00000000000), 0, reinterpret(0xBFCA23BC1FE2B000), reinterpret(0xBD258C64DC46C1EA), reinterpret(0x3FF3800000000000), 0, reinterpret(0xBFC9525A9CF45000), reinterpret(0xBD2AD1D904C1D4E3), reinterpret(0x3FF3600000000000), 0, reinterpret(0xBFC87FA06520D000), reinterpret(0x3D2BBDBF7FDBFA09), reinterpret(0x3FF3400000000000), 0, reinterpret(0xBFC7AB890210E000), reinterpret(0x3D2BDB9072534A58), reinterpret(0x3FF3400000000000), 0, reinterpret(0xBFC7AB890210E000), reinterpret(0x3D2BDB9072534A58), reinterpret(0x3FF3200000000000), 0, reinterpret(0xBFC6D60FE719D000), reinterpret(0xBD10E46AA3B2E266), reinterpret(0x3FF3000000000000), 0, reinterpret(0xBFC5FF3070A79000), reinterpret(0xBD1E9E439F105039), reinterpret(0x3FF3000000000000), 0, reinterpret(0xBFC5FF3070A79000), reinterpret(0xBD1E9E439F105039), reinterpret(0x3FF2E00000000000), 0, reinterpret(0xBFC526E5E3A1B000), reinterpret(0xBD20DE8B90075B8F), reinterpret(0x3FF2C00000000000), 0, reinterpret(0xBFC44D2B6CCB8000), reinterpret(0x3D170CC16135783C), reinterpret(0x3FF2C00000000000), 0, reinterpret(0xBFC44D2B6CCB8000), reinterpret(0x3D170CC16135783C), reinterpret(0x3FF2A00000000000), 0, reinterpret(0xBFC371FC201E9000), reinterpret(0x3CF178864D27543A), reinterpret(0x3FF2800000000000), 0, reinterpret(0xBFC29552F81FF000), reinterpret(0xBD248D301771C408), reinterpret(0x3FF2600000000000), 0, reinterpret(0xBFC1B72AD52F6000), reinterpret(0xBD2E80A41811A396), reinterpret(0x3FF2600000000000), 0, reinterpret(0xBFC1B72AD52F6000), reinterpret(0xBD2E80A41811A396), reinterpret(0x3FF2400000000000), 0, reinterpret(0xBFC0D77E7CD09000), reinterpret(0x3D0A699688E85BF4), reinterpret(0x3FF2400000000000), 0, reinterpret(0xBFC0D77E7CD09000), reinterpret(0x3D0A699688E85BF4), reinterpret(0x3FF2200000000000), 0, reinterpret(0xBFBFEC9131DBE000), reinterpret(0xBD2575545CA333F2), reinterpret(0x3FF2000000000000), 0, reinterpret(0xBFBE27076E2B0000), reinterpret(0x3D2A342C2AF0003C), reinterpret(0x3FF2000000000000), 0, reinterpret(0xBFBE27076E2B0000), reinterpret(0x3D2A342C2AF0003C), reinterpret(0x3FF1E00000000000), 0, reinterpret(0xBFBC5E548F5BC000), reinterpret(0xBD1D0C57585FBE06), reinterpret(0x3FF1C00000000000), 0, reinterpret(0xBFBA926D3A4AE000), reinterpret(0x3D253935E85BAAC8), reinterpret(0x3FF1C00000000000), 0, reinterpret(0xBFBA926D3A4AE000), reinterpret(0x3D253935E85BAAC8), reinterpret(0x3FF1A00000000000), 0, reinterpret(0xBFB8C345D631A000), reinterpret(0x3D137C294D2F5668), reinterpret(0x3FF1A00000000000), 0, reinterpret(0xBFB8C345D631A000), reinterpret(0x3D137C294D2F5668), reinterpret(0x3FF1800000000000), 0, reinterpret(0xBFB6F0D28AE56000), reinterpret(0xBD269737C93373DA), reinterpret(0x3FF1600000000000), 0, reinterpret(0xBFB51B073F062000), reinterpret(0x3D1F025B61C65E57), reinterpret(0x3FF1600000000000), 0, reinterpret(0xBFB51B073F062000), reinterpret(0x3D1F025B61C65E57), reinterpret(0x3FF1400000000000), 0, reinterpret(0xBFB341D7961BE000), reinterpret(0x3D2C5EDACCF913DF), reinterpret(0x3FF1400000000000), 0, reinterpret(0xBFB341D7961BE000), reinterpret(0x3D2C5EDACCF913DF), reinterpret(0x3FF1200000000000), 0, reinterpret(0xBFB16536EEA38000), reinterpret(0x3D147C5E768FA309), reinterpret(0x3FF1000000000000), 0, reinterpret(0xBFAF0A30C0118000), reinterpret(0x3D2D599E83368E91), reinterpret(0x3FF1000000000000), 0, reinterpret(0xBFAF0A30C0118000), reinterpret(0x3D2D599E83368E91), reinterpret(0x3FF0E00000000000), 0, reinterpret(0xBFAB42DD71198000), reinterpret(0x3D1C827AE5D6704C), reinterpret(0x3FF0E00000000000), 0, reinterpret(0xBFAB42DD71198000), reinterpret(0x3D1C827AE5D6704C), reinterpret(0x3FF0C00000000000), 0, reinterpret(0xBFA77458F632C000), reinterpret(0xBD2CFC4634F2A1EE), reinterpret(0x3FF0C00000000000), 0, reinterpret(0xBFA77458F632C000), reinterpret(0xBD2CFC4634F2A1EE), reinterpret(0x3FF0A00000000000), 0, reinterpret(0xBFA39E87B9FEC000), reinterpret(0x3CF502B7F526FEAA), reinterpret(0x3FF0A00000000000), 0, reinterpret(0xBFA39E87B9FEC000), reinterpret(0x3CF502B7F526FEAA), reinterpret(0x3FF0800000000000), 0, reinterpret(0xBF9F829B0E780000), reinterpret(0xBD2980267C7E09E4), reinterpret(0x3FF0800000000000), 0, reinterpret(0xBF9F829B0E780000), reinterpret(0xBD2980267C7E09E4), reinterpret(0x3FF0600000000000), 0, reinterpret(0xBF97B91B07D58000), reinterpret(0xBD288D5493FAA639), reinterpret(0x3FF0400000000000), 0, reinterpret(0xBF8FC0A8B0FC0000), reinterpret(0xBCDF1E7CF6D3A69C), reinterpret(0x3FF0400000000000), 0, reinterpret(0xBF8FC0A8B0FC0000), reinterpret(0xBCDF1E7CF6D3A69C), reinterpret(0x3FF0200000000000), 0, reinterpret(0xBF7FE02A6B100000), reinterpret(0xBD19E23F0DDA40E4), reinterpret(0x3FF0200000000000), 0, reinterpret(0xBF7FE02A6B100000), reinterpret(0xBD19E23F0DDA40E4), reinterpret(0x3FF0000000000000), 0, 0, 0, reinterpret(0x3FF0000000000000), 0, 0, 0, reinterpret(0x3FEFC00000000000), 0, reinterpret(0x3F80101575890000), reinterpret(0xBD10C76B999D2BE8), reinterpret(0x3FEF800000000000), 0, reinterpret(0x3F90205658938000), reinterpret(0xBD23DC5B06E2F7D2), reinterpret(0x3FEF400000000000), 0, reinterpret(0x3F98492528C90000), reinterpret(0xBD2AA0BA325A0C34), reinterpret(0x3FEF000000000000), 0, reinterpret(0x3FA0415D89E74000), reinterpret(0x3D0111C05CF1D753), reinterpret(0x3FEEC00000000000), 0, reinterpret(0x3FA466AED42E0000), reinterpret(0xBD2C167375BDFD28), reinterpret(0x3FEE800000000000), 0, reinterpret(0x3FA894AA149FC000), reinterpret(0xBD197995D05A267D), reinterpret(0x3FEE400000000000), 0, reinterpret(0x3FACCB73CDDDC000), reinterpret(0xBD1A68F247D82807), reinterpret(0x3FEE200000000000), 0, reinterpret(0x3FAEEA31C006C000), reinterpret(0xBD0E113E4FC93B7B), reinterpret(0x3FEDE00000000000), 0, reinterpret(0x3FB1973BD1466000), reinterpret(0xBD25325D560D9E9B), reinterpret(0x3FEDA00000000000), 0, reinterpret(0x3FB3BDF5A7D1E000), reinterpret(0x3D2CC85EA5DB4ED7), reinterpret(0x3FED600000000000), 0, reinterpret(0x3FB5E95A4D97A000), reinterpret(0xBD2C69063C5D1D1E), reinterpret(0x3FED400000000000), 0, reinterpret(0x3FB700D30AEAC000), reinterpret(0x3CEC1E8DA99DED32), reinterpret(0x3FED000000000000), 0, reinterpret(0x3FB9335E5D594000), reinterpret(0x3D23115C3ABD47DA), reinterpret(0x3FECC00000000000), 0, reinterpret(0x3FBB6AC88DAD6000), reinterpret(0xBD1390802BF768E5), reinterpret(0x3FECA00000000000), 0, reinterpret(0x3FBC885801BC4000), reinterpret(0x3D2646D1C65AACD3), reinterpret(0x3FEC600000000000), 0, reinterpret(0x3FBEC739830A2000), reinterpret(0xBD2DC068AFE645E0), reinterpret(0x3FEC400000000000), 0, reinterpret(0x3FBFE89139DBE000), reinterpret(0xBD2534D64FA10AFD), reinterpret(0x3FEC000000000000), 0, reinterpret(0x3FC1178E8227E000), reinterpret(0x3D21EF78CE2D07F2), reinterpret(0x3FEBE00000000000), 0, reinterpret(0x3FC1AA2B7E23F000), reinterpret(0x3D2CA78E44389934), reinterpret(0x3FEBA00000000000), 0, reinterpret(0x3FC2D1610C868000), reinterpret(0x3D039D6CCB81B4A1), reinterpret(0x3FEB800000000000), 0, reinterpret(0x3FC365FCB0159000), reinterpret(0x3CC62FA8234B7289), reinterpret(0x3FEB400000000000), 0, reinterpret(0x3FC4913D8333B000), reinterpret(0x3D25837954FDB678), reinterpret(0x3FEB200000000000), 0, reinterpret(0x3FC527E5E4A1B000), reinterpret(0x3D2633E8E5697DC7), reinterpret(0x3FEAE00000000000), 0, reinterpret(0x3FC6574EBE8C1000), reinterpret(0x3D19CF8B2C3C2E78), reinterpret(0x3FEAC00000000000), 0, reinterpret(0x3FC6F0128B757000), reinterpret(0xBD25118DE59C21E1), reinterpret(0x3FEAA00000000000), 0, reinterpret(0x3FC7898D85445000), reinterpret(0xBD1C661070914305), reinterpret(0x3FEA600000000000), 0, reinterpret(0x3FC8BEAFEB390000), reinterpret(0xBD073D54AAE92CD1), reinterpret(0x3FEA400000000000), 0, reinterpret(0x3FC95A5ADCF70000), reinterpret(0x3D07F22858A0FF6F), reinterpret(0x3FEA000000000000), 0, reinterpret(0x3FCA93ED3C8AE000), reinterpret(0xBD28724350562169), reinterpret(0x3FE9E00000000000), 0, reinterpret(0x3FCB31D8575BD000), reinterpret(0xBD0C358D4EACE1AA), reinterpret(0x3FE9C00000000000), 0, reinterpret(0x3FCBD087383BE000), reinterpret(0xBD2D4BC4595412B6), reinterpret(0x3FE9A00000000000), 0, reinterpret(0x3FCC6FFBC6F01000), reinterpret(0xBCF1EC72C5962BD2), reinterpret(0x3FE9600000000000), 0, reinterpret(0x3FCDB13DB0D49000), reinterpret(0xBD2AFF2AF715B035), reinterpret(0x3FE9400000000000), 0, reinterpret(0x3FCE530EFFE71000), reinterpret(0x3CC212276041F430), reinterpret(0x3FE9200000000000), 0, reinterpret(0x3FCEF5ADE4DD0000), reinterpret(0xBCCA211565BB8E11), reinterpret(0x3FE9000000000000), 0, reinterpret(0x3FCF991C6CB3B000), reinterpret(0x3D1BCBECCA0CDF30), reinterpret(0x3FE8C00000000000), 0, reinterpret(0x3FD07138604D5800), reinterpret(0x3CF89CDB16ED4E91), reinterpret(0x3FE8A00000000000), 0, reinterpret(0x3FD0C42D67616000), reinterpret(0x3D27188B163CEAE9), reinterpret(0x3FE8800000000000), 0, reinterpret(0x3FD1178E8227E800), reinterpret(0xBD2C210E63A5F01C), reinterpret(0x3FE8600000000000), 0, reinterpret(0x3FD16B5CCBACF800), reinterpret(0x3D2B9ACDF7A51681), reinterpret(0x3FE8400000000000), 0, reinterpret(0x3FD1BF99635A6800), reinterpret(0x3D2CA6ED5147BDB7), reinterpret(0x3FE8200000000000), 0, reinterpret(0x3FD214456D0EB800), reinterpret(0x3D0A87DEBA46BAEA), reinterpret(0x3FE7E00000000000), 0, reinterpret(0x3FD2BEF07CDC9000), reinterpret(0x3D2A9CFA4A5004F4), reinterpret(0x3FE7C00000000000), 0, reinterpret(0x3FD314F1E1D36000), reinterpret(0xBD28E27AD3213CB8), reinterpret(0x3FE7A00000000000), 0, reinterpret(0x3FD36B6776BE1000), reinterpret(0x3D116ECDB0F177C8), reinterpret(0x3FE7800000000000), 0, reinterpret(0x3FD3C25277333000), reinterpret(0x3D183B54B606BD5C), reinterpret(0x3FE7600000000000), 0, reinterpret(0x3FD419B423D5E800), reinterpret(0x3D08E436EC90E09D), reinterpret(0x3FE7400000000000), 0, reinterpret(0x3FD4718DC271C800), reinterpret(0xBD2F27CE0967D675), reinterpret(0x3FE7200000000000), 0, reinterpret(0x3FD4C9E09E173000), reinterpret(0xBD2E20891B0AD8A4), reinterpret(0x3FE7000000000000), 0, reinterpret(0x3FD522AE0738A000), reinterpret(0x3D2EBE708164C759), reinterpret(0x3FE6E00000000000), 0, reinterpret(0x3FD57BF753C8D000), reinterpret(0x3D1FADEDEE5D40EF), reinterpret(0x3FE6C00000000000), 0, reinterpret(0x3FD5D5BDDF596000), reinterpret(0xBD0A0B2A08A465DC) ]); // Returns 0 if not int, 1 if odd int, 2 if even int. The argument is // the bit representation of a non-zero finite floating-point value. // @ts-ignore: decorator @inline function checkint(iy: u64): i32 { var e = iy >> 52 & 0x7FF; if (e < 0x3FF ) return 0; if (e > 0x3FF + 52) return 2; e = u64(1) << (0x3FF + 52 - e); if (iy & (e - 1)) return 0; if (iy & e ) return 1; return 2; } // @ts-ignore: decorator @inline function xflow(sign: u32, y: f64): f64 { return select(-y, y, sign) * y; } // @ts-ignore: decorator @inline function uflow(sign: u32): f64 { return xflow(sign, reinterpret(0x1000000000000000)); // 0x1p-767 } // @ts-ignore: decorator @inline function oflow(sign: u32): f64 { return xflow(sign, reinterpret(0x7000000000000000)); // 0x1p769 } // Returns 1 if input is the bit representation of 0, infinity or nan. // @ts-ignore: decorator @inline function zeroinfnan(u: u64): bool { return (u << 1) - 1 >= 0xFFE0000000000000 - 1; } // @ts-ignore: decorator @lazy var log_tail: f64 = 0; // Compute y+TAIL = log(x) where the rounded result is y and TAIL has about // additional 15 bits precision. IX is the bit representation of x, but // normalized in the subnormal range using the sign bit for the exponent. // @ts-ignore: decorator @inline function log_inline(ix: u64): f64 { const N = 1 << POW_LOG_TABLE_BITS; const N_MASK = N - 1; const Ln2hi = reinterpret(0x3FE62E42FEFA3800), Ln2lo = reinterpret(0x3D2EF35793C76730); const A0 = reinterpret(0xBFE0000000000000), A1 = reinterpret(0xBFE5555555555560), A2 = reinterpret(0x3FE0000000000006), A3 = reinterpret(0x3FE999999959554E), A4 = reinterpret(0xBFE555555529A47A), A5 = reinterpret(0xBFF2495B9B4845E9), A6 = reinterpret(0x3FF0002B8B263FC3); // x = 2^k z; where z is in range [OFF,2*OFF) and exact. // The range is split into N subintervals. // The ith subinterval contains z and c is near its center. var tmp = ix - 0x3fE6955500000000; var i = ((tmp >> (52 - POW_LOG_TABLE_BITS)) & N_MASK); var k = tmp >> 52; var iz = ix - (tmp & u64(0xFFF) << 52); var z = reinterpret(iz); var kd = k; // log(x) = k*Ln2 + log(c) + log1p(z/c-1). var invc = load(POW_LOG_DATA_TAB + (i << (2 + alignof())), 0 << alignof()); // tab[i].invc var logc = load(POW_LOG_DATA_TAB + (i << (2 + alignof())), 2 << alignof()); // tab[i].logc var logctail = load(POW_LOG_DATA_TAB + (i << (2 + alignof())), 3 << alignof()); // tab[i].logctail // Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and // |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. // Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. var zhi = reinterpret((iz + u64(0x80000000)) & 0xFFFFFFFF00000000); var zlo = z - zhi; var rhi = zhi * invc - 1.0; var rlo = zlo * invc; var r = rhi + rlo; // k * Ln2 + log(c) + r. var t1 = kd * Ln2hi + logc; var t2 = t1 + r; var lo1 = kd * Ln2lo + logctail; var lo2 = t1 - t2 + r; // Evaluation is optimized assuming superscalar pipelined execution. var ar = A0 * r; // A[0] = -0.5 var ar2 = r * ar; var ar3 = r * ar2; // k * Ln2 + log(c) + r + A[0] * r * r. var arhi = A0 * rhi; var arhi2 = rhi * arhi; var hi = t2 + arhi2; var lo3 = rlo * (ar + arhi); var lo4 = t2 - hi + arhi2; // p = log1p(r) - r - A[0] * r * r. var p = ar3 * (A1 + r * A2 + ar2 * (A3 + r * A4 + ar2 * (A5 + r * A6))); var lo = lo1 + lo2 + lo3 + lo4 + p; var y = hi + lo; log_tail = hi - y + lo; return y; } // @ts-ignore: decorator @inline const SIGN_BIAS = 0x800 << EXP_TABLE_BITS; // Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. // The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. // @ts-ignore: decorator @inline function exp_inline(x: f64, xtail: f64, sign_bias: u32): f64 { const N = 1 << EXP_TABLE_BITS; const N_MASK = N - 1; const InvLn2N = reinterpret(0x3FF71547652B82FE) * N, // 0x1.71547652b82fep0 NegLn2hiN = reinterpret(0xBF762E42FEFA0000), // -0x1.62e42fefa0000p-8 NegLn2loN = reinterpret(0xBD0CF79ABC9E3B3A), // -0x1.cf79abc9e3b3ap-47 shift = reinterpret(0x4338000000000000); // 0x1.8p52 const C2 = reinterpret(0x3FDFFFFFFFFFFDBD), // __exp_data.poly[0] (0x1.ffffffffffdbdp-2) C3 = reinterpret(0x3FC555555555543C), // __exp_data.poly[1] (0x1.555555555543cp-3) C4 = reinterpret(0x3FA55555CF172B91), // __exp_data.poly[2] (0x1.55555cf172b91p-5) C5 = reinterpret(0x3F81111167A4D017); // __exp_data.poly[3] (0x1.1111167a4d017p-7) var abstop: u32; var ki: u64, top: u64, sbits: u64; var idx: usize; // double_t for better performance on targets with FLT_EVAL_METHOD==2. var kd: f64, z: f64, r: f64, r2: f64, scale: f64, tail: f64, tmp: f64; var ux = reinterpret(x); abstop = (ux >> 52) & 0x7FF; if (abstop - 0x3C9 >= 0x03F) { if (abstop - 0x3C9 >= 0x80000000) { // Avoid spurious underflow for tiny x. // Note: 0 is common input. return select(-1.0, 1.0, sign_bias); } if (abstop >= 0x409) { // top12(1024.0) // Note: inf and nan are already handled. return ux >> 63 ? uflow(sign_bias) : oflow(sign_bias); } // Large x is special cased below. abstop = 0; } // exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. // x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. z = InvLn2N * x; // #if TOINT_INTRINSICS // kd = roundtoint(z); // ki = converttoint(z); // #elif EXP_USE_TOINT_NARROW // // z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. // kd = eval_as_double(z + shift); // ki = asuint64(kd) >> 16; // kd = (double_t)(int32_t)ki; // #else // z - kd is in [-1, 1] in non-nearest rounding modes kd = z + shift; ki = reinterpret(kd); kd -= shift; // #endif r = x + kd * NegLn2hiN + kd * NegLn2loN; // The code assumes 2^-200 < |xtail| < 2^-8/N r += xtail; // 2^(k/N) ~= scale * (1 + tail) idx = ((ki & N_MASK) << 1); top = (ki + sign_bias) << (52 - EXP_TABLE_BITS); tail = reinterpret(load(EXP_DATA_TAB + (idx << alignof()))); // This is only a valid scale when -1023*N < k < 1024*N sbits = load(EXP_DATA_TAB + (idx << alignof()), 1 << alignof()) + top; // exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). // Evaluation is optimized assuming superscalar pipelined execution. r2 = r * r; // Without fma the worst case error is 0.25/N ulp larger. // Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); if (abstop == 0) return specialcase(tmp, sbits, ki); scale = reinterpret(sbits); // Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there // is no spurious underflow here even without fma. return scale + scale * tmp; } // @ts-ignore: decorator @inline export function pow_lut(x: f64, y: f64): f64 { const Ox1p52 = reinterpret(0x4330000000000000); // 0x1p52 var sign_bias: u32 = 0; var ix = reinterpret(x); var iy = reinterpret(y); var topx = ix >> 52; var topy = iy >> 52; if (topx - 0x001 >= 0x7FF - 0x001 || (topy & 0x7FF) - 0x3BE >= 0x43e - 0x3BE) { // Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0 // and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. // Special cases: (x < 0x1p-126 or inf or nan) or // (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). if (zeroinfnan(iy)) { if ((iy << 1) == 0) return 1.0; if (ix == 0x3FF0000000000000) return NaN; // original: 1.0 if ((ix << 1) > 0xFFE0000000000000 || (iy << 1) > 0xFFE0000000000000) return x + y; if ((ix << 1) == 0x7FE0000000000000) return NaN; // original: 1.0 if (((ix << 1) < 0x7FE0000000000000) == !(iy >> 63)) return 0; // |x|<1 && y==inf or |x|>1 && y==-inf. return y * y; } if (zeroinfnan(ix)) { let x2 = x * x; if (i32(ix >> 63) && checkint(iy) == 1) x2 = -x2; return iy >> 63 ? 1 / x2 : x2; } // Here x and y are non-zero finite if (ix >> 63) { // Finite x < 0 let yint = checkint(iy); if (yint == 0) return (x - x) / (x - x); if (yint == 1) sign_bias = SIGN_BIAS; ix &= 0x7FFFFFFFFFFFFFFF; topx &= 0x7FF; } if ((topy & 0x7FF) - 0x3BE >= 0x43E - 0x3BE) { // Note: sign_bias == 0 here because y is not odd. if (ix == 0x3FF0000000000000) return 1; if ((topy & 0x7FF) < 0x3BE) return 1; // |y| < 2^-65, x^y ~= 1 + y*log(x). return (ix > 0x3FF0000000000000) == (topy < 0x800) ? Infinity : 0; } if (topx == 0) { // Normalize subnormal x so exponent becomes negative. ix = reinterpret(x * Ox1p52); ix &= 0x7FFFFFFFFFFFFFFF; ix -= u64(52) << 52; } } var hi = log_inline(ix); var lo = log_tail; var ehi: f64, elo: f64; // #if __FP_FAST_FMA // ehi = y * hi; // elo = y * lo + __builtin_fma(y, hi, -ehi); // #else var yhi = reinterpret(iy & 0xFFFFFFFFF8000000); var ylo = y - yhi; var lhi = reinterpret(reinterpret(hi) & 0xFFFFFFFFF8000000); var llo = hi - lhi + lo; ehi = yhi * lhi; elo = ylo * lhi + y * llo; // |elo| < |ehi| * 2^-25. // #endif return exp_inline(ehi, elo, sign_bias); }